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基于智能化工大模型的中国甲醇价格分析与预测
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摘要：甲醇作为一种多用途化工产品和低碳清洁燃料，其价格波动对全球化工产业链和能源市场具有重要影响，

然而现有时间序列预测方法在捕捉甲醇价格的非平稳性和高波动性特征方面存在显著局限。为精准预测中国甲醇

价格，本文基于国内首个智能化工大模型，首先全面整合公开数据库中与甲醇市场具有相关性的27个领域的290
万余条时间序列数据，迁移训练首个用于甲醇价格预测的生成式预训练时间序列预测模型——生成式预训练甲醇

价格预测（CEGPT-price forecaster for methanol，CEGPT-PF-M）模型；其次，本文应用最大互信息系数算法，从

非公开商业数据库中筛选出10900条与中国甲醇价格高度相关的指标数据，构建私有数据库，并基于此数据库对

CEGPT-PF-M 模型进行参数微调，以实现对中国甲醇价格的最佳预测效果；最后，在影响因素分析方面，本文

基于私有数据库构建影响因素指标体系，从宏观和微观双层面分析外生变量对中国甲醇价格的影响程度。结果表

明，CEGPT-PF-M 模型在中国甲醇价格预测任务中的准确性、解释性和可扩展性，均显著优于现有模型。本文

的研究结论为甲醇生产商、煤炭供应商和政策制定者提供有效参考，同时也为化工产品价格研究提供新视角和新

方法。
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Abstract: As a multi-purpose chemical product and low-carbon clean fuel, the price fluctuations of 
methanol impact the global chemical industry chain and energy market. However, existing time series 
forecasting methods fail to capture the non-stationary and high volatility characteristics of methanol 
prices. In order to accurately predict methanol price in China, this article originally proposes the CEGPT-
Price Forecaster for Methanol (CEGPT-PF-M) model based on the first intelligent chemical engineering 
large language model in China. It first comprehensively integrates more than 2.9 million time series data 
in the public database from 27 fields related to the methanol market and transfer-trains the baseline 
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CEGPT-PF-M; secondly, this paper applies the maximum mutual information coefficient algorithm to 
extract data from non-public commercial databases, 10900 index data that are highly related to Chinese 
methanol price are screened out, a private database is constructed, and the parameters of the CEGPT-PF-M 
model are fine-tuned based on this database to achieve the best prediction effect on Chinese methanol 
price; finally, in terms of factor analysis, this article builds an influencing factor index system based on a 
private database to analyze the impact of exogenous variables on Chinese methanol price from both macro 
and micro levels. Empirical results show that the accuracy, interpretability, and scalability of the CEGPT-
PF-M model in the Chinese methanol price prediction task are significantly more reasonable than existing 
models. The research conclusions of this article provide a practical reference for methanol producers, coal 
suppliers, and policymakers, and also provide new perspectives and methods for chemical product price 
research.
Keywords: methanol price forecasting; Transformer architecture; intelligent chemical engineering large 
language model; transfer learning; explainable AI

传统范式下化工新技术研发进程较缓慢。由于

缺乏对化工多尺度复杂过程的精确理论描述，新技

术研发依赖逐级放大，研发周期长、耗资高、市场

风险大。近年来，以ChatGPT为代表的大语言模型

技术[1]为化工技术开发提供数据驱动新范式，有望

改变长期以来我国化工设计依赖国外工业软件的状

况。中国科学院大连化学物理研究所（以下简称大

连化物所）低碳催化与工程研究部团队结合大连化

物所丰富的化工应用场景和 630万余条研发数据，

基于Transformer架构[2]，利用华为昇腾人工智能基

础软硬件平台，开发国内首个智能化工大模型，为

推动化工研发新范式的建立和化工工业软件的国产

自主化奠定重要基础。研究团队围绕智能化工大模

型，已开展一系列工作：①开发化工数据处理平

台，实现对多源异构化工数据的高效处理；②构建

化工领域知识图谱框架，实现基于大模型的化工领

域知识自动标注和结构化处理；③围绕智能化工大

模型，团队构建国内首个化工设计-仿真优化-知识

归纳的多智能体协同设计平台，实现化工工艺流程

研发效率高于10倍的提升。同时，Transformer架构

在自然语言处理[3]和长序列预测任务[4]中的迅猛发

展，激发了本文作者将智能化工大模型扩展应用至

时间序列数据分析和预测领域的浓厚兴趣。

甲醇是生产甲醛、甲基叔丁基醚、乙酸和二甲

醚的重要原料，也可用作发动机和燃料电池的燃

料[5]。然而，对甲醇市场和价格的研究相对匮乏。

甲醇主要生产工艺包括煤制甲醇[6]（coal-to-methanol，
CTM）、天然气制甲醇[7] （natural gas-to-methanol，
NTM）和焦炉气制甲醇[8] （coke oven gas-to-methanol，
CGTM）。中国能源结构独特，即石油和天然气资

源匮乏，但煤炭资源丰富[9]。因此，中国近58%的

甲醇通过CTM工艺生产[10]。在低碳政策需求和复杂

多变的市场环境下，深入分析各市场和变量对中国

甲醇价格的影响，并提出精准、高效且适应市场变

化的甲醇价格预测方法，可为投资者的投资策略、

企业经营的发展布局、政府实现“碳达峰”及“碳

中和”目标提供重要参考。传统的因果分析方法等

统计模型（statistical models，SMs）常被用于能源

产品价格预测[11-17]。然而，甲醇价格数据性质独

特，难以采用传统时间序列分析模型进行研究。一

方面，甲醇价格数据不具有传统化工品的价格走

势。2008年金融危机时期，其价格大跌；2019年

重大公共卫生事件时期，其价格反而大涨。另一方

面，甲醇价格数据不具有传统能源产品的时间序列

数据性质，例如其不具备显著的波动聚集效应。因

此，SMs 难以准确捕捉甲醇价格的非线性特征从

而进行准确预测[18]。Prophet 模型[19]、时间序列递

归神经网络[20]、人工智能[21]、卷积神经网络[22]

（convolutional neural network，CNN） 等机器学习

（machine learning，ML）模型亦被广泛用于价格预

测。虽然传统ML模型非线性拟合效果良好，但因

其可引入数据体量有限，在训练过程中对输入数据

的微小变化异常敏感从而导致模型稳定性不高（即

模型参数估计一致性低）。此外，某些 ML 模型

（如深度神经网络）结构不稳定且可解释性差[23]，

难以量化关键解释变量[24]，导致特征变量对目标变

量的影响程度和作用机理难以展现。因此，本文基

于智能化工大模型，融合超大且全面的训练数据

集，针对中国甲醇价格数据，提出全新时间序列预

测模型，可有效解决传统 SMs准确性不足和ML模
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型稳定性不足问题。同时，基于智能化工大模型的

预测模型凭借 Transformer 架构的自注意力机制，

可显著增强模型长期依赖关系捕捉能力，并通过模

块化设计（解码器和编码器）提升模型灵活性、稳

定性和可扩展性。

基于智能化工大模型（L1级底层大语言模型）

的化工领域知识高覆盖性、物理化学理论高理解性

和逻辑推理整合能力高智能性，本文面向中国甲醇

价格预测与影响因素分析问题，全面整合可获取且

公开的甲醇上游（包括石油和煤炭等）、甲醇下游

（丙烯和甲醛等）、大宗化工品、市场情绪和金融等

全领域时间序列数据，迁移开发生成式预训练时间

序列预测模型——生成式预训练甲醇价格预测

（CEGPT-price forecaster for methanol，CEGPT-PF-
M）模型（L2级应用层模型），能够精准预测中国

甲醇价格，为众多市场参与者的决策制订进行指

导，填补甲醇价格预测在数据和模型两个层面的研

究空白。此外，本文基于 CEGPT-PF-M，使用最

大互信息系数算法（maximal information coefficient，
MIC） [25]从非公开商业数据库中选择与中国甲醇价

格高度相关的外生变量，搭建私有数据库，进而对

CEGPT-PF-M 进行参数微调，以增强模型编码器

和解码器的数据处理能力，进一步提升模型参数估

计准确度和参数估计的收敛速度。

本文突破现有甲醇价格预测模型在数据规模、

准确率、解释性和效率方面的局限，具体表现在以

下几方面：①数据规模层面。从公开、非商业且可

获取的数据库中，将 27个相关领域的时序数据作

为智能化工大模型迁移训练的训练数据集，共

12515个特征变量、290万余条数据，训练参数量

达204万个；本文亦从非公开商业数据库中，选择

与中国甲醇价格紧密相关的数据序列（与基础训练

集不重复）作为模型微调数据集，共 42个特征变

量、10900条数据，微调参数量近 10000个，占总

参数的0.49%。CEGPT-PF-M基于与甲醇相关的全

领域数据集完成迁移训练、微调和优化，数据规模

庞大且全面。②模型效果层面。与现有模型依赖特

征组合和权重调整不同，CEGPT-PF-M 模型具有

自注意力机制，不仅能捕捉局部特征，还能全局

学习时间序列长距离依赖关系，确保预测结果的

准确性和稳定性。③解释性层面。本文在智能化

工大模型底层架构中融入 SHAP （SHapley Additive 
exPlanations） [26]模型，支持输出外生变量对目标变

量的贡献度，使模型决策过程透明。④模型效率层

面。CEGPT-PF-M 基于智能化工大模型搭建，并

在大规模数据集上完成特征表示学习，可对甲醇价

格时间序列预测问题进行零样本（zero-shot）或少

样本（few-shot）学习。同时，对其他相关化工品

价格可以进行 zero-shot直接预测，避免模型重构，

显著提升预测效率。

综上所述，本文面向甲醇价格提出国内首个基

于大语言模型的预测模型，旨在准确捕捉中国甲醇

价格波动，以满足不同市场参与者对甲醇价格的预

测需求。本文首先回顾和总结了化工产品价格预测

和 Transformer 架构应用现状，然后介绍了本文模

型构建方法，进行了数据描述和实证结果分析，最

后总结了本文研究结论并提出未来研究展望。

1 研究现状

作为全球最大甲醇生产国，中国甲醇价格对全

球化工品和能源市场影响显著。准确预测中国甲醇

价格对相关产业发展和政府决策意义重大。甲醇价

格研究脉络和本文研究框架如图1所示。

1.1 化工产品价格预测

目前，学术界对能源与化工产品的价格预测研

究主要集中在原油[27-32]、天然气[33-37]和电力[38-39]等传

统能源领域，对甲醇价格研究相对较少。其中，典

型研究包括采用长期结构建模（long run structural 
modelling，LRSM）技术探讨天然气价格对甲醇价

格的影响[40]。结果显示，天然气价格与甲醇价格存

在显著协整关系：在欧洲和美国，天然气价格是甲

醇价格波动的主要驱动因素；而在远东地区，天

然气需求对甲醇价格的影响更大。应用分数积分

广义自回归条件异方差模型（fractionally integrated 
generalized autoregressive conditional heteroskedasticity，
FIGARCH）对伊朗原油价格和甲醇价格关系展开

研究发现[41]，甲醇市场价格波动和原油价格对甲醇价

格的冲击具有持久性和显著性。亦有研究表明，将煤

炭价格、石油价格、工业生产者价格指数和进出口数

量作为解释变量，使用广义自回归条件异方差模型

（generalized autoregressive conditional heteroskedasticity，
GARCH），结合专家经验对甲醇价格进行预测，

其平均绝对百分比误差 （mean absolute percentage 
error，MAPE）较传统模型降低2.91%[42]。其他相关

研究包括矢量误差修正模型（vector error correction 
model，VECM）的应用证实原油价格在欧洲乙烯

价格预测方面具有显著解释作用[43]；将自回归差

分移动平均模型 （autoregressive integrated moving 
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average，ARIMA）与人工神经网络（artificial neural 
network，ANN）结合，构建ARIMA-ANN组合模型

预测苯乙烯价格时，均方误差（mean square error，
MSE） 较 ARIMA 和 ANN 分 别 下 降 42.05% 和

5.05%[44]；经改进遗传算法优化的长短期记忆网络

（long short-term memory，LSTM）模型用于中国聚

乙烯和聚丙烯价格预测时，该模型捕捉化工产品价

格变化特征和波动趋势时效果显著，相比于支持向

量机和LSTM，其MSE分别降低38.85%、89.44%[45]；

采用随机森林算法构建甲醇期货价格预测模型，并

基于Aberration策略设计交易规则，实现了高于同

期 10 年期国债收益率 1.2 倍以上的年化收益率[46]。

甲醇与相关化工产品价格预测研究总结见表1。

1.2 Transformer应用

近期研究成果证实 Transformer 架构在序列建

模领域优势显著[2,47-48]。在能源领域，PVTransNet-
EDR模型[49]用于光伏发电功率预测，平均绝对误差

（mean absolute error， MAE） 较 LSTM 模 型 降 低

48.3%；基于改进变分模态分解 （variational mode 
decomposition，VMD） 和 Transformer[50]混合深度学

习（deep learning，DL）模型用于短期光伏功率预

测，模型在有效性、准确性、稳健性和泛化能力方

面显著优于LSTM和CNN等ML模型；Powerformer[51]

用于风能预测，相较于 LSTM 和门控循环单元

（gated recurrent unit，GRU），其预测误差分别降低

10.41% 和 9.73%。在医学领域，CNN-Transformer
交互模型实现 lgA肾病病理的有效分级预测[52]。在

交通领域，基于Transformer的长短期网络（LSTTN）
模型[53]用于交通量预测，相较于简单ML模型，其

性能提高 5.63%~16.78%；Transformer 还被用于出

租车轨迹预测，TrAISformer 的平均 Hausdorff 距离

误差 （average hausdorff distance error，AHDE） [54]

在3种数据集上分别下降3.68%、2.77%、4.71%[55]。

在生物领域，基于 Transformer 架构的人工智能模

型用于毒性预测[56]。在环境领域，Transformer被用

于PM2.5浓度预测[57]和地下水位预测[58]，其性能优于

CNN 和前馈神经网络（feed-forward neural network，
FNN）；多元变分模态分解 （MVMD）-Transformer
用于水流预测时，其纳什-苏特克利夫系数达到

0.85，综合表现显著优于 LSTM 模型[59]。在金融领

域，基于 Transformer 架构的混合神经网络模型，

用于金融市场的波动预测[60]。在工程领域，粒子群

优化算法 （IPSO）-LSTM-Transformer （ILT） 模型

用于大坝变形预测，与传统粒子群优化算法相比，

ILT模型显著提升模型寻优精度和收敛速度[61]。在

航空领域，利用 Loess 进行季节趋势分解 （STL）
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本文预测结果

非公开商业数据库

公开非商业数据库

私有数据库

模型基础训练集：
12512个特征变量

模型微调数据集：
42个外生变量

提取外生变量
重要度

SMs

ML方法

移动平均填补法

平均值填补法

Robust Standardization

图1　甲醇价格研究脉络与本文研究框架图

表1　甲醇与相关化工品价格预测研究

研究对象

甲醇[40]

甲醇[41]

甲醇[42]

乙烯[43]

苯乙烯[44]

聚乙烯[45]

本文

预测模型

LRSM
FIGARCH

GARCH+专家经验

VECM
ARIMA-ANN

LSTM
CEGPT-PF-M

模型类型

计量经济学模型

计量经济学模型

混合模型

计量经济学模型

混合模型

ML模型

混合模型
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-Transformer-ARIMA 模型被用于航空故障事件预

测，相较于时序卷积网络和LSTM，此模型MAE降

低 10.4%， MAPE 降 低 9.7%[62]； Transformer-
Encoder-LSTM 模型用于飞机轨迹预测，其平均位

移误差减小到0.22，显著优于CNN-LSTM Attention
模型的 0.35[63]；Transformer-GRU 网络用于 4D航迹

预测，其误差较 LSTM 模型下降 50%[64]。此外，

Autoformer[65]在能源、交通、经济、天气和疾病五

个领域中预测性能卓越，在六类基准测试中，其准

确率最高，相对提升 38%。 Informer[66]通过引入

ProbSparse自注意力机制、自注意力提取以及生成

式解码器，显著提升模型推理速度和预测精度，为

解决长序列预测问题提供新方案。 LogSparse 
Transformer[67]在有限内存条件下提高预测准确率。

LogTrans[68]在视觉比较和定量评估方面优于其他先

进结构，性能优势明显。

Transformer在各领域应用总结见表2。

综上所述，从研究对象角度分析，现有能源价

格研究主要集中在原油、天然气、电力等传统能源

产品上。随着社会发展与低碳政策推进，甲醇价格

研究已势在必行。从研究方法角度分析，尽管已有

多种模型被应用于各领域能源和化工品的价格预测

任务中，但在面对复杂市场动态和多变经济环境

时，往往表现出模型预测精度低和解释性不足等问

题。基于 Transformer 架构的预测模型正在成为主

流研究模型框架。因此，本文面向中国甲醇价格预

测领域，提出并搭建基于智能化工大模型的时间序

列预测模型——CEGPT-PF-M，其在准确率、解释

性、预测效率等方面优势显著。

2 模型构建

CEGPT-PF-M算法构建流程如图2所示。

2.1 预测性能评价指标

本文采用MAE、MAPE、均方根误差（root mean 
表2　Transformer的应用研究

应用领域

能源领域[50]

交通领域[53]

医学领域[55]

生物领域[56]

环境领域[59]

金融领域[60]

工程领域[61]

航空领域[62]

化工领域（本文）

目标

短期光伏功率预测

交通量预测

肾病病理分级预测

毒性预测

水流预测

金融市场的波动性预测

大坝变形预测

航空故障事件预测

甲醇价格预测

模型名称

VMD和Transformer混合模型

LSTTN
CNN-Transformer

基于Transformer架构的人工智能模型

MVMD-Transformer
基于Transformer架构的混合神经网络模型

IPSO-LSTM-Transformer
STL-transformer-ARIMA

CEGPT-PF-M

影响因素

能源市场全球甲醇价格

供需关系宏观经济

……

标准化
(robust standardization)

地缘政治风险

预测结果

金融、大宗商品、物流
市场等多领域数据集

CEGPT

CEGPT-PF-M

模型参数微调

时间序列数据
模型迁移训练

公开、非商业数据库

私有数据库

中国甲醇价格对数化处理

因素重要度

CEGPT-PF-M输出外
生变量重要度

非公开、商业数据库

图2　CEGPT-PF-M模型构建流程
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square error，RMSE）和R2四种不同评价指标评估

模型预测性能。MAE、MAPE、RMSE、相对误差

（mean error， ME）、误差均值标准差 （standard 
deviation of error，SDE） 和 R2 的计算方法分别如

式(1)~式(6)所示。

MAE = 1
n ∑

i = 1

n |y� i - yi| (1)
MAPE = 1

n ∑
i = 1

n |

|
|
||
||

|
|
||
| y� i - yi

yi
(2)

RMSE = 1
n ∑

i = 1

n ( y� i - yi )2 (3)
ME = |y - y� |

|y| × 100% (4)
SDE = 1

n - 1 ∑
i = 1

n ( yi - y� i - ME)2 (5)

R2 = 1 - ∑
i = 1

n  ( yi - y� i )2

∑
i = 1

n  ( yi - ȳ ) 2
(6)

式中，y为实际值；y� 为预测值；ȳ为实际值的

均值；yi和 y� i为 i时刻的实际值和预测值；n为测试

集样本容量。

MAE 度量预测值与真实值间的平均误差，可

直接反映模型的整体预测性能，但对极端值不敏

感；MAPE揭示预测误差在不同量级数据上的相对

大小，可比较模型在不同规模数据集上的性能；而

RMSE可衡量模型对异常值的敏感度和稳定性。

2.2 CEGPT-PF-M模型算法

CEGPT-PF-M模型算法1如表3所示。

表3　CEGPT-PF-M模型算法

算法1：CEGPT-PF-M时间序列预测算法

Input：外生变量X = {x1,x2,…,xn}、中国甲醇价格 y。
Step1：数据预处理，即外生变量进行Robust Standardization处理，目标变量取对数，并划分训练集和测试集。

Step2：定义Transformer模型结构，构建Transformer模型的编码层、解码层和线性层，选择MSE、MAE和RMSE等作为模型损失函数，Adam作为
模型优化器。

Step3：输入嵌入层，将X与y每个时间点的数据转化为 d 维向量表示。

Step4：位置编码，即求位置向量PE

对于每个位置pos和维度索引 i
如果 i为偶数

PE(pos,2i) = sin ( )pos
100002i

d

，

如果 i为奇数

PE(pos,2i + 1) = cos ( )pos
100002i

d

。

Step5：嵌入层向量与位置向量相加，将最终向量输入编码器。

Step6：编码器将输入序列转化为固定长度向量，映射为连续表示的上下文向量（能够概括整个输入序列语义信息），并输入至智能化工大模型的
解码器①。

Step7：解码器将上下文向量转化为输出序列② （生成目标序列预测值，形式为非数值化信息）。

Step8：计算损失，选择最优损失函数进行损失计算。

Step9：模型训练。
●初始化：动态参数θ、学习率α、一阶和二阶矩估计指数分别为β1和β2、稳定项δ、迭代次数Tmax。●for t=1 to Tmax do

a.计算当前批次的损失函数L (θt )对参数θ的梯度gt = ∇θ L (θt )；b.更新一阶矩估计mt = β1mt - 1 + (1 - β1 )gt；c.更新二阶矩估计 vt = β2 vt - 1 + (1 - β2 )g2
t；d.偏差校正

计算一阶矩估计的偏差校正m� t = mt

1 - β t1
；

计算二阶矩估计的偏差校正 v� t = vt

1 - β t2
；

e.更新参数θt = θt - 1 - α
m� t

v� t + ϵ
；

end for
Step10：保存模型，基于测试集进行测试。

Step11：智能化工大模型解码器的输出经过线性变换后，得到最终预测值。

注：t—当前迭代次数；mt—一阶矩估计；vt—二阶矩估计；mt—偏差校正后的一阶柜估计；v� t—偏差校正后的二阶矩估计。

①其结构由多个相同的层堆叠而成，每层包含多头注意力机制、残差连接（解决退化问题）、归一化（防止梯度消失或梯度爆炸）和FNN；②其结

构较编码器，每层多一个掩码多头注意力机制（保持序列因果关系并防止信息泄露）。
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CEGPT-PF-M 模型基于智能化工大模型完成

时间序列数据的迁移训练与微调，使模型实现跨领

域知识迁移，不仅能高效处理不同频率、不同特征

的时序数据，还具有对多种输入尺寸和预测范围的

强大适应能力。CEGPT-PF-M 模型的关键优势在

于多头注意力机制，模型可捕捉远距离的时间依赖

关系，从而在长时间序列预测中表现出色。

CEGPT-PF-M 以误差最小化为目标，遵循在大规

模数据集上训练大型Transformer模型的通用原则，

其架构专门针对宏观经济、能源市场及大宗商品市

场等多领域的时间序列数据进行训练、微调和优

化。CEGPT-PF-M模型框架见图3。

3 实证分析

3.1 数据描述

中国甲醇价格走势如图4所示。鉴于相关数据

的可获取性，本文将因变量甲醇价格数据样本集设

定为 2005 年 1 月至 2024 年 4 月之间的月度数据

（CEGPT-PF-M的迁移训练和参数微调所用的自变

量数据为全样本数据，囊括所有可获得的时间长

度）。由于数据存在少量缺失，本文对单个数据缺

失，采用平均值填充法[69]进行填补；对于少量连续

数据缺失，本文使用移动平均法[70]完成数据填补。

为综合评估模型预测性能，保留时间序列数据的规

律性，本文按时间顺序将数据集以 9∶1、8∶2和

7∶3划分训练集和测试集。

首先，使用自回归条件异方差（ARCH）-LM[71]

检验中国甲醇价格的非线性和高波动性特征（表4），
中国甲醇价格ARCH-LM检验 p值小于 0.05 （显著

性水平），即中国甲醇价格存在ARCH效应，具有

条件异方差和非线性动态特征。对中国甲醇价格进

行一阶差分（图 5），结果显示一阶差分数据波动

率差异较大，仍具有非平稳性，即该数据存在二阶

或更高阶单位根。因此，中国甲醇价格具有高波动

20
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20
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年

1月

20
16
年

1月
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1月
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550

中
国
甲
醇
价
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·
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图4　中国甲醇价格走势

位置编码

私有数据库

物流

大宗商品

经济

……

编码器
解码器

线性层

预测结果

……

时间序列数据

原油市场全球甲醇价格

供需关系宏观经济

…… 地缘政治风险

智能化工大模型

嵌入向量 位置向量

最终向量

微调

图3　CEGPT-PF-M模型构建框架

表4　中国甲醇价格样本数据ARCH-LM检验结果

变量

232
LM统计量

35.1702
LM p值

0.0004399
F检验统计量

3.2843
F检验p值

0.0002301

·· 5679



www.hgjz.com.cn 化工进展， 2025， 44（10）

性、非线性和非平稳性特征。中国甲醇价格数据的

Lyapunov 指数为 4.0156，即序列数据为混沌序列，

非随机序列。样本描述性统计结果见表5和图6。

3.2 私有数据库和影响因素指标体系

本文使用 Robust Standardization 方法[72]处理数

据，确保对异常值具有鲁棒性，定义见式(7)、式(8)。
x′t = xt - Med( x1:C )

IQR( x1:C ) (7)
IQR( x1:C ) = Med( { x[ ]C/2 :C }) - Med( { x1:[ ]C/2 }) (8)

式中，Med( x1:C ) 为序列中位数；IQR( x1:C ) 为
序 列 四 分 位 差 ； Med( { x[ ]C/2 :C }) 为 上 四 分 位 数 ；

Med( { x1:[ ]C/2 }) 为下四分位数；x′t 为标准化结果；xt 为

实际值；C为样本容量。

本文运用最大信息系数（MIC）算法计算非公

开商业数据库中各指标与中国甲醇价格间的相关

性，提取MIC值大于0.2的指标，构建私有数据库，

所提取指标MIC值见表6。构建影响因素指标体系

时，宏观因素包含全球甲醇价格、供需关系、地缘

政治风险、能源市场、宏观经济、其他大宗化工品

市场与其他相关市场7个维度，微观因素包括中国

煤炭产量等42个指标，具体指标见表7。

3.3 甲醇价格预测

将3.1节中数据应用于算法1，在不同损失函数

下，CEGPT-PF-M模型的 few-shot相比于 zero-shot
的预测能力比较分析结果如表8所示，引入微调数

据集的 few-shot方法使模型性能显著提升。根据不

同损失函数进行参数微调后，模型预测性能差异显

著。其中，将MSE作为算法1的step8中的最优损失

函数时，结果最好，其MSE相对基础CEGPT-PF-M
提升 11.57%。不同损失函数下的CEGPT-PF-M 微

调预测性能对比[（9∶1）、（8∶2）]分别见图7、图8。
基于最优损失函数微调的 CEGPT-PF-M 模型

进行中国甲醇价格预测，结果见图9、图10，误差

评价指标见表 9。表 9 中按 8 ∶ 2 划分数据时，预

测结果的误差小于 7 ∶ 3 的数据划分形式。按照

8 ∶ 2和 7 ∶ 3两种比例对数据进行划分，结果误

差均小于 9 ∶ 1 划分形式。因此，从总体趋势上

看，8 ∶ 2为训练集和测试集的最优划分比例。此

外，表9结果显示，仅基础训练或仅微调，模型预

测结果的误差值显著高于完成基础训练与微调后的

模型。此外，基于训练集和微调数据集的误差均值

标准差亦最小，显示最终模型的稳定性更强。

为进一步验证模型有效性，本文基于CEGPT-
PF-M的零样本学习能力，对乙醇、乙烯、丙烯和

聚乙烯化工品价格进行免训练的直接预测，旨在检

图6　中国甲醇价格统计分布

图5　中国甲醇价格一阶差分

表6　中国甲醇价格与微观因素相关性

变量

x2
x1
x3
x24
x31
x37
x17
x36
x35
x30
x34
x32
x33
x16

MIC值

0.8241
0.7731
0.5783
0.5777
0.5614
0.5607
0.5509
0.5468
0.5329
0.5267
0.5191
0.4918
0.4587
0.4583

变量

x7
x28
x27
x11
x8
x9
x12
x21
x13
x42
x38
x5
x10
x15

MIC值

0.4482
0.4330
0.4281
0.4227
0.4222
0.4175
0.4034
0.4005
0.3980
0.3970
0.3960
0.3889
0.3873
0.3849

变量

x41
x14
x40
x29
x39
x23
x25
x26
x20
x18
x6
x4
x22
x19

MIC值

0.3733
0.3726
0.3688
0.3681
0.3592
0.3348
0.3342
0.3249
0.3182
0.3169
0.2981
0.2640
0.2513
0.2360

表5　中国甲醇价格样本数据统计指标

数据总量

232
平均值

311.61
标准差

73.52
最小值

156.28
最大值

535.25
偏度

0.3029
峰度

-0.1473
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表7　中国甲醇价格影响因素指标体系

宏观因素

全球甲醇价格（C1）

地缘政治风险（C2）
供需关系（C3）

能源市场（C4）

宏观经济（C5）

其他大宗化工品市场
（C6）

其他相关市场（C7）

微观因素

美国海湾地区甲醇价格

台湾省甲醇价格

鹿特丹港甲醇价格

中国地缘政治风险指数

中国煤炭产量

中国煤炭价格

中国煤炭销量

中国乙烯产量

中国丙烯产量

中国甲醛产量

中国二氯甲烷产量

中国乙二醇产量

中国苯乙烯产量

中国环氧乙烷产量

中国丙烯酸产量

全球石油产量

布伦特原油价格

天然气价格指数

中国制造业采购经理指数

中国工业生产指数

中国汇率指数

中国经济政策不确定性指数

中国社会消费品零售额（月度）

中国社会消费品零售额

中国工业生产者出厂价格指数
（同比）

中国采矿业工业生产者出厂价
格指数（同比）

中国大宗商品价格指数

橡胶价格指数

中国环氧树脂价格

能源价格指数

聚丙烯价格

异丁醛价格

丙烯酸树脂价格

丁苯橡胶价格

顺丁橡胶价格

不饱和树脂价格

环氧氯丙烷价格

化工行业生产者价格指数

煤炭行业生产者价格指数

能源行业生产者价格指数

纺织行业生产者价格指数

其他行业生产者价格指数

变量名

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15
x16
x17
x18
x19
x20
x21
x22
x23
x24
x25

x26

x27
x28
x29
x30
x31
x32
x33
x34
x35
x36
x37
x38
x39
x40
x41
x42

表8　不同损失函数下CEGPT-PF-M模型的 few-shot相
比zero-shot的预测性能提升

划分形式

9∶1
8∶2

平均值

MAE/%
0.59
0.86
0.72

MSE/%
12.16
10.98
11.57

RMSE/%
6.87
5.50
6.18

MAPE/%
1.53
6.34
3.94

SMAPE/%
6.86
3.32
5.09

图8　不同损失函数下CEGPT-PF-M预测

性能对比（8 ∶ 2）

图7　不同损失函数下CEGPT-PF-M预测

性能对比（9 ∶ 1）

图9　CEGPT-PF-M预测效果（9 ∶ 1）
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验模型的稳健性与泛化能力，模型性能评价指标见

表 10。结果显示，CEGPT-PF-M 在零样本学习能

力下，预测其他化工品价格时 R2 分布于(0.8814，
0.9201)区间内，预测性能良好，模型泛化能力突

出。同时，将本文研究结果与现有典型模型进行比

较分析，结果显示，本文模型预测性能具有显著优

势，详见表 11。9∶1和 8∶2两种划分形式下，模

型预测结果的残差分布见图 11。按 9∶1划分数据

时，误差分布于(-0.0726，0.0261)区间内，中位数

为-0.0145、均值为-0.0165、方差为 0.0006，在该

划分比例下模型误差主要集中在负值区域；在

8∶2划分形式下，误差分布于(-0.1136，0.0181)区
间内，中位数为-0.0172、均值为-0.0098、方差为

0.0022，误差波动有所增加。

3.4 因素重要度分析

SHAP分析结果如图12所示。宏观视角下，全

球甲醇价格对中国甲醇价格的重要性最为显著，表

明中国甲醇市场与全球市场间存在高度关联性，反

映出中国甲醇市场已深度融入全球市场体系。其次

是供需关系，表明市场供给与需求平衡态在甲醇价

格预测中扮演着关键角色。其他大宗化工品市场、

其他相关市场和能源市场的重要度较高，反映出甲

醇价格与其他化工产品以及相关市场之间存在显著

图10　CEGPT-PF-M预测效果（8 ∶ 2）

表10　CEGPT-PF-M （zero-shot）对其他化工品预测

性能评估指标

模型

CEGPT-PF-M
指标名称

乙醇

乙烯

丙烯

聚乙烯

MAE
0.1600
0.1257
0.1565
0.1790

RMSE
0.1385
0.1425
0.1307
0.1423

MAPE/%
5.12
5.5

4.99
5.35

R2

0.9123
0.8814
0.9201
0.9005

误差均值
标准差

0.0936
0.1089
0.0806
0.0968

表9　CEGPT-PF-M预测性能评价指标

划分
形式

9∶1
8∶2
7∶3
9∶1
8∶2
7∶3
9∶1
8∶2
7∶3

类型

训练集

微调集

训练集+微调数据集

MAE
0.1108
0.0819
0.0978
0.3145
0.2982
0.3047
0.1040
0.0732
0.0817

RMSE
0.1227
0.1147
0.1230
0.3564
0.3095
0.3418
0.1165
0.1023
0.1107

MAPE/%
5.52
3.28
4.21

10.61
8.59

10.03
4.21
3.08
3.26

R2

0.9132
0.9219
0.9110
0.7154
0.7529
0.7391
0.9478
0.9656
0.9526

SDE
0.0612
0.0758
0.0915
0.1201
0.1312
0.1526
0.0521
0.0364
0.0880

图11　预测结果残差分布

表11　CEGPT-PF-M模型与现有甲醇价格预测模型比较

模型

CEGPT-PF-M

极端学习机算法[73]

季节指数法[13]

指数平滑法[13]

规模

8∶2
9∶1
长期

短期

—

—

相对误差/%
0.22
0.61

0.67~3.78
1.6
—

—

MAPE/%
3.08
4.21
—

—

4.62
5.19
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联动效应，例如乙烯、丙烯等大宗化工品的产量和

价格变动可能会通过产业链传导影响甲醇价格。同

时，橡胶、塑料等相关市场的波动亦可通过替代效

应或市场情绪传导对甲醇价格产生影响。相比之

下，地缘政治风险对中国甲醇价格的影响最小。综

上所述，影响中国甲醇价格预测的宏观因素表现出

层次化特征，即全球甲醇价格和供需关系最重要，

其次是化工品相关市场的联动效应。能源市场、宏

观经济和地缘政治风险虽重要度相对较低，但仍在

甲醇价格形成机制中不可忽视。宏观因素重要度值

见表12。

微观视角下SHAP分析结果如图13所示。台湾

省甲醇价格重要度值居首位，表明区域市场价格对

中国甲醇价格具有显著指示作用。其次是中国乙

烯、丙烯产量，这两项指标的高重要度反映出甲醇

下游产品需求情况对甲醇价格的重要影响。煤炭行

业生产者价格指数的重要度较高，即作为甲醇主要

原料（供给），煤炭价格波动对中国甲醇价格预测

影响显著。综上所述，影响中国甲醇价格预测的微

观因素呈现多元化的特征，涵盖直接相关的区域市

场价格、上下游产品供需和宏观经济指标等多个方

面，其复杂的影响机制反映出甲醇市场与整体经济

和能源市场的紧密联系。微观因素重要度值如

表13所示。

3.5 模型对比实验与敏感性分析

将ARIMA为代表的SMs，ANN为代表的ML模

型，以及Autoformer为代表的基于Transformer架构

的预测模型与本文 CEGPT-PF-M 模型的预测性能

进行对比分析。为降低不同数据划分形式导致的预

测差异问题，本文对 4种划分形式（9∶1、8∶2、
7∶3和 6∶4）下的预测结果误差取平均值。结果

显示，CEGPT-PF-M 在准确率方面显著优于 SMs
和DL方法。在模型复杂度方面，CEGPT-PF-M是

基于智能化工大模型进行迁移训练和参数微调所得

的，而智能化工大模型为已训练完成的成熟模型，

迁移训练和微调本质上是对智能化工大模型的扩展

应用，并不涉及模型重构，因此其复杂度可控。迁

移训练和微调过程涉及的参数数量分别为204万和

表12　宏观因素重要度SHAP值

宏观因素

全球甲醇价格（C1）
供需关系（C3）

其他大宗化工品市场（C6）
其他相关市场（C7）

能源市场（C4）
宏观经济（C5）

地缘政治风险（C2）

重要度值

34.3
27.4
24.2
22.6
19.5
15.4
14.5

图13　微观因素重要度

表13　微观因素重要度SHAP值

变量

x2
x9
x8
x39
x10
x11
x1
x5
x38
x17
x20
x14
x33
x15

重要度值

55.5
37.0
36.0
34.0
31.5
30.0
28.0
28.0
28.0
27.0
26.5
26.0
25.5
25.5

变量

x34
x35
x7
x19
x27
x28
x42
x37
x29
x12
x13
x36
x18
x31

重要度值

25.0
25.0
25.0
24.5
24.5
24.5
24.5
24.5
24.0
24.0
24.0
24.0
23.5
23.5

变量

x32
x30
x3
x25
x4
x6
x21
x26
x41
x23
x40
x22
x16
x24

重要度值

23.0
22.5
19.5
16.0
14.5
14.5
13.5
13.5
13.5
13.0
13.0
9.5
8.0
7.0

图12　宏观因素重要度
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1 万左右，数量显著高于其他主流模型。然而，

CEGPT-PF-M 模型无须考虑时间序列长度和频率

分解等问题，因此面对长序列或多任务时，其效率

性较高。此外，将 CEGPT-PF-M 对其他化工品价

格进行再次迁移训练和参数微调时，需要调整的参

数数量将大大降低（本文作者课题组前期工作显

示，预测甲醇下游的乙烯和丙烯价格，需要调整的

参数数量分别为97个和88个），即模型的扩展复杂

度低。各模型的性能可视化对比见图 14，该图所

示结果基于4种数据划分形式下误差指标的平均值

计算得出。值为正表示模型的误差高于 CEGPT-
PF-M，值为负表示误差低于CEGPT-PF-M，值的

绝对值大小表示误差相较于本文模型的百分比差

异。现有模型与 CEGPT-PF-M 预测性能对比如表

14所示。

本文逐一剔除特征变量，以MAE变化量评估

模型对关键输入变量的敏感度。结果显示，剔除各

指标后，MAE均升高，特别体现在剔除台湾省甲

醇价格、中国丙烯产量、中国乙烯产量和化工行业

生产者价格指数等指标中，相关结果与SHAP解释

性分析一致。敏感性分析结果见表 15。敏感性分

析结果亦显示各变量敏感性差别不显著，即模型稳

健性较高。

4 结论与展望

4.1 结论

准确预测中国甲醇价格不仅对甲醇生产商、煤

炭供应商、甲醇下游产品相关企业和投资者进行风

险管理、供应链优化和国际贸易至关重要，还为政

府制定相关政策提供关键指导。基于本文作者团队

开发的国内首个智能化工大模型，本文对其进行迁

移训练并构建首个用于化工品价格分析与预测的大

语言模型CEGPT-PF-M，并得出以下结论。

（1） CEGPT-PF-M基于智能化工大模型搭建，

并在大规模时间序列数据集上完成特征表示迁移学

习，可对甲醇价格时间序列预测问题进行零样本

（zero-shot，模型直接预测）或少样本（few-shot，
参数微调后预测）学习。相比于传统时间序列预测

模型，本文所提方法预测准确度显著提升，并且在

扩展应用中可以避免模型重构，显著提升模型效

率，是化工品市场的首个生成式预训练时间序列预

测模型。通过结合甲醇市场的供需情况、中国经济

形势等多方面因素进行综合分析，CEGPT-PF-M

表15　模型敏感度分析（ΔMAE×10000）
变量

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14

敏感度

2.5671
2.5987
2.3595
2.3458
2.5493
2.3397
2.4868
2.5910
2.5914
2.5892
2.5674
2.4561
2.4519
2.5232

变量

x15
x16
x17
x18
x19
x20
x21
x22
x23
x24
x25
x26
x27
x28

敏感度

2.5018
2.3096
2.5335
2.4381
2.4843
2.5287
2.3395
2.3136
2.3228
2.3024
2.3592
2.3329
2.4787
2.4695

变量

x29
x30
x31
x32
x33
x34
x35
x36
x37
x38
x39
x40
x41
x42

重要度值

2.4578
2.3663
2.4174
2.3979
2.5229
2.5014
2.4910
2.4386
2.4644
2.5453
2.5893
2.3222
2.3321
2.4644

表14　现有模型与CEGPT-PF-M预测性能对比

类别

SM

ML

Transformer

本文

模型

ARIMA
SARIMA

LSTM
GRU

XGBoost
ANN
CNN
SVM

LogSparse-Transformer
Autoformer

Informer
LogTrans

CEGPT-PF-M

模型评判标准

MAE
0.1927
0.1523
0.1479
0.1224
0.1632
0.1065
0.1163
0.1150
0.1019
0.1090
0.1047
0.1052
0.0859

RMSE
0.1850
0.1652
0.1899
0.1518
0.1977
0.1159
0.1245
0.1181
0.1093
0.1171
0.1159
0.1131
0.1072

MAPE
3.57%
3.75%
8.58%
7.49%
8.41%
3.49%
6.16%
5.71%
3.87%
4.56%
3.97%
3.69%
3.53%

R2

0.7683
0.8195
0.8277
0.8616
0.8110
0.8720
0.8657
0.8669
0.8864
0.8701
0.8805
0.8774
0.9541

图14　模型性能对比
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能够有效预测中国甲醇价格走势，准确性优势

显著。

（2） Transformer 架构是 CEGPT-PF-M 的基础

模型，其强大的序列建模能力可灵活地融合多种数

据源（如历史价格、供需数据、宏观经济指标等），

从而提供更全面的预测视角。Transformer架构的自

注意力机制支持 CEGPT-PF-M 动态调整对不同时

间点信息的关注度，更高效地应对市场波动和突发

事件对价格的影响。实验结果显示，CEGPT-PF-M
的预测性能超越现有SMs、ML和Transformer模型。

同时，借助SHAP工具，CEGPT-PF-M在解释性层

面亦表现出色。

（3）鉴于现有文献对中国甲醇价格研究存在

空白以及其在化工领域的显著需求，本文所提

CEGPT-PF-M模型对甲醇生产工厂制订生产计划、

优化库存管理、降低生产成本以及识别价格波动的

潜在风险具有重要参考意义。对于甲醇下游的新兴

产业，如选择甲醇燃料船舶的航运公司，CEGPT-
PF-M模型不仅能辅助其合理规划燃料采购、锁定

低价、降低运营成本，还有助于公司在船队管理和

航线选择上进行战略决策，从而提高运营效率；对

于甲醇衍生品交易者，通过精准价格预测，交易者

可制订有效买卖策略，提高交易收益，还有助于交

易者理解市场动态，识别价格驱动因素，从而优化

投资决策。

（4）在中国甲醇价格影响因素分析层面，本文

量化全球甲醇价格、宏观经济和其他大宗化工品市

场等宏观因素和美国海湾地区甲醇价格、天然气价

格指数、布伦特原油价格等微观因素对中国甲醇价

格的影响程度。其中，在宏观层面，全球甲醇价格

对中国甲醇价格的影响显著强于地缘政治风险等宏

观因素；在微观层面，中国台湾甲醇价格、中国乙

烯产量以及中国丙烯产量对中国甲醇价格影响最为

显著。

4.2 甲醇价格波动应对策略

在中国甲醇价格预测和分析研究中，本文从宏

观和微观层面分析各变量对甲醇价格的影响。基于

本文分析结果，从管理学角度为甲醇生产商、煤炭

供应商和甲醇下游市场提供相关管理建议。

（1）甲醇生产商。甲醇生产商应重点关注供需

关系和能源市场变化。中国煤炭产量、中国乙烯产

量、中国丙烯产量和中国甲醛产量在甲醇价格预测

任务中，对中国甲醇价格影响最为显著，因此可根

据上述变量的波动情况，灵活调整库存水平、生产

计划和定价策略。此外，全球石油产量和天然气价

格指数对甲醇价格亦有直接影响，生产商应密切关

注能源指标走势，并优化能源采购策略，降低生产

成本。其中，中国丙烯产量对甲醇价格的影响尤为

显著，生产商应加强对石油市场的监测，利用金融

工具进行风险对冲，稳定生产成本。

（2）煤炭供应商。鉴于全球甲醇价格对中国甲

醇市场的显著影响，煤炭供应商应密切关注国际甲

醇市场动态。建议建立健全的全球市场监测机制，

及时掌握国际甲醇价格走势，以此为依据调整生产

和销售策略。同时，考虑到中国作为全球主要甲醇

生产国和消费国的地位，煤炭供应商可探索参与国

际甲醇期货交易，以对冲价格风险，提高企业的抗

风险能力。其次，煤炭供应商需深入分析甲醇市场

的供需关系，不仅要关注自身产业，还要全面了解

甲醇产业链的上下游情况。建议煤炭供应商与甲醇

生产企业建立战略合作关系，共同预测市场需求变

化，协调生产计划，以确保煤炭供应能够及时满足

甲醇生产需求，同时避免供给过剩导致的价格

波动。

（3）甲醇下游市场。供需关系是影响甲醇价

格的重要因素。下游市场应加强对国内外甲醇供

需情况的监测，尤其是生产装置的开工率、停产

检修情况以及新产能的投放等信息。通过精准的

供需预测，准确把握市场节奏，优化生产和销售

计划。此外，其他大宗化工品市场和其他相关市

场亦对中国甲醇价格影响显著，下游市场应密切

关注与甲醇产业链相关的产品价格和需求变化，

及时调整自身市场策略，避免因相关市场波动而

产生连锁反应。

4.3 展望

基于当前研究成果，可在以下方向进一步展开

探索。

（1） CEGPT-PF-M 具有扩展应用至乙醇、丙

烯、原油和天然气等价格预测领域的能力。

（2）在特征工程方面，引入更丰富的宏观经济

指标、市场情绪数据（如新闻情感分析）、国际市

场数据等，丰富模型的输入特征，提高预测的准确

性，并全面分析各因素对甲醇价格的影响程度。

（3）将经济学理论与甲醇价格预测相结合，如

供需理论、市场结构分析与生成式预训练模型相结

合，详细解释外生变量对中国甲醇价格的影响机

理，构建更具解释力和预测力的模型。
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