
Full Length Article

Deep learning approach for morphology classification and particle
sizing of industrial methanol-to-olefins (MTO) catalyst

Qingyu Wang 1, Duiping Liu 2, Yong Lu 1, Jibin Zhou 3, Xiangang Ma 3, Mao Ye 3, *

1 School of Energy and Environment, Southeast University, Nanjing 210096, China
2 Yulin Zhongke Innovation Institute for Clean Energy, Clean Energy Innovation Institute of Chinese Academy of Sciences, Yulin 719199, China
3 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

a r t i c l e i n f o

Article history:
Received 17 October 2024
Received in revised form
18 December 2024
Accepted 19 December 2024
Available online 11 March 2025

Keywords:
Catalyst
Particle morphology
Neural networks
Particle size distribution
Irregular particles

a b s t r a c t

Accurately acquiring catalyst size and morphology is essential for supporting catalytic reaction process 
design and optimal control. We report an intelligent catalyst sizing and morphological classification 
method based on the Mask-RCNN framework. A dataset of 9880 high-resolution images was captured by 
using a self-made fiber-optic endoscopic system for 13 kinds of silicoaluminophosphate-34 (SAPO-34) 
catalyst samples with different coke. Then there were approximately 877881 individual particles 
extracted from this dataset by our AI-based particle recognition algorithm. To clearly describe the 
morphology of irregular particles, we proposed a hybrid classification criterion that combines five 
different parameters, which are deformity, circularity, roundness, aspect ratio, and compactness. 
Therefore, catalyst morphology can be classified into two categories with four types. The first category 
includes regular types, such as the spherical, ellipsoidal, and rod-shaped types. And all the irregular types 
fall into the second category. The experimental results showed that a catalyst particle tends to be larger 
when its coke deposition increased. Whereas particle morphology remained primarily spherical and 
ellipsoidal, the ratio of each type varied slightly according to its coke. Our findings illustrate that this is a 
promising approach to be developing intelligent instruments for catalyst particle sizing and 
classification.

1. Introduction

It is essential and critical to accurately measure catalyst size,
morphology, and distribution for supporting catalytic reaction
process design and optimal control [1], especially for methanol-to-
olefins (MTO) industrial plants that adopt a fluidized bed reactor-
regenerator configuration process [2]. Granular catalyst size and
morphology determine reaction performance in a reactor, influ-
encing the minimum fluidization velocity [3], solid circulation rate
[4], pressure drop [5], and conversion process [6]. In general, it
would be great progress to precisely control catalytic reactions if
the preferable catalyst could be screened previously according to
its size and morphology [7]. Typically, granular materials with a

wide size distribution run much more steadily in an ideal fluidized
state in a reactor due to their larger particles being circulated by
their smaller ones. This phenomenon indicates that bed porosity
and expansion coefficient are improved, which promotes a more
fluidized uniform state [8]. Furthermore, non-spherical particles
typically exhibit lower fluidization quality, smaller minimum
fluidization velocity, and fluidization coefficient than spherical
ones under the same volumetric equivalent diameter [9]. In
addition, some experimental results also indicate that particle
morphology greatly influences material mixing within fluidized
beds, and spherical particles can reach an ideal mixing perfor-
mance compared with the others [10]. Yet the mixing quality of
non-spherical particles is still less than that of spherical particles
can be improved by increasing gas phase velocity. Among spher-
ical, rod-shaped, and disk-shaped particles, the rod-shaped parti-
cles have the greatest difficulty being fluidized under the condition
of the fastest gas phase velocity. In contrast, spherical particles
are fluidized in superior performance with a lower gas phase ve-
locity [11].
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As for particle sizing and its morphology measurement,
numerous studies have been carried out, and many powerful lab
instruments or industry devices have been developed for different
application scenarios. Among them, types of screening devices
related to sieving techniques are the most widely applied due to
their convenience and economic merits. However, there exists an
obvious shortage of them since their measured results can only
show the graded size information corresponding to the selected
sieve apertures [12]. Additionally, several categories of commercial
optical or acoustic granular-size instruments exist based on Mie's
theory, with application limited to spherical particle scattering
assumption [13,14]. Moreover, catalyst morphology can be
observed throughmicro or nano-imaging techniques with different
resolution scales. Unfortunately, their measurement accuracy pri-
marily depends on skilled technician [15] and their inefficiency is
due to the lack of intelligent recognition algorithms capable of
handling image-based particle characterization [16]. In addition,
we gradually understand that there is much deviation in which a
non-spherical particle with a complex morphology is described by
its equivalent diameter. To tackle this fault, various researchers
have proposed more morphological parameters such as deformity,
circularity, aspect ratio, etc. So far, there is still a lack of a common
theory to classify particles in an identical criterion.

In this highly digitized world, artificial intelligence techniques
have been reshaped with extensive technology integration oppor-
tunities, especially for image processing applications. Indeed, it is
one of the hot and cutting-edge topics that AI-based image analysis
makes granular material size measurement more reliable and
efficient [17e20]. Classical deep learning models like U-Net [21]
and YOLOv5-Seg [22] have been successfully applied to solve par-
ticle image segmentation tasks. The region-based convolutional
neural networks (RCNN) have been certified and promise signifi-
cant advantages in particle image segmentation. This neural
network model can offer more precise particle spatial localization
and segmentation information under complex environments. An
RCNN model was applied to measure bubbles in gas-liquid multi-
phase flows with 84% prediction accuracy [23]. All these AI
achievements will help with catalyst sizing and morphological
classification research in an intelligent period.

To address the issues above, we propose an intelligent catalyst
sizing and morphological classification method based on the Mask-
RCNN framework, which was applied to investigate a dataset of
9880 high-resolution images of 13 kinds of SAPO-34 catalyst with
coke from 0% to 9.35% were shot by using a self-made fiber-optic
endoscopic. Furthermore, we developed a hybrid classification
criterion to tackle the morphological drawback for describing a
non-spherical particle by equivalent diameter. This criterion com-
bines five different parameters, which are deformity, circularity,
roundness, aspect ratio, and compactness. Finally, we have suc-
cessfully extracted more than 877881 particles from the 13 catalyst
samples image dataset and investigated their sizes and morpho-
logical characteristics in detail.

2. Principle of AI-based Particle Size and Morphology
Measurement

Fig. 1 illustrates the principle of the AI-based particle size and
morphology measurement, which was developed from the Mask-
RCNN convolutional neural network model [24]. Its main func-
tions consist of AI-based particle recognition, multi-parameter
particle morphology classification, as well as statistical calcula-
tions for particle size, morphology, and distribution for each
sample. The first function unit of particle recognition includes a
fiber-optic endoscopic platform to capture high-resolution
particle images. Then an AI-based particle recognition
algorithm, a Mask-RCNN neural network, is employed to extract
each individual particle on every sample image. After processing
the mask images of these individual particles, the data of their
size and geometric parameters can be figured out, forming the
data set for further statistical analysis. The second is the criteria
of a multi-parameter particle morphology classification, which
was based on the five conventional parameters such as deformity
[25], circularity [26], roundness, aspect ratio, and compactness.
By using a bisecting K-means clustering algorithm, the
morphology of all sample individual particles can be classified
into two categories (regular and irregular) and four subtypes
such as spherical, ellipsoidal, rod-shaped, and irregular type by
using the process bisecting K-means clustering algorithm [27].

Fig. 1. The framework of the proposed method.
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The last is the module for statistically analyzing and illustrating
the measured particle data.

3. Deep Learning-based Intelligent Recognition of Catalyst
Particles

3.1. Selection of catalyst samples and dataset creation

TheMTO process efficiently converts methanol into light olefins,
such as ethylene and propylene, which are key raw materials for
producing plastics, synthetic rubber, and other chemicals. Due to its
exceptional catalytic performance, including high selectivity and
conversion rates, the SAPO-34 molecular sieve is widely used as a
catalyst in the second generation of the MTO process [28]. We
synthesized 13 different SAPO-34 catalyst samples with residence
times ranging from 0 to 180 min and coke content varying from 0%
to 9.35%.

To achieve an optimal particle size for smooth fluidization, we
excluded particles larger than 160 mm and smaller than 10 mm.
Particle images were captured using a custom-built fiber-optic
endoscopic imaging platform [29], which comprises a particle
disperser, a dual-axis high-precision automatic displacement stage,
six fiber-optic probes, and a strip light source. Housed in a light-
proof box to eliminate interference from ambient light, this de-
vice ensures high-quality and consistent imaging conditions.

The image acquisition process for each catalyst sample followed
a systematic procedure. First, a disperser was used to evenly spread
the catalyst particles onto a glass surface, ensuringminimal particle
overlap or adhesion. Next, six probes were employed to capture
high-resolution images covering the entire measurement window
(90 mm × 100 mm). Each probe captured a target area of approx-
imately 2 mm × 2 mm, with each image having a resolution of
1280 × 960 pixels and containing around 100e150 individual
particles. For each sample, approximately 760 images were
collected.

We selected 220 images from the collected dataset to create the
dataset, which was then split into an 80% training set and a 20%
validation set. Particle labeling was performed using the LabelMe
program [30], in which particles were annotated as polygons. The
JSON files generated by LabelMe were subsequently converted into
COCO format, creating annotation files for the particles.

3.2. Mask RCNN neural network

Mask-RCNN (mask region-based convolutional neural network)
is a powerful and versatile architecture commonly used for image
segmentation tasks. Fig. 2 illustrates the architecture of Mask-
RCNN, highlighting its key components. As an instance segmenta-
tion network, Mask-RCNN not only detects and classifies particles
but also generates precise segmentation masks for individual par-
ticles. Furthermore, the integration of ROI Align further improves
spatial accuracy, ensuring higher precision in mask generation,
which is particularly important for detecting irregular particles.

In the experiment process, all the training and evaluations were
conducted on an Xeon E5-2640 CPU and an RTX 3090 GPU. The
Mask-RCNN networkwas trained using ResNet101 as the backbone,
replacing the standard convolutional layers. A stochastic gradient
descent optimizer with a momentum of 0.9 and a weight decay of
0.0001 was used, and the training process was carried out over 72
epochs. , The mAP metric from the COCOApi, calculated by aver-
aging the average precision (AP) across multiple intersections over
union (IoU) thresholds, was used to evaluate the detection perfor-
mance of the network. In this study, we report the commonly used
AP metrics, AP50 and AP75, which correspond to IoU thresholds of
50% and 75%. Test results are shown in Table 1.

Themodel achieved an overall mAP value of 60.5%, with an AP50
of 78.3% and an AP75 of 73.0%, demonstrating high accuracy in
detecting and segmenting particles at both moderate and stricter
IoU thresholds. In addition, the total inference time for the 16-
image test set was 44.1 s, averaging approximately 2.76 s per im-
age. This demonstrates the model's high computational efficiency,
making it suitable for large-scale image segmentation tasks in in-
dustrial particle characterization applications. To assess the particle
sizing accuracy of theMask-RCNNmethod, Wemeasured a batch of
standard particles with a known diameter of 250 mm to validate the
method against a ground truth. The mean measured diameter was
255.17 mm,with a standard deviation of 0.40 mm, corresponding to a
relative error of only 2.07%. These results further confirm the pre-
cision and reliability of the Mask-RCNN method for particle sizing,
even when validated against particles with exact dimensions.

Visually, the model accurately detects nearly all particles in the
images, identifying a total of 185 particles, with 173 successfully
recognized, yielding a detection rate of 93.5%. Notably, several par-
ticles around the edges of input and output in Fig. 2 were not
detected. However, this does not affect the overall analysis, as these
particles are excluded due to insufficient morphological informa-
tion. The Mask-RCNN generated segmentation masks with high
precision inside the agglomerates, showing clear and well-defined
boundaries between particles without any overlap. Overall, the
model demonstrates strong adaptability to particles of varying
morphologies and sizes.

4. Multi-parameter Morphological Characterization of
Catalysts

4.1. Selection of morphological parameters

Complete characterization of particle morphology is a complex
task. Common parameters used in this process include perimeter
(P), area (A), equivalent diameter (D), maximum inscribed circle

Fig. 2. Network architecture of the Mask-RCNN.

Table 1
Image segmentation performance.

mAP/% AP50/% AP75/%

Mask-RCNN 60.5 78.3 73.0
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diameter (Di), and minimum circumscribed circle diameter (Dc).
However, distinguishing between different particle morphologies
often requires a more sophisticated approach, leading to the
development of various shape descriptors or form factors, such as
aspect ratio, compactness, circularity, deformity, and roundness.
Specifically, deformity reflects the degree of deviation from a per-
fect sphere, circularity describes how closely a particle resembles a
circular shape, roundness measures the smoothness of the parti-
cle's contour, compactness indicates the density of the particle
relative to its area, and aspect ratio characterizes the elongation of
the particle along its principal axes. The corresponding calculation
formulas are as follows.

(1) Equivalent diameter (D): The diameter of a sphere that has
the same projected area as the particle.

D =
■■■■■■

4A
p

■

(1)

(2) Circularity (C): Describes the relationship between the ratio
of the actual area of a particle to its perimeter and the ideal
ratio for a circle.

C=4pA
P2

(2)

(3) Roundness (Rn): A dimensionless indicator that characterizes
how close the overall shape of a particle (or its projection) is
to a circle.

Rn = 4A
pX2

Fmax

(3)

Here, XFmax
refers to the maximum Feret diameter.

(4) Deformity (Df): An indicator used to describe how close a
particle is to the ideal spherical shape. It is calculated by
subtracting 1 from the ratio of the particle's projected area to
the area of the maximum inscribed circle.

Df =
A
Ai

- 1 =
(

D
Di

)2

- 1 (4)

(5) Aspect ratio (AR): The ratio of the length to the width of the
particle's minimum bounding rectangle.

AR = Major axis
Minor axis

(5)

(6) Compactness (CP): The ratio of the diameter of the largest
inscribed circle (Di) to the diameter of the smallest circum-
scribed circle (Dc).

CP = Dc

Di
(6)

To validate the effectiveness of the parameters mentioned
above, we selected a subset of particles from the MTO catalyst
samples for detailed analysis. Using the particle segmentation
network, we obtained information on 877881 particles in total.
From this dataset, we selected 20 representative particles with
distinct morphological characteristics (labeled #1 to #20), forming
the shape sample set shown in Fig. 3. The morphological

parameters of these particles are presented in Table 2. By
comparing Fig. 3 with Table 2, the following conclusions can be
drawn.

(1) Both roundness and circularity describe how closely a particle
resembles a spherical shape. For particles with ideal shapes
(e.g., particles #5, #11, #18, and #20), the values for both
roundness and circularity are similar and exceed 0.90. How-
ever, for rod-shaped or irregular particles (e.g., particles #4,
#14, #17, and #18), there is a noticeable difference between
these two values. Roundness provides a more accurate rep-
resentation of the actual particle shape and is more sensitive
than circularity in distinguishing the sphericity of particles.

(2) Deformity is defined as the ratio of the particle's projected
area to its maximum inscribed circle area minus 1. Thus, the
deformity of a spherical particle is 0, and a higher deformity
value indicates a greater degree of distortion. In Table 2,
particles with deformity values exceeding 1.4 (e.g., #2, #8,
and #15) exhibit rod-shaped features, demonstrating that
this parameter is highly sensitive in distinguishing between
spherical and non-spherical particles.

(3) Compactness describes the tightness of the particle shape.
For spherical particles, the compactness ratio is close to 1,
while for irregular particles, the ratio deviates from 1. Aspect
ratio reflects the ratio of the length to the width of the cir-
cumscribing rectangle; an aspect ratio close to 1 suggests a
more symmetrical or uniform shape, while deviations from 1
indicate elongation or flattening. Compared to circularity and
deformity, aspect ratio and compactness provide a more
accurate reflection of non-spherical particle shape. In Table 2,
particles #7 and #8 show irregular shapes, with large dif-
ferences in aspect ratio and compactness, while particles #10
and #19, which are ellipsoidal or rod-shaped, show smaller
differences between these values.

Compared to single-parameter methods, this multi-parameter
characterization approach offers a more comprehensive represen-
tation of the particle shape. It is particularly effective in capturing
the detailed features of irregular particles.

4.2. Catalyst shape clustering analysis based on multiple
parameters

In this study, the bisecting K-means algorithm, an improved
version of the traditional K-means method, was used to classify the
particle shapes. It is an improved K-means algorithm, which over-
comes some drawbacks of the traditional K-means algorithm and is
more robust. The main difference between the bisecting K-means
algorithm and the traditional K-means algorithm is that, in the
former, only one cluster center needs to be addressed in each
iteration according to the sample distribution. Thus, the bisecting
K-means algorithm can effectively reduce the chance of falling into
local optima and the sensitivity towards noises.

First, we select representative particles from the dataset cate-
gorized into four types: spherical, ellipsoidal, rod-shaped, and
irregular. Second, the average morphological parameters for each
particle type are calculated and used as the initial cluster centers.
Finally, the bisecting K-means algorithm is used to cluster the
candidate groups based on their morphological parameters.

As seen from Table 3, the dataset of 877881 particles was clas-
sified into four distinct shape types: spherical, ellipsoidal, rod-
shaped, and irregular shaped. Spherical particles constitute the
majority, accounting for 80.95% of the total. These particles exhibit
high values for circularity (0.92), roundness (0.95), and compact-
ness (1.07), along with low deformity (0.14) and a nearly uniform
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aspect ratio (1.13), indicating smooth contours and a near-equal
balance between length and width.

Ellipsoidal particles represent 16.98% of the dataset. Their
characteristic parameters include a circularity of 0.82, roundness of

0.71, deformity of 0.58, an aspect ratio of 1.55, and compactness of
1.47. These particles exhibit relatively smooth contours, but their
length is moderately greater than their width, distinguishing them
from spherical particles. Rod-shaped particles are a minor

Table 2
Catalyst particle sample morphologies parameters.

Particle ID Diameter/mm Circularity Deformity Roundness Compactness Aspect ratio

1 82.7 0.85 0.28 0.87 1.31 1.20
2 90.6 0.59 1.41 0.43 2.37 1.97
3 51.6 0.75 0.89 0.88 1.65 1.07
4 59.8 0.68 0.89 0.47 2.01 1.99
5 60.7 0.90 0.11 0.99 1.09 1.04
6 63.4 0.68 0.77 0.74 1.67 1.19
7 64.9 0.69 0.80 0.61 1.78 1.66
8 50.0 0.68 1.44 0.44 2.36 2.42
9 97.1 0.73 0.70 0.83 1.59 1.07
10 84.6 0.70 0.84 0.77 1.66 1.19
11 82.9 0.9 0.08 0.97 1.06 1.04
12 83.0 0.68 0.87 0.76 1.73 1.15
13 36.8 0.71 1.13 0.45 2.18 2.18
14 84.3 0.76 0.85 0.54 1.87 1.84
15 68.3 0.73 1.46 0.50 2.23 2.18
16 53.7 0.75 0.8 0.53 1.89 1.95
17 43.1 0.68 0.82 0.48 1.95 1.97
18 82.7 0.91 0.09 0.99 1.07 1.03
19 53.6 0.77 0.87 0.56 1.88 1.85
20 82.7 0.90 0.14 0.97 1.11 1.07

Fig. 3. Catalyst samples in typical morphologies categories.
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component, comprising only 0.14% of the total. They are charac-
terized by lower circularity (0.73), roundness (0.53), and high
deformity (1.11), with an elongated aspect ratio of 2.02 and
compactness of 1.95, highlighting their distinctly elongated shape.
Irregular particles make up 1.93% of the dataset. These particles
display significant variability in shape, with circularity (0.73),
roundness (0.82), deformity (0.81), an aspect ratio of 1.71, and
compactness of 1.20. Their irregularity is reflected in the substantial
deviations in aspect ratio and compactness, indicating complex
shapes that cannot be easily described using regular geometric
forms.

For better visualization, the results of multi-parameter
morphology classification are shown in Fig. 4. The image contains
a total of 84 particles, categorized by shape and color: 63 spherical
particles (marked in blue), 19 ellipsoidal particles (marked in pur-
ple), 1 rod-shaped particle (marked in green), and 1 irregular par-
ticle (marked in red). It is evident that the particle recognition
algorithm developed in this study can accurately distinguish the
shape of particles.

5. Applications of the AI-based Particle Recognition Method

To acquire more accurate information on catalyst size,
morphology, and distribution as well as coke influence, we applied
this AI-based particle recognition method to extract about 877881
individual particles from the image dataset of 13 catalyst samples.
Then these particles have been quantitively assessed by the above-
mentioned five parameters hybrid morphological classification
criterion. Their statistical data about size, morphology, and the
corresponding distribution are discussed in the following sections.

5.1. Measurement of the fresh SAPO-34 catalyst sample

As for the fresh SAPO-34 catalyst sample, a total of 60840 par-
ticles have been recognized by our AI algorithm. Its statistical

characteristics related to size and morphology are plotted in Fig. 5,
which combines the size cumulative distribution in Fig. 5(a), the
size probability density distribution in Fig. 5(b) as well as particle
morphological distribution in Fig. 5(c). The key parameters of D10
(size cumulative ratio equal to 10%) and D90 (size cumulative ratio
equal to 90%) were measured as 30.9 mm and 61.6 mm respectively.
Consequently, the whole size region can be divided into three
sections: smaller size region (<D10), middle size region (D10-D90),
and larger size region (>D90). As depicted in Fig. 5(b), this fresh
catalyst sample has an asymmetrical unimodal size distribution
with a median diameter of 42.6 mm. In contrast, Fig. 5(c) shows that
its morphological characteristics are in the whole size region and
the other three sub-size intervals. Most particles in this sample are
dominant in the spherical and ellipsoidal types. Their number
densities are 65.7% and 33.1% respectively. A small amount of the
other two particle types is also found, and the number density data
of the rod-shaped and the irregular type are 0.2% and 1%. However,
the number density values of the four particle types are different in
the three sub-size regions and also different from that in the entire
size range. Comparatively, there are two particle types, spherical
(95%) and ellipsoidal (5%), in the smaller size region (<D10). In the
middle size and larger size regions, the ratio of the spherical par-
ticles decreases to 63.2% and 56.2%, while that of the ellipsoidal
particles increases to 36.1% and 37.6%, respectively. And the other
two types, the rod-shaped and the irregular type, also reach (0.2%,
0.5%) and (0.7%, 5.5%) correspondingly.

5.2. Measurement of the other 12 SAPO-34 catalysts samples with
coke

In general, a fluidized bed is preferred over a fixed bed reactor as
the catalytic reactor for the MTO process [7]. Hence coke influence
on catalyst morphology should be further investigated since the
MTO reaction over the SAPO-34 catalyst is featured by rapid cata-
lyst deactivation due to the coke deposition. Among our 13 catalyst

Table 3
Clustering centers and proportions.

Shape Circularity Roundness Deformity Aspect ratio Compactness Proportion/%

Regular Spherical 0.92 0.95 0.14 1.13 1.07 81.0
Ellipsoidal 0.82 0.71 0.58 1.54 1.47 17.0
Rod-shaped 0.73 0.53 1.11 2.02 1.95 0.1

Irregular Irregular 0.73 0.82 0.81 1.71 1.20 1.9

Fig. 4. Particle shape classification.
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samples, their coke and the corresponding reaction residence time
are listed in the first two columns of Table 4.

It is evident that the coke will deposit much more proportion-
ately with the residence time, especially in the first 150 min of
reaction. To evaluate the morphological difference among these 13
catalyst samples, we still discuss them in the three size intervals
according to the above-measured D10 (30.9 mm) and D90 (61.6 mm)
in the fresh sample (0 min). The 3rd column in Table 4 lists the data
of each total particle number for 13 catalyst samples. Their sum-
mation denotes that 877881 particles have been extracted by our
AI-based particle recognition method. It can be observed that the
number proportion of small particles (<D10) in the fresh sample
(0 min) is about 10.0%, whereas that of the other 12 samples de-
ceases rapidly and the minimum value is 0.9% for the two samples
with the coke 3.5% and 4.6% respectively. In contrast, the number
density of the larger particles (>D90) increases for each 12 samples
and themaximumvalue of the number density is 38.4% for the coke
9.0% sample. Overall, the number of middle-sized particles is
relatively stable and fluctuates between 60% and 80%.

Table 4
Size distribution of carbon-deposited catalyst particles.

Residence
time/min

Coke/% Particle
count/pcs

Particle number density/%

<D10 D10-D90 >D90

0 0 60840 10.0 80.0 10.0
10 1.9 82193 3.0 72.4 24.6
20 2.9 91756 1.9 73.7 24.4
30 3.5 68571 0.9 70.2 28.8
45 4.6 55315 0.9 71.7 27.4
60 5.2 110160 2.7 73.0 24.3
75 6.0 104119 6.6 76.7 16.7
90 6.6 39560 4.0 60.4 35.6
105 7.5 44363 1.2 64.5 34.3
120 8.2 69243 5.0 77.5 17.5
135 8.8 76996 7.7 79.6 12.7
150 9.0 24231 5.9 55.8 38.4
180 9.3 50534 1.5 72.0 26.6

Note: the set value of (D10, D90) is (30.9, 61.6) mm in the fresh SAPO-34 catalyst
sample. The total particle count of 13 samples is 877881.

Fig. 5. Size and morphological characteristics of fresh catalyst particles. (a) Cumulative distribution, (b) probability density distribution, (c) morphological distribution.

Fig. 6. Size distributions of carbon-deposited catalyst particles: (a) cumulative distri-
bution, (b) proportion of small particles and large particle.
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To visualize the influence on catalyst size due to coke deposi-
tion, we selected the six samples according to the 30-min time
interval between two time-series neighbor samples. As depicted in
Fig. 6(a), the cumulative distribution curves of the five selected
samples with coke are all positioned to the right of the curve for the
fresh sample (0 min). This shift indicates a trend toward larger
particle sizes as coke deposition increases. Since the value of (D10,
D90) is chosen as the same as that of the fresh catalyst sample, both
values of particle density are 10% in the small size region (<D10) and
the larger size region (>D90). Then they are plotted as an over-
lapped point (depicted in red color) in Fig. 6(b). We choose this set
of (D10,D90) as the reference size to count particles less thanD10 and
larger than D90 in the other five catalyst samples. The other points
in Fig. 6(b) show the variation of particle number density due to

coke in the smaller size region (<D10) and in the larger size region
(>D90), respectively.

The proportion of small particles (<D10) progressively decreases
as residence time increases, dropping from 10.0% at 0 min to 1.9% at
30 min, and reaching a minimum of 0.9% at 45 min. Meanwhile, the
proportion of large particles (>D90) increases significantly, rising
from 10.0% at 0 min to 35.6% at 90 min, and peaking at 38.4% by
150 min.

To quantitatively evaluate particle morphology variations due
to coke influence, we defined four kinds of colors such as red,
green, blue, and yellow, which correspond to the four particle
types which are spherical, ellipsoidal, rod-shaped, and irregular
shapes in the particle morphology classification criteria mentioned
before. Fig. 7 includes four subfigures that display the variations of

Fig. 7. Particle morphology variations in 13 catalyst samples: (a) morphological distribution, (b) spherical and the ellipsoidal particles, (c) rod-shaped particles, (d) irregular
particles.
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four particle morphology types in the four size sections of the
whole size region, the smaller size region, the middle size region,
and the larger size region. According to Fig. 7(a), this pie chart
illustrates that the regular shape particles of the spherical and the
ellipsoidal occupy over 98% of the total particles of the 13 catalyst
samples. As a while, the rod-shaped and the irregular particles
account for 0.1% and 1.9% respectively. Additionally, the spherical
and the ellipsoidal particles remain dominant and their total ratios
are 99%, 98%, and 94% in three sub-size regions. However, the
proportions of the other two types (the rod-shaped and the
irregular types) vary noticeably. Especially, in the smaller size re-
gion, particles with these two types are not found in the total
samples. However, in the middle size region and the larger size
region, there exist a few rod-shaped particles, although their ratios
are only 0.1% and 0.2% respectively. In contrast, the amount of
irregular particles varies greatly, and their ratios are 0.8% and 5.3%
individually.

To better visualize the morphology differences among the 13
samples, we illustrate the morphological characteristics of our 13
catalyst samples according to the three categories of the group: the
spherical and the ellipsoidal, the rod-shaped as well as the irregular
type. Fig. 7(a) shows that the group of the spherical and ellipsoidal
particles overwhelmingly dominate in each sample. The amount of
rod-shaped particles is few and each ratio is less than 1% in total.
Meanwhile, each ratio of the irregular type exceeds 1%, although its
amount is relatively small and less than 5%.

6. Conclusions

In this work, we presented an intelligent particle recognition
method developed from the Mask-RCNN deep learning model
combined with classification criteria based on the parameters of
deformity, circularity, roundness, aspect ratio, and compactness.
The 13 kinds of SAPO-34 catalyst samples were investigated in
detail and themain findings of their morphology and particle sizing
are summarized as follows.

(1) A dataset including 8777881 individual particles were
extracted from 9880 high-resolution SAPO-34 catalyst sam-
ple images by our AI-based particle recognition. Their
morphology can be classified into two categories with four
types such as spherical, ellipsoidal, rod-shaped, and irregular
through bisecting K-Means clustering.

(2) As for fresh SAPO-34 catalyst sample, its morphology is
dominated to be spherical (65.8%) and ellipsoidal (33.1%).
The Rod-shaped (0.2%) and irregular ones (1%) are minor. Its
size distribution is relatively uniform, and the key cumula-
tive parameters (D10, D90) are (30.9, 61.6) mm respectively.

(3) Coke has a strong influence on catalyst size, which is indi-
cated by the size distribution curves to be shifted larger with
more coke deposition. However, the spherical and ellipsoidal
particles are consistently dominated, and the others were
less than 5% in total.

Overall, our findings illustrate that this is a promising approach
to developing intelligent instruments for catalyst particle sizing
and classification. Further studies are undergoing.
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