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Noise is inevitable in electrical capacitance tomography (ECT) measurements. This paper describes the
influence of noise on ECT performance for measuring gas—solids fluidized bed characteristics. The noise
distribution is approximated by the Gaussian distribution and added to experimental capacitance data
with various intensities. The equivalent signal strength (¢) that equals the signal-to-noise ratio of packed
beds is used to evaluate noise levels. Results show that the Pearson correlation coefficient, which in-
dicates the similarity of solids fraction distributions over pixels, increases with ¢, and reconstructed
images are more deteriorated at lower ¢. Nevertheless, relative errors for average solids fraction and
bubble size in each frame are less sensitive to noise, attributed to noise compromise caused by the
process of pixel values. These findings provide useful guidance for assessing the accuracy of ECT mea-
surements of multiphase flows.
© 2025 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd. All
rights are reserved, including those for text and data mining, Al training, and similar technologies.

1. Introduction

Electrical capacitance tomography (ECT) is a non-intrusive visu-
alization tool for inspecting multi-phase flows, such as gas—liquid,
gas—liquid—solids, and gas—solids fluidized beds [1—3]. Owing to
its non-radiative, non-invasive, fast-speed and cost-effective prop-
erties, ECT has found widespread use in various processes. Generally,
ECT measurements aim to reconstruct the permittivity distribution
or material distribution from capacitance data obtained using non-
iterative or iterative algorithms [4,5]. However, this process often
suffers from under-determined and ill-conditioned problems. The
former arises from the limited number of independent measure-
ments, leading to alternative images, while the latter results from
the non-uniformity in the sensitivity matrix and makes the recon-
structed image easily affected by capacitance perturbations (i.e.,
noise effects), which requires a higher signal-to-noise ratio (SNR)
system [4,6]. Several studies have focused on improving the
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capacitance acquisition system to increase capacitance measure-
ment resolution [7—11]. For instance, an AC-based capacitance cir-
cuit system with the digital switching demodulator achieved a 60 dB
SNR level for 500 fF (1 fF=1x10"'> F) capacitance measurement,
corresponding to a system resolution of 0.5 fF [8]. Similarly, Kryszyn
et al. [7] developed a single-shot, high-voltage circuit system with a
30 dB SNR level for 2.5 fF capacitance measurement, resulting in a
system resolution of 0.06 fF. Al Hosani et al. [9] employed a com-
mercial PTI300E-TP-G capacitance measurement system, enabling
them to collect data with an effective resolution of 0.1 fF. Despite
these efforts to enhance the SNR of capacitance acquisition systems,
noise remains inevitable due to non-ideal electronic elements,
thermal effects on the resistor, and signal source fluctuations [7],
which significantly limits the capacitance measurement resolution.

As previously mentioned, noise is an inherent factor in ECT
measurements, and its noise intensity is determined by the
acquisition system and the magnitude of the measured capaci-
tance, as the calibration procedure uses the capacitance difference
between media [4]. For instance, Li and Holland [12] employed a
data acquisition system with the Gaussian noise measuring 1 fF,
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resulting in a peak SNR of 40 dB based on the change in capacitance.
Their study showed that the impact of noise on capacitance mea-
surements increases with the distance between electrode pairs due
to the reduction in capacitance difference between low and high
calibration states. Zeeshan et al. [13] proposed a new measurement
strategy that employed partially overlapping constituent segments
from synthetic electrodes, which were sequentially activated. They
demonstrated that the SNR increases with the number of combined
small electrode sensors. Previous research verified that when
measuring bubble-related parameters in fluidized beds with a fixed
electrode width, the length of the ECT electrode should be mini-
mized as much as possible [14]. However, an ECT sensor with a
shorter electrode length (given a fixed width) will yield a smaller
capacitance value and change, thus amplifying the noise effect.
Additionally, the capacitance difference decreases with the reduc-
tion in permittivity difference between materials used in the low
and high calibration procedures, further increasing the noise effect
on the normalized capacitance measurements. Therefore, the effect
of noise on ECT measurements varies based on the ECT sensor
configuration and measurement conditions.

Previous studies have investigated the impact of noise on ECT
measurements [15—17]. Wang et al. [ 15] added 40 dB and 60 dB noise
to capacitance in their gas—oil two-phase flow simulation study.
They found that data with 60 dB noise did not affect image quality,
while data with 40 dB noise degraded the images. However, it is
necessary to clarify whether the measurement of characteristics of
the two-phase flow structure is impeded under the influence of 40 dB
noise. Xie et al. [16] added 20 dB and 30 dB Gaussian white noise to
four typical two-phase flow models and compared the similarity and
value difference between reconstructed images with and without
noise effects using two parameters, i.e., correlation coefficient and
image error, to evaluate the noise effect. Their results demonstrated
that the combined algorithm (i.e., a combination of the Landweber
and Tikhonov algorithms) improved image quality compared with
the Tikhonov algorithm. Liu et al. [17] designed an ECT sensor with
internal electrodes to visualize a large-scale concentric-annulus
zone, achieving an SNR of approximately 50 dB with different Ry/R;
(ie., outer diameter/inner diameter) of the sensor. Their findings
indicated that noise impacted reconstructed images under this SNR
level. Although previous studies qualitatively evaluated the impact of
noise on ECT measurements, the quantitative evaluation of its effects
has not been reported, which can introduce uncertainties.

This study aims to simulate the impact of noise, commonly in ECT
measurements, on reconstructed images and other characteristics of
fluidized beds, compared to those obtained without noise interfer-
ence under specific algorithms. Firstly, we added noise with various
intensities to the normalized capacitance data obtained from flu-
idized bed measurements using 8 and 12-electrode ECT sensors.
Subsequently, we computed reconstructed images with different
noise levels and analyzed the effect of noise on the reconstructed
images compared to noise-free images using statistical methods.
Specifically, the influences of noise on the measurements of solids
fraction over pixel and frame and the bubble size are analyzed in
detail. Our study quantitatively identifies the noise effect on ECT
characterization, offering guidance for designing and applying ECT
technology, especially for measuring fluidized bed characteristics.

2. Methodology
2.1. Capacitance data acquisition

The measurements of capacitance data were obtained from
specially designed apparatuses, as shown in Fig. 1, which include

three different internal diameters (i.e., 45, 55, and 65 mm) fluidized
beds equipped with the 8 or 12-electrode ECT sensor with the same

electrode length of the columns. The superficial gas velocity was
gradually increased from the packed bed regime to the turbulent bed
regime. A detailed description can be found in our previous study [ 14].

2.2. Noise distribution and application method

In ECT measurements, a normalized capacitance vector with
either 28 or 66 elements is obtained when exciting each electrode of
the 8 or 12-electrode sensor, respectively. Each element represents
a measurement from one electrode pair comprising true value and
noise. The noise distribution of each electrode pair was determined
by analyzing normalized capacitance vectors obtained from packed
bed measurements, where variations in normalized capacitance
were assumed to be only related to noise. The measurement error
(An) of each electrode pair induced by noise was calculated by
subtracting the average value, regarded as the true value, from the
measured normalized capacitance, as shown in Eq. (1).

/\n:Ans—/\s (1)

where 1,5 represents the measured normalized capacitance with
the effect of noise for one electrode pair, and A5 denotes the average
normalized capacitance value across all frames from one electrode
pair.

Fig. 2 displays the typical probability distributions of noise for 8-
electrode and 12-electrode ECT sensors in the packed bed. These
results demonstrate that the noise can be approximated by a
Gaussian distribution. The width of the distribution is related to the
SNR, which signifies the ratio between the desired signal and the
background noise, as given in Eq. (2) [18,19].
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where A,4(i) is the normalized capacitance with the noise effect of ith
frame for one electrode pair measurement, Jns is the average value
of all measured frames of one electrode pair (i.e., 4s), and Q is the total
number of frames (20000 in this study). Similar Gaussian distribu-
tions with varying SNRs were also observed in other electrode pairs.
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Fig. 1. (a) Schematic illustration of the fluidized bed set-up and (b) vertical view of the
ECT sensor.
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Fig. 2. Typical probability distributions of noise in (a) 8-electrode ECT sensor and (b) 12-electrode ECT sensor.

We verified the stability of noise in ECT measurements. This
was achieved by comparing the standard deviation of measured
normalized capacitance in the homogeneous fluidization regime
of a fluidized bed filled with catalyst particles used in the fluid
catalytic cracking process (abbreviated as FCC particles) [20]. In
this regime, the bed experiences homogeneous expansion
without fluctuations of solids fraction. Thus, we observed that
the measured capacitance decreases as the solids fraction de-
creases, and the fluctuations in capacitance are solely attributed
to noise due to the homogeneous distribution of solids fraction.
Fig. S1(a) (in Supplementary Material) shows the variation in the
standard deviation of the measured normalized capacitance of
different electrode pairs against time-averaged normalized
permittivity (ie., time-averaged solids fraction) using an 8-
electrode ECTsensor. The stable standard deviations of normal-
ized capacitance vectors for each electrode pair indicate a
consistent noise level (as shown in Eq. (2)) without being
affected by the signal level induced by the change in normalized
permittivity (solids fraction) for each electrode pair, ranging from
0.9 to 1. Additional studies involving the insertion of tubes with
different diameters into a packed bed further confirmed that the
noise level remains unchanged with variations in the solids
fraction distribution (Fig. S1(b)). Therefore, as a working
assumption, we consider that the noise follows a Gaussian dis-
tribution and remains stable in highly fluctuating systems. The
impact of dynamic factors, such as the presence of moving
bubbles in the bubbly flow regime and solids fraction fluctua-
tions in turbulent and fast flow regimes, on noise level will be
investigated further in future studies. It should also be noted that
our objective is to examine the impact of noise on ECT perfor-
mance, particularly concerning the normalized permittivity dis-
tribution of each frame, which is accomplished by introducing
noise with different intensities to the measured data. Once the
noise in the gas—solids fluidized bed is determined, our study
enables the evaluation of measurement accuracy.

As the stability of the noise level in the measurements is
assumed, we can add noise to the measured values according to Eq.
(3), a variant of Eq. (1).

Ans = As +N(o, 02> 3)

where A is the measured data, regarded as true values, N(0, ¢?) is
Gaussian distributed represents the noise (1,) with a mean of 0 and
a standard deviation of ¢.

Given the simplicity of obtaining the SNR in the fixed bed
regime and the difficulty in obtaining the SNR during the fluid-
ization process due to consistent variations in capacitance mea-
surements with fluidization states, we can use the SNR of the
packed bed to calculate the noise level of the measurement system.
Therefore, we define the equivalent signal strength (¢), which
equals the SNR of packed beds, to evaluate the noise level, as the
signal in packed beds is unified. As A,s is assumed to be 1 in the
packed bed, we can obtain the relationship between ¢ and ¢ ac-
cording to Eq. (2), as shown in Eq. (4),

$=201g G) (4)

Thus, we change Eq. (3) to Eq. (5),

Ans = As +N(O, 10,¢/10> (5)

This approach ensures that the results can directly assess the
performance of ECT measurements, given that ¢ equals the SNR
value of the packed bed according to Eq. (2).

Furthermore, our analyses indicate that although there is a
significant difference in the standard capacitance between adjacent
and non-adjacent pairs, this does not affect the noise levels of each
electrode pair due to the application of the AC-based measurement
circuit [21]. We verified it using two methods.

On one hand, we directly obtained and analyzed the raw
capacitance. We utilized another sampling device from the School
of Electrical and Information Engineering, Tianjin University, based
on an AC-based circuit, to measure the raw capacitance and noise
directly, given that our device can only access the normalized
capacitance [21,22].

Due to the minimal changes in capacitance, a normalization
process is necessary to improve the quality of the reconstructed
images [4]. Therefore, the normalized capacitance is calculated
according to Eq. (6).
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=G (6)

-G
where C; and Cy represent the mean raw capacitance vectors for all
electrode pairs in the low and high-permittivity calibration pro-
cedures, ie., the empty and fixed phases, respectively, and keep
constant in the measurement. With the packed bed, the measured
capacitance (C) can be written in Eq. (7).

C=Cy+a(Cy) (7)

where ¢(Cy) represents the standard deviation of Cy. Thus, Eq. (6)
can be simplified to Eq. (8).

-G

Therefore, the first and second terms on the right side of the
equation can be interpreted as the signal and noise components,
respectively. Fig. S2(a) presents the capacitance changes (repre-
sented by the voltage changes) for empty and fixed beds and the
standard deviation of capacitance (represented by the measured
voltage) in the fixed bed state, along with SNRs based on the
normalized capacitance measurements in a specific sensor (diam-
eter: 45 mm,; electrode length: 45 mm). The figure shows their SNR
values are similar, indicating that the magnitude is independent of
the electrode pair's position because the raw capacitance's stan-
dard deviation and the capacitance difference between the cali-
bration states exhibit the same trend.

The observed trend results from the circuit design, which am-
plifies the capacitance difference between calibration states to the
same analog-to-digital converter (ADC) range, thereby inducing
consistent changes in capacitance differences and noise, as shown
in Eq. (8) and Fig. S2(a). Further details can be found in their work.

On the other hand, if the noise measured using Eq. (8) is related to
the position of the electrode pairs, sensors with the same structure
should exhibit similar variation patterns in the SNR of the electrode
pairs at different positions due to the consistency in relative posi-
tioning. We further compared the SNRs of three sensors with similar
structures but varying sizes, as shown in Fig. S2(b). Details of the
sensor configurations and measurement conditions are provided in
Table S1. The figure does not show that the SNR follows specific
distribution patterns among the various electrode pairs.

However, the SNR values for different electrode pairs can vary
significantly for specific sensors, as shown in Fig. S2(b). According
to Eq. (8), this variation is likely due to the differences in the values
of Cy and C; between different electrode pairs, which are influenced
by sensor structure measurement medium, and other environ-
mental considerations. During the measurement process, the dif-
ference signal (C— Cp) is amplified. When this difference is
minimal, the impact of measurement errors is amplified, leading to
different SNRs for different electrode pairs. Conversely, the noise
level decreases as the difference increases, resulting in a higher SNR
and lower noise intensity. This is demonstrated in Fig. S2(c), which
shows the capacitance changes (Cy — C.) and the corresponding
SNR values for two different sensors. This observation supports the
analysis discussed earlier.

Consequently, we introduced noise with the same level across all
electrode pairs to facilitate a more generalized discussion. This
approach allows scenarios with varying noise levels across different
channels when using the maximum noise level as the benchmark.
Since the noise distribution with a higher ¢ is encompassed within
that of a smaller ¢, as ¢ is related to the Gaussian distribution width
according to Eq. (4). Moreover, further studies could build upon this

work to evaluate the impact of noise using a specific noise
distribution.

We introduced noise by varying ¢ from 10 to 70 dB in 2 dB in-
crements, following Eq. (5).

2.3. Evaluation procedures

Detailed procedures to evaluate the effect of noise on the
reconstructed images of fluidized beds are outlined below. Firstly,
randomly selected ECT measurement data from the packed bed to
the turbulent bed with 8-electrode and 12-electrode sensors is
regarded as reference data. Here, we should note that all selected
data inherently includes noise. However, the successful application
of ECT in gas—solids fluidized bed measurements demonstrates
that noise does not entirely obliterate the capacitance measure-
ments [2,3]. Since the average solids fraction of each frame corre-
sponds to capacitance measurements, from the packed bed to the
slugging bed (Fig. 3), we also present the composition of each frame
based on its average solids fraction across all 50000 frames in the 8-
electrode ECT measurements, as shown in Fig. S3. The figure shows
many frames fall within the packed bed regime, with the solids
fraction of the packed bed set to 0.63. All frames were obtained
from the laboratory batch fluidized beds, using silica particles as
the fluidization medium, with a minimum fluidization velocity of
4.8 cm-s~ L. The maximum superficial gas velocity is 30 cm-s~!, and
we collected data from 0 to 30 cm-s~ . During the measurement
process, smaller intervals were used initially, resulting in more
frames in the fixed bed regime. The frame distribution in the 12-
electrode ECT measurements is consistent with the results shown
in Fig. S3. Furthermore, this study focuses on comparing the simi-
larity and value difference in solids fraction distributions between
the reference data and derived data with various noise intensities.
Therefore, the original noise itself will not affect the findings of this
study. In addition, the measurement frequency of the 8-electrode
ECT sensor is around 90 Hz as well as 70 Hz for the 12-electrode
ECT sensor in this study. In previous studies, several studies have
evaluated the fluidized bed characteristics in the frequency domain
[23—26]. Their results showed the typical frequency in the
gas—solids fluidized beds is below 10 Hz, which indicated that the
ECT measurement frequency can capture fluidized bed character-
istics across the bubbling regime to the fast fluidization regime.
Secondly, the Gaussian-distributed noise with various noise levels
(10—70 dB, at 2 dB intervals) is added to each electrode pair mea-
surement of each frame data from the first step, which ensures that
noise is added coherently. Thirdly, the same algorithms are used to
reconstruct normalized permittivity distributions. Finally, fluidized
bed characteristics at various noise levels are derived from the
reconstructed solids fraction distributions, allowing for the
assessment of noise impact on ECT characterizations.

Reconstructed algorithms, which fall into non-iterative and
iterative categories, are crucial for ECT measurements [4,5]. Non-
iterative algorithms, such as linear back-projection (LBP) and
Tikhonov regulation algorithms, offer online but low-quality im-
ages. Iterative algorithms, including Landweber iteration and
simultaneous iterative reconstruction algorithms, provide high-
quality images but require longer reconstruction time [4,5]. To
study the effect of noise on fluidized bed characteristics measure-
ments under different algorithm types, four algorithms are
employed: the non-iterative linear back-projection; the non-
iterative modified Tikhonov with the regularization parameter of
0.005 (MT-0.005); the simultaneous iterative reconstruction algo-
rithm with the relaxation factor of 0.2 and iteration numbers of 10
(SIRT-0.2-10); and the adaptive projected Landweber iteration al-
gorithm with 200 iteration numbers (APLI-200) [4,14,27,28].
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Fig. 3. Typical solids fraction distributions corresponding to the chosen normalized capacitance vectors, from the packed bed to the slugging bed. g is the average normalized

permittivity for each frame.

In this work, we evaluate the impact of noise on the character-
istics of the fluidized bed based on the reconstruction process using
aspecific sensor with a 65 mm inner diameter and a 2 mm thick wall.
The structure of ECT sensors can affect the sensitivity distributions,
and changes in sensitivity distribution can have implications for
noise effects. Parameters such as electrode number, electrode-to-
gap ratio, and sensor thickness play a role in shaping sensitivity
distributions. According to a study by Fang et al. [26], the electrode-
to-gap ratio of our sensor (8, which is greater than 6) ensures that it
has no significant effect on the sensitivity distribution. Previous
research has demonstrated that increasing sensor wall thickness can
distort the sensitivity distribution of adjacent electrode pairs
[29,30]. In other words, the greater wall thickness reduces the level
of sensitivity for capacitance measurements, resulting in reduced
noise effects. This finding is supported by the computation of the
condition number of the related matrix. In this study, we utilized the
LBP algorithm for obtaining results, and the outcomes obtained from
other algorithms were like those obtained using the LBP algorithm.
Thus, we can analyze the influence of wall thickness on noise effects
by computing the condition number of the transpose matrix of the
sensitivity distribution according to the LBP algorithm, as illustrated
in Fig. S4 [4]. As depicted in the figure, an increase in wall thickness/
outer diameter leads to a decrease in the condition number, indi-
cating a reduction in the influence of capacitance perturbation. We
obtained results using a ratio of 0.029, implying that the findings can
be potentially applied to sensors with large wall thickness/outer
diameter concerning relevant process conditions.

2.4. Parameters computation

Once the normalized permittivity distribution is reconstructed,
different fluidized bed characteristics can be calculated. Eq. (9)
calculates the average normalized permittivity for each frame,
which is the basis for computing fluidized bed characteristics.

N . .
/g\ _ Zi:l]\?l X Sj (9)
2oim1Si

where g is the average normalized permittivity of each frame, g; is
the normalized permittivity of ith pixel, s is the area of each image
pixel, and N is the number of pixels, which is 3228 in this work.

After obtaining the average normalized permittivity of each
frame, the average solids fraction of each frame can be calculated by
multiplying it by the average solids fraction of the packed bed, as
shown in Eq. (10),

B=0-3 (10)

where B is the average solids fraction of each frame, and 9 is the
average solids fraction of the packed bed. Because packed bed
solids fractions depend on particle diameter distribution, sphe-
ricity, and so on, we set the average solids fraction of the packed
bed to 1. This does not influence the measurement results as per
Egs. (11) and (12) and facilitates the comparison of normalized
permittivity distributions.

Upon obtaining the solids fraction distribution for a frame, the
Pearson correlation coefficient (1), defined in Eq. (11), measures the
similarity between solids fraction distributions with and without
noise over pixels for a frame [16].

_ Z{il (ﬁnoise,i - Bnoise) (ﬁz - B)
\/Z{V:] (ﬁnoise,i - Bnoise)2 : (ﬁl - 3)2

6 and Bpoise denote the solids fraction distributions with and
without noise over pixels, respectively, and N is the number of
pixels, i.e., 3228 in this work.

r (11)
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After obtaining the average solids fraction of each frame, the
relative error between average solids fractions with and without
noise can be calculated using Eq. (12),

~ ~
5noise - ﬁ‘

re —

% 100% (12)

where Bre is the relative error (i.e., the value difference between
solids fraction distributions) with and without noise [16].

3. Results and Discussion
3.1. The effect of noise on solids fraction distributions

ECT can visualize the internal permittivity distribution of a
gas—solids reactor [3,14,23,27]. As shown in Eq. (11), the Pearson
correlation coefficient was computed to assess the similarity be-
tween solid fraction distributions without and with varying noise
levels. Fig. S5 illustrates the changes in Pearson correlation coeffi-
cient distributions concerning ¢ for the 8-electrode ECT sensor
measurements. The number of sample data points can influence
the Pearson correlation coefficient distribution. Therefore, 50000
Pearson correlation coefficient data points, spanning from the
packed bed regime to the slugging regime, were used to determine
how many samples are enough to eliminate statistical error. As a
result, we compared the ratio of Pearson correlation coefficients
greater than 0.99 with different numbers of samples.

Fig. 4 shows the relationship between the ratio of Pearson cor-
relation coefficients greater than 0.99 and the number of samples,
as determined by the LBP algorithm. The results indicate that the
ratio remains stable when there are 5000 or more samples.
Consequently, a sample size of 5000 was deemed sufficient, and the
ratio value can be regarded as the probability. Fig. 4 reveals that the
ratio of Pearson correlation coefficients exceeding the same
threshold (i.e., >0.99) increases with ¢, indicating a reduction in
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noise impact, which will be further discussed. Similar results were
obtained for different Pearson correlation coefficients.

Fig. 5 displays the probability against ¢ for different Pearson
correlation coefficient limits based on 8-electrode ECT sensor
measurements and various algorithms. The sample size was set to
50000. As the Pearson correlation coefficient increases, Fig. 5
demonstrates that ¢ also increases for the same probability, indi-
cating a higher requirement for noise restriction. Additionally, the
necessary ¢ for different algorithms increases in the order of LBP,
MT-0.005, SIRT-0.2-10, and APLI-200 for the same Pearson corre-
lation coefficient requirements. This is due to the propagation of
measurement errors as algorithm complexity increases, especially
when comparing LBP and APLI-200 algorithms. Because the results
from the APLI-200 algorithm are based on those obtained from the
LBP algorithm and include an additional 200 iterations, the mea-
surement error induced by noise is amplified, consequently leading
to a higher ¢ requirement. Similar trends were observed for the 12-
electrode ECT sensor, as shown in Fig. S6. Moreover, Tables S2 and
S3 show the necessary ¢ for the Pearson correlation coefficient to
exceed the designed thresholds with a 0.995 probability, repre-
senting the required SNRs of the packed bed for ECT measurements.
These values are greater than 58 dB, showing a strict requirement
for the ECT measurement system.

Fig. 6 shows representative reconstructed images with different
¢ using the 8-electrode ECT sensor to reflect the relationship among
the noise, Pearson correlation coefficient, the relative error of
average solids fractions, and characterized solids fraction distri-
bution. Similar results for the 12-electrode ECT sensor are shown in
Fig. S7. Fig. 6 and Fig. S7 reveal that the similarity between recon-
structed images with and without noise effect increases with the
increase of ¢. Fig. 6 also demonstrates that the impact of noise on
reconstructed images decreases when the bed is fluidized. This is
attributed to the fluctuation of the original normalized capacitance
distribution (i.e., the original solids fraction distribution) induced
by the hydrodynamic effect of fluidized beds. As shown in Fig. 6,
when the average normalized permittivity distribution approaches
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Fig. 5. Changes in the probability of ensuring Pearson correlation coefficients are greater than designed thresholds with ¢, with the 8-electrode ECT sensor and four algorithms.

1, the normalized permittivity distribution over pixels presents
minimal fluctuation. Consequently, noise induces noticeable
distortion in the reconstructed image. Conversely, when a bubble is
present in the reconstructed image, noise has a limited impact on
image distortion. We further visually demonstrate the relationship
between the impact of noise and the fluctuation in solids fraction
distribution in Fig. S8. Fig. S8(a) shows the normalized permittivity
distribution across pixels with and without noise effects in both the
packed bed and fluidized bed regimes, illustrating how fluctuations
reduce the impact of noise. Fig. S8(b) presents the relationship
between the standard deviation of the normalized permittivity
distribution (representing fluctuation) and the Pearson correlation
coefficients for 248 samples at the same noise level. Generally, the
Pearson correlation coefficient increases with the standard devia-
tion of normalized permittivity distribution in a frame, further
supporting the above discussion.

Fig. 7 shows the requirements of ¢ that ensure a probability
greater than 0.995 for various Pearson correlation coefficient
thresholds with the designed limitation of average normalized
permittivity using the 8-electrode ECT sensor measurements and

different algorithms. The figure presents that the required ¢ de-
creases as the bed is fluidized with a relatively low average
normalized permittivity (i.e., average solids fraction). This obser-
vation aligns with the preceding discussion, attributing it to the
fluctuation of the original normalized permittivity distribution
induced by the hydrodynamic effect of fluidized beds. Similar
results were obtained with the 12-electrode ECT sensor, as shown
in Fig. S9. Additionally, when the probability is designed to
exceed 0.999, the ¢ requirements change little for both 8-
electrode and 12-electrode ECT measurements, as shown in
Figs. S10 and S11.

It is necessary to clarify that the results in Fig. 5 and Fig. S6
depend on the data we selected. The number of frames with
different average solids fractions will impact the distributions in
Fig. 5 and Fig. S6. This is because the similarity of the solids fraction
distributions with and without the noise effect is related to the
average solids fraction, as indicated in Fig. 7 and Fig. S9. When we
reduce the frames in the fixed bed regime, the statistical results
become more resistant to noise overall, causing the curves in Fig. 5
and Fig. S6 to shift to the left.
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3.2. The effect of noise on the average solids fraction of each frame

Figs. 6 and S7 also present the relative error of average solids

fractions (Bre, the value difference between solids fraction distri-
butions) with and without noise impact. These figures show that as
the SNR increases, the impact of noise on the relative error of the
average solids fraction rapidly decreases, even when the Pearson
correlation coefficient does not meet the designed requirement. It
can also be observed that the influence of noise is independent of
the average solids fraction. This suggests that the impact of noise on
accurately measuring the average solids fraction of each frame
differs from its impact on accurately measuring the solids fraction
distribution.

adaptive projected Landweber algorithm (Iteration = 200). g represents the average
es the relative error.

Fig. 8 presents the probabilities of the relative error of the
average solids fraction of each frame being below pre-specified
thresholds against ¢ for 8-electrode ECT measurements, obtained
from 50000 data sets with different algorithms. Similar results
were obtained with the 12-electrode ECT sensor, as shown in
Fig. S12. These results suggest that ¢, ensuring the same probability,
increases with the decrease in the relative error of average solids
fractions, indicating a reduction in noise effect. Additionally, as
shown in Fig. 6 and Fig. S7, we found that the impact of noise on the
relative error of average solids fractions is independent of the al-
gorithm used, which can be attributed to relative error and average
solids fraction independence. To further illustrate this, Fig. 9 pre-
sents reconstructed images with identical noise levels across four
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permittivity, with the 8-electrode ECT sensor and four algorithms.

algorithms based on a single ECT measurement. Furthermore,
when comparing the results measured with the 8-electrode and
12-electrode ECT sensors, the noise effect on the average solids
fraction seems more pronounced with the 8-electrode ECT sensor
than with the 12-electrode ECT sensor. This is likely because more
capacitance values are obtained from the 12-electrode ECT mea-
surements, decreasing the uncertainty when reconstructing the
normalized permittivity distributions.

Tables S4 and S5 provide additional results of the required ¢ that
ensure a probability greater than 0.999 for the relative error to be
smaller than the pre-specified threshold. The results show that the
required ¢ values for comparing the relative error of the average
normalized permittivity of each frame are lower than those for
comparing the Pearson correlation coefficient of normalized
permittivity distributions, as shown in Tables S2 and S3. For
instance, Table S6 shows the corresponding Pearson correlation
coefficients that ensure the same probability when the relative
error threshold is specified. As seen in Table S6, the corresponding
correlation coefficients are smaller than the required values.
Consequently, a higher ¢, representing a stricter noise restriction, is
required when comparing the similarity of solids fraction

distributions. This phenomenon occurs because the fluctuations in
the solids fraction of individual pixels induced by noise are coun-
teracted when calculating the average solids fraction for each
frame. This is confirmed by examining the distribution of errors in
the solids fractions of 3228 pixels in one frame, as depicted in
Fig. S13. The distribution illustrates that errors are alleviated when
averaging all pixel values.

3.3. The effect of noise on single-pixel value measurements

The solid fraction over each pixel is important as it determines
the dynamic flow pattern [24]. Therefore, evaluating the noise ef-
fect on pixel values is crucial. As shown above, we have discussed
the noise effect on the average solids fraction of each frame using
the relative error of average solids fractions as a parameter, as
described in Eq. (12). Similarly, we also studied the noise effect on
the single pixel value based on the relative error of the solids
fraction of individual pixel with and without noise. We analyzed
50000 frame data sets, and each frame contains 3228-pixel values.
Fig. 10 presents the probabilities of the relative error of solids
fraction for each pixel being below pre-specified thresholds against
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Fig. 8. Changes in the probability of ensuring the relative error of frame-based average solids fraction is smaller than designed thresholds with ¢, with the 8-electrode ECT sensor

and four algorithms.

¢ for 8-electrode ECT measurements. It should be emphasized that
the noise effect on the frame average solids fraction is mitigated by
averaging pixel values, while pixel solids fraction measurements
require higher ¢. For instance, with 40 dB of ¢, the probability of
achieving a relative error of frame-based average solids fraction
smaller than 2% exceeds 0.999, while the probability of achieving a
relative error of pixel-based solids fraction smaller than 2% exceeds
0.974 for the 8-electrode ECT measurements with the LBP algo-
rithm. In addition, we included the results obtained with the 12-
electrode ECT sensor in Fig. S14. It is also found that the noise ef-
fect appears to be more sensitive for the 8-electrode ECT sensor
than for the 12-electrode ECT sensor due to the decrease in un-
certainty when reconstructing the normalized permittivity distri-
butions by the 12-electrode ECT sensor. Additionally, we found that
the impact of noise does not exhibit a clear trend with the locations
or solids fraction values. Fig. S15 presents four typical solids fraction
distributions and corresponding relative error distributions ob-
tained using the 12-electrode sensor and the adaptive projected
Landweber algorithm. To ensure consistency in our plots, we
normalized the relative error with the maximum value of each
corresponding frame. This approach does not alter the distribution

of the relative error. As shown in Fig. S15, the relative error distri-
bution appears random across the pixels and does not exhibit a
clear correlation with the solids fraction value. This can be attrib-
uted to the random addition of noise, leading to random variations
in pixel values. Furthermore, Tables S7 and S8 present additional
findings regarding the noise level requirements. These tables pro-
vide information on the probability threshold necessary to ensure
that the relative error of pixel values remains below a predefined
threshold.

3.4. The effect of noise on bubble size measurements

Bubble size in fluidized beds, which is related to gas-solids
contact efficiency, is an essential parameter for measuring fluid-
ized bed characteristics [31]. The bubble size of a fluidized bed can
be measured by the ECT sensor by first identifying if a bubble is
present on the middle axial plane, then selecting a threshold to
distinguish between the bubble and emulsion phases, and finally
calculating the bubble size and associated characteristics. A
detailed description of this process can be found in previous pub-
lications [14,32]. Therefore, the threshold selection is critical for
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Fig. 9. Reconstructed images with identical noise levels across four algorithms, based on a single ECT measurement. r is the correlation coefficient, and E,e denotes the relative

error.

bubble size measurements. Du et al. [25] summarized different
methods for determining the threshold based on the probability
density function (PDF) curves of local solids fraction time signals. In
this work, we first investigated the impact of noise on the PDF
curves of the local solids fraction time signals with limited noise
effects. Fig. S16 displays the PDFs corresponding to designated ¢ as
referenced in Table S7. As depicted in Fig. S16, it is evident that the
constrained noise has minimal impact on the PDF curves. Conse-
quently, distinguishing between the bubble and emulsion phases
becomes more straightforward.

Recognizing the limited influence of constrained noise on the
PDF curves, it is rational to infer that this noise also has little effect

on fluidized bed characteristics, particularly in terms of discrimi-
nating between solids and bubbles, such as bubble recognition and
bubble size measurements. To validate our assumption, we
computed the normalized error of the bubble area to assess the
noise effect on bubble size measurements, as shown in Eq. (13).

Are = |(An0ise *A) /Acolumn| (13)

where Apoise and A represent the bubble area with and without
noise effects, respectively, Acolumn iS the area of the cross-section of
measurement zones, which normalizes the comparison between
different bubble sizes. We also obtained the requirement of the
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Fig. 10. Changes in the probability of ensuring the relative error of pixel solids fraction is smaller than designed thresholds with ¢, with the 8-electrode ECT sensor and four

algorithms.

probability of ensuring the normalized error of measured bubble
size is smaller than designed thresholds with ¢, as shown in Fig. 11.

Fig. 11 illustrates that the impact of noise on bubble size mea-
surements diminishes with the increase in ¢, and a higher ¢ is
required for a stricter requirement of normalized error. It is also
observed that the impact of noise on bubble size measurements is
compromised compared to its effect on single pixel value mea-
surements, consistent with the earlier discussion. Additionally, it is
noted that the noise effect increases with the rise in algorithm
complexity, aligning with the findings mentioned earlier. It is worth
noting that the curves we obtained are not smooth. This is because,
in the analysis of 50000 frames of data, there are approximately
1000 frames in which bubbles can be analyzed. However, this does
not affect the overall trend. From another perspective, frames with
bubbles consistently correspond to a lower average solids fraction
and a higher fluctuation in solids fraction distribution, which re-
duces the noise effect on solids fraction distribution according to
Fig. 7 and Fig. S9. Considering that bubble size measurements are
based on the solids fraction distribution of that frame, the decrease
in noise impact on bubble size measurements is also evident.

We also presented the results of the effect of noise on bubble size
measurements in the 12-electrode sensor, as shown in Fig. S17.

3.5. Relationship between noise effect and algorithm selection

When using ECT to measure the distribution of multiphase flow,
the limited number of capacitance values compared to the recon-
structed pixels allows us to obtain images that approximate the true
distribution, leading to various algorithms developed to enhance
accuracy and calculation speed [4,5]. However, due to the absence of
true images, it is difficult to decouple the effects of algorithms and
noise on the reconstructed images by comparing them to the true
distributions. Similarly, the objective of this study is to simulate the
impact of noise, commonly in real gas-solids fluidized bed mea-
surements, on reconstructed images and other characteristics,
compared to those obtained without noise interference under spe-
cificalgorithms. Therefore, we referred to the work of Yang and Peng
[4] and selected four different types of algorithms to examine the
measurement reliability under specific algorithms and noise inter-
ference (compared to measurements without noise).
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Fig. 11. Changes in the probability of ensuring the normalized error of bubble size smaller than designed thresholds with ¢, with the 8-electrode ECT sensor and four algorithms.

Bubble threshold: 0.3.

Additionally, we obtained images based on these four algo-
rithms with the same equivalent signal strength, using the same
measurement capacitance vector, as shown in Fig. 9. By comparing
these images, we gain a more intuitive understanding of algorithm
selection and the effects of noise.

As shown in Fig. 9, the reconstructed images generated by
different algorithms display noticeable variations. According to the
previous studies, the modified Tikhonov, simultaneous iterative
reconstruction, and adaptive projected Landweber algorithms
achieve higher reconstruction accuracy than the LBP algorithm,
with the adaptive projected Landweber algorithm producing im-
ages closest to the true distribution [27,33]. Moreover, all algo-
rithms introduce distortions to the noise-free images when noise is
present. As the ¢ increases (i.e., as the noise level decreases), the
impact of noise is progressively reduced, leading to noisy images
that increasingly approximate the reconstructed images in the
absence of noise.

Furthermore, it can be observed that as the complexity of the
algorithm increases, particularly for the LBP and the adaptive
projected Landweber algorithms (with the Ilatter being a
continued iteration of the former's results), the latter shows a
greater distortion of the noise-free reconstructed images under

the same noise intensity. This is primarily due to the iterative
process further amplifying the impact of noise. We also obtained
that the details in the reconstructed images become more pro-
nounced as the complexity of the algorithms increases, leading to
an increase in frame-based average solids fraction (average
normalized permittivity).

4. Conclusions

In this work, the effect of noise on the performance of ECT for
fluidized bed characteristics measurements was analyzed through
statistical methods. The noise following the Gaussian distribution
was added to the reference data at various levels. The ¢, which
defined the noise level, was used to evaluate the noise impact. This
definition ensures that the results obtained can directly assess the
ECT performances, given that ¢ equals the SNR of packed beds. The
results demonstrate that the noise effects on accurately measuring
the average solids fraction of individual frames are lower than those
needed for accurately measuring solids fraction distributions and
single-pixel values. This is because noise-induced fluctuations in
the solids fraction of individual pixels are compromised when
computing the frame average solids fraction. Furthermore, the 12-
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electrode sensor requires a lower SNR (e.g. 10 dB lower) than that of
the 8-electrode sensor to achieve the same accuracy in frame-based
average solids fraction measurements. The fluctuation of solids
fraction in fluidization usually reduces the SNR requirement (e.g. by
14 dB), especially with the adaptive projected Landweber algo-
rithm. The impact of noise on bubble diameter measurement is
relatively small. For 8-electrode and 12-electrode sensors, a SNR
greater than 40 dB during the fixed bed phase ensures that the
measurement error for bubble size remains below 2%. Conse-
quently, the statistical analysis in this work can evaluate the noise
effect on the measurement of fluidized bed characteristics and
guide the design of ECT sensors in fluidized beds and other ECT
measurements.
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Nomenclature

Symbols

A bubble area

C raw capacitance

g normalized permittivity distribution of each frame
N number of pixels

Q number of frames

S pixel area

6 solids fraction distribution of each frame
v correlation coefficient

0 solids fraction distribution of packed bed
A normalized capacitance

g standard deviation

1) equivalent signal strength

Superscripts and Subscripts

e error due to the effect of noise
H high-permittivity calibration

L low-permittivity calibration

n noise signal

noise parameter with noise effect
ns signal with noise effect

s signal without noise effect

re relative error with noise effect

- time average
average in reconstruction
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