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With the continuous advancement of the industrialized methanol-to-olefins (MTO) process and a
profound understanding of its mechanism, designing MTO catalysts to enhance light olefin yields
and flexibly regulate product distribution has emerged as a significant challenge. Data-driven mod-
eling allows chemists to anticipate reaction trends and outcomes. However, for models to be in-
structive for specific chemical issues, chemists must collect experimental data, encode the relevant
variables and retrain specialized models. In this work, we demonstrate how to use a machine
learning (ML) workflow to discover a potential MTO zeolite catalyst. An MTO database was built, on
which over 20 types of ML models were trained, followed by their evaluation and experimental
validation. The decision rules for high selectivity were extracted, facilitating the targeting of poten-
tial MTO catalysts and the understanding of MTO reaction mechanism. A rapid prediction of optimal
MTO evaluation conditions and results for a given zeolite catalyst was also realized, greatly saving
the cost of trial and error. In particular, a special MTO catalyst with high initial ethene selectivity
over 60% was found, demonstrating the effectiveness and capability of ML techniques.
© 2026, Dalian Institute of Chemical Physics, Chinese Academy of Sciences.
Published by Elsevier B.V. All rights reserved.

1. Introduction

synthesis of molecular sieves for their catalytic applications
remains a major challenge due to the lack of theoretical guid-

Molecular sieve-catalyzed chemical reactions and industrial ance. As a prime example, the methanol-to-olefins (MTO) reac-
processes have created enormous economic value in industrial tion catalyzed by the molecular sieve catalyst represents an
manufacturing and daily life [1,2], but the rational design and important catalytic pathway for the production of light olefins
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from non-petroleum sources [3,4]. Since the world’s first com-
mercial MTO plant was put into operation in China in 2010, the
total effective capacity of the sectors has exceeded 20 million
tons/year [5]. The regulation of light olefin selectivity and cat-
alyst lifetime has reached an optimal balance that is difficult to
break through [6]. However, it is still highly desirable to modify
the product distribution according to the fluctuating market
demand and retard the carbon deposition rate, so that the eco-
nomic efficiency of MTO technology can be further improved,
and the goals of carbon peaking and carbon neutralization can
be realized [7].

MTO is a typical shape-selective catalytic reaction. The three
classes of shape-selectivity, including selection of the reactants,
transition states, and products are all strongly influenced by
the catalyst used. An extensive screening of MTO catalysts with
different topologies (channels/cavity networks and dimen-
sions; window openings providing access to internal cavities),
compositions (number and distribution of acidic sites, defects),
and morphologies (crystal dimensions, micro- and mesoporos-
ity) has been performed over the last four decades [8]. Inter-
estingly, the selectivity limits are difficult to overcome by in-
fluences other than changing the zeolite topology [9-11]. As
verified, medium-porous 10-membered ring (MR) MFI (ZSM-5)
[12,13] and large-porous 12-MR BEA [14,15] and CON [16]
catalysts can obtain high propene selectivity by modifying the
acidity and increasing the reaction temperature to intensify the
olefins-based cycle and cracking reaction. But the yield of eth-
ene is always much lower than 8-MR zeolites such as SAPO-34
[17], SAPO-18 [18], SSZ-13 [19], and SSZ-39 [19] due to the
insufficient shape selectivity on light olefins by 10- and 12-MR
windows. The shape and size of 8-MR pore openings of mi-
croporous zeolite catalysts affect the distribution of C=, C3= and
Cs= light olefins also [20]. In addition, a suitable reaction space
is required for a zeolite catalyst to form and accommodate hy-
drocarbon pool intermediates (HCPs), and the HCPs types are
responsible for the different MTO activity, pathway, and prod-
uct selectivity [21-24]. It is the so-called autocatalysis and “hy-
drocarbon pool” mechanism [25]. To develop a struc-
ture-property relationship between the framework topology
and the MTO light olefin product distribution, a geometric con-
cept of cage-defining ring size has been proposed, which shows
a strong correlation to the light olefin product distributions
with the sizes of polymethyl aromatic intermediate species [9].
As an interesting example, a 8-MR SAPO-14 with a narrow
10-MR sized AFN cage exhibits unexpectedly highest record of
propene selectivity [26,27]. The ultra-narrow 10-MR like AFN
cage and weak acidity allow the MTO reaction occur in an
olefins-based dominant route. Combined with the diffusion
limitation of the flat round 8-MR pore openings, the propylene
selectivity is maximized. Although a considerable amount of
catalytic data and experience has been accumulated
[25,28-30], the mechanism of MTO reaction is still insufficient
to guide the design and preparation of MTO catalysts [31,32]. A
quantitative principle of shape selectivity for MTO zeolite ca-
talysis has been constructed recently [33]. The assembly of
descriptors involved thermodynamics, reaction kinetics and
molecular diffusion within confined zeolite framework is nec-

essary for the MTO modelling, but the collection of these de-
scriptors needs high acquisition cost. It is still expected to cor-
relate the apparent characteristics of molecular sieve catalysts
directly to their MTO catalytic performance.

Artificial intelligence (Al) technology can extract knowledge
from big data and form independent opinions on handling
practical issues [34-37]. To accomplish laborious data mining
tasks, machine learning (ML), one of the most important da-
ta-driven branches of Al, has been developed, which uses ad-
vanced algorithms to analyze data and build reliable relation-
ships. These revolutions have a great impact on traditional
catalysis research and could accelerate the development of
catalysts [38,39]. Using support vector machines and deep
feed-forward neural networks, Zahrt et al. [38] demonstrate
accurate predictive modeling in the chiral phosphoric ac-
id-catalyzed thiol addition to N-acylimines. Nielsen et al. [40]
demonstrates that a random forest (RF) model can accurately
predict reaction outcomes and aid in identifying optimal condi-
tions for new alcohols formation from deoxyfluorination reac-
tions. In addition to organic reactions, Ding et al. [41] tried 16
popular Al algorithms to analyze the features and predict the
performance of the membrane electrode assembly (MEA) in
proton-exchange membrane fuel cells (PEMFCs), where the
decision tree (DT) and the extreme gradient boosting machine
classifier (XGBoost) showed good accuracy in determining the
key factors for high performance MEA, and the artificial neural
network (ANN) showed the best accuracy in predicting the
maximum power density. A DT ML model was also constructed
and used to evaluate the relationship between the characteris-
tics and the NOx removal efficiency of zeolite-based SCR cata-
lysts at low temperatures [42]. The ML methods are very well
suited to replace the intuition-based approaches traditionally
used to guide experiments, and have also been developed to
process inorganic synthesis data and guide the synthesis of
new materials including oxides [43], MOFs [34,44], and zeolites
[37,45-47].

The molecular sieve-catalyzed MTO reaction has been stud-
ied for more than 30 years, and a large amount of experimental
data has been accumulated. It is reasonable to build a database
and learn from it by using ML technology [48]. The complicated
MTO reaction mechanism can be directly ignored to establish
reliable models by locking the structural parameters and phys-
icochemical properties of molecular sieve catalysts, and to pre-
dict the possible catalytic performance. Herein, we construct a
zeolite-catalyzed MTO reaction database to train ML models
and search for potential MTO catalysts. The MTO reaction
mechanism can be better understood by using interpretable ML
models. Decision rules for potential MTO zeolite catalysts were
meanwhile extracted, and experiments were conducted to ver-
ify the reliability and accuracy of the ML-model predictions. In
particular, a unique MTO catalyst with high initial ethene selec-
tivity has been discovered under the guidance of ML. Our work
demonstrates that ML, as an effective new tool, can help to
break through traditional cognition and experience, bringing
new opportunities for zeolite catalyst research and develop-
ment.
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2. Experimental
2.1. Materials

All reagents are commercially obtained without further pu-
rification, including sodium hydroxide (NaOH, 96 wt%, Tianjin
Guangfu Reagent Co., Ltd., Tianjin, China), sodium aluminate
(NaAlOz, Alz03 = 41%, Sinopharm Chemical Reagent Co., Ltd,,
Shanghai, China), N,N,N-Trimethyl-1-adamantammonium hy-
droxide hydroxide (TMAdaOH, 25 wt%, Shanghai Macklin Bio-
chemical Technology Co. Ltd., Shanghai, China) and col-
umn-layer chromatographic silica gel (SiO2, 99 wt%, Qingdao
Chengyu Chemical Co., Ltd., Shandong, China).

2.2. Syntheses

The typical synthesis procedure of SSZ-13 was as follows.
Sodium hydroxide was added to an aqueous solution contain-
ing TMAdaOH and deionized water under stirring. After a clear
solution is obtained (about 10 min), column-layer chromato-
graphic silica gel was further added and stirred for 4 h. The
final gel with a molar composition of 100 SiO2: 0.33/1.25 Al203:
3.5 Naz20: 1000 H20: 16 TMAdaOH was transferred to a Tef-
lon-lined stainless-steel autoclave and crystallized at 160 °C for
2 d. The product was collected by filtration, washed three times
with deionized water, and dried at 100 °C for 24 h. The proton
forms of the zeolites were obtained by triple ion-exchange of
the calcined zeolite with a 1 mol L-1 NH4Cl solution at 80 °C for
2 h and calcination in air at 550 °C for 4 h.

2.3. Characterizations

The powder X-ray diffraction (PXRD) data used for the
phase identification were collected on a PANalytical X'Pert PRO
X-ray diffract meter using the Cu K. radiation (A = 1.54059 A),
operating at 40 kV and 40 mA. The inorganic elemental compo-
sitions of the solid samples were measured with Philips
Magix-601 X-ray fluorescence (XRF) spectrometer. The crystal
morphology was observed using a scanning electron micro-
scope (Hitachi SU8020). The textural properties of the calcined
samples were measured by Nz sorption at =196 °C on a Mi-
cromeritics ASAP2020 volumetric adsorption analyzer. Prior to
the measurement, the sample was degassed at 350 °C under
vacuum for 4 h. The total surface area was evaluated based on
the BET equation. The micropore surface area and micropore
volume were calculated using the t-plot method.

2.4. Catalytic tests

Methanol-to-olefin (MTO) reaction was performed in a
quartz tubular fixed-bed reactor at atmospheric pressure. 0.3 g
of catalyst (40-60 mesh) was loaded in the quartz reactor and
activated at 550 °C in a N2 flow of 30 mL min-! for 30 min be-
fore starting each reaction run, and then the temperature was
adjusted to reaction temperature as required. The methanol
was fed by passing the carrier gas through a saturator contain-
ing methanol and was mixed with empty carrier gas, which

gave a desired WHSV. The reaction products were analyzed
using an online gas chromatograph (Agilent GC 7890N),
equipped with a flame ionization detector (FID) and a Plot-Q
column. The conversion and selectivity were calculated on the
basis of CHz. Dimethyl ether (DME) was considered to be a re-
actant in the calculation.

General introduction of ML methods can be found in Sup-
porting Information.

3. Results and discussion
3.1. Database construction and curation

Fig. 1 presents a pipeline schematic of extracting and com-
bining zeolite-catalyzed MTO data. Parts of the structural pa-
rameters of zeolites, including the largest ring size (LRS),
framework density (FDsi), channel dimension (CD), maximum
diameter of a sphere that can diffuse along the a, b and c direc-
tions (MDq, MDs, MD(), and maximum diameter of a sphere that
can be entrapped (MD;), were first extracted from the Interna-
tional Zeolite Association (IZA) database [49]. All of these pa-
rameters are considered as important inputs since the MTO
activity and selectivity varies with the cavity and channel ar-
chitectures [50]. Then CrossRef searching and literature infor-
mation extraction were conducted (Table S1 and Table S2).

Various physicochemical parameters of zeolite catalysts, in-
cluding whether modified or not (Mod.), acid strength (AS) and
density (A/T), and crystal size (CS), were collected from litera-
tures to describe more details of molecular sieve catalysts.
Since the acid strength (AS) of SAPO molecular sieves is typi-
cally weaker than that of aluminosilicate zeolites, we tentative-
ly classified AS into two types: the aluminosilicate type (as-
signed a value of 1) and the SAPO type (assigned a value of 0).
The acid amount is associated with both the incorporation level
and environments of the respective atoms, where the relevant
atoms refer to framework Al atoms for aluminosilicates and
framework Si atoms for SAPOs. Herein, atomic environments
are not considered for the present study, primarily due to the
difficulties in their characterization and description. Acid den-
sity is quantified using the A/T ratio, which is uniformly de-
fined as the molar ratio of Al atoms (for aluminosilicates) or Si
atoms (for SAPOs) to the total number of normalized frame-
work atoms (T), ignoring their specific positions. Reaction
temperature (RT), time on stream (TOS) and weight hourly
space velocity of methanol (WHSV) are also taken as inputs.
Methanol conversion, selectivity towards ethene and propene
were collected as outputs. Since we focus on exploring more
structural possibilities in MTO molecular sieve catalysts, the
catalytic data over various molecular sieves are tried to keep
balance. And the redundant reports on several MTO popular
molecular sieves such as CHA, AEI, and MFI zeolites, were ex-
cluded. In total, 69 papers were filtered and selected from more
than 70 thousand journal articles covering 41 type IZA codes,
over 80 type molecular sieve materials, and more than 6000
MTO data points (Table S3 and Fig. S1). The distributions of
categorical variables and units are listed in Table 1 and Figs.
S2-510. Given the significant imbalance in the data, the data
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Fig. 1. Schematic for curating the datasets: extracting structural parameters of zeolites from the IZA database, searching for MTO catalytic results of
different zeolites from published papers, downloading the papers, and mining text, tables and graphs for reaction conditions and catalytic results.

needs to be randomly split for a sufficient number of times
during the training of ML models to avoid any potential bias. In
addition, ensemble methods, such as RF and XGBoost, will be
employed particularly in ML model training, as these methods
exhibit robustness to imbalanced data at the algorithmic level.
A schematic diagram on some parameters and the correlation

Table 1
The type, name and range of the variables in the MTO database.

Variables Name of variables/units  Range/counts
catalyst 0/5463
property Mod. 1/1273
AS 0 (SAP0)/1959
1 (zeolite) /4777
AJT 0-1
FDs;/T/10004 [3] 12.80-19.70
8-MR /4159
10-MR/1843
LRS 12-MR/712
18-MR/22
Input MD./A 127-7.35
variables MD,/A 1.49-7.35
MD./A 1.53-11.20
MD;/A 5.25-11.74
1D/436
CD 2D/1421
3D/4879
CS/pm 0.02-5.00
reaction RT/°C 270-700
conditions WHSV/h-! 0.35-48.00
TOS/min 0-30156.92
methanol conversion/% 0.00-100.00
Output Sethene/% 0.00-68.61
variables Soropenc/% 0.00-68.90
Seamvca=/% 0.00-92.21
P/E 0.00-37.37

heatmap of all input features are depicted in Fig. 2. The colline-
arity effects may be present, as the absolute values of some
correlation coefficients are higher than 0.5. Therefore, some
traditional statistical linear models are also considered to
compare with the ML models.

3.2. Classification of conversion

A classification method has to be used to handle the conver-
sion data, since the points with 100% conversion are signifi-
cantly more than those with other values (Fig. S11). The value
of 98% was thus used to categorize the data into two groups,
resulting in 2621 and 3553 samples labeled as “High (= 98%)”
and “Low (< 98%)”, respectively. 20 kinds of ML algorithms
were tried. As shown in Fig. 3, all the tree-based learning
methods perform well with AUC above 0.9. In particular, the
random forest (RF) classifier, the extreme gradient boosting
(XGBoost), the CatBoost classifier, the extra trees (ET), and the
light gradient boosting (LGB) show AUC metrics equal to or
greater than 0.96. Comparatively, these ensemble methods are
more robust to imbalanced data and more suitable for analyz-
ing the MTO issue. When making decisions, decision trees
mainly split data based on local feature rather than the overall
sample distribution. Even if the overall data is imbalanced, the
sample distribution within the local space may be relatively
balanced, enabling the decision tree to better capture the char-
acteristics of the minority class. Ensemble methods, such as RF,
further enhance the ability to identify the minority class by
aggregating the votes or weighted averages of multiple decision
trees, thereby reducing the bias of a single tree. The blending
and stacking methods are procedures designed to increase the
predictive performance by blending or combining the predic-
tions of multiple ML models, received the highest AUC score of
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aluminosilicate (T refers to the sum of framework atoms [T atoms]); Mod.: 1 for modified and 0 for unmodified. (b) The correlation heatmap of all

inputs in the MTO dataset.

0.98. The optimal tuning parameters of six representative
methods are listed in Table S4. Further evaluation of these
methods by the other metrics confirms the better performance
of the ensemble learning methods, as shown in Table S5 and
Figs. S12-S16. A confusion matrix was performed by the stack-
ing classifier on the entire dataset to assess its quality. As seen
in the inset of Fig. 3 and Table S6. An accuracy of 97.2% indi-
cating a weighted precision of the method that would be truly
reliable when faced with new samples in real-world situations.
Note that the classification methods do not provide a complete
S-shape conversion curve as a function of TOS, but only wheth-
er or not the conversion is greater than 98% at a given reaction
time. We therefore consider the catalyst to be deactivated if
there are three consecutive conversion points showing “low”.
The decision tree (DT), as a strong interpretable model,

presents decision rules and possible outcomes in the form of a
tree graph which can clearly show the catalytic behavior of a
zeolite in MTO reaction by combining different variables.
Herein, the DT classification (Fig. 4 and Table S4) with a satis-
factory prediction ability (AUC = 0.90) was used to compre-
hend the essential relationship between the inputs and conver-
sion. As shown on the right side of Fig. 4, the root node MDy
divides the data into two parts. Some of the typical leave nodes
have been circled. It is clear that the “High” results are more
when follows the rule of MD; > 4.335 A and RT > 375 °C (red
circles). High WHSV (> 5.425 h-1) or long TOS (>5571.632 min)
can even have opportunities to receive “High” results. On the
contrary, “Low” results are more likely when MD) < 4.335 A,
and it’s hard for TOS to last 192.837 min. It should be noted
that 4.335 A is the maximum sphere diameter that can diffuse
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along the 8-MR channels, examples are known as LTA and ITE
topologies with the 8-MR size of ca. 4.1 A. The MDy of 4.46 A for
ZSM-5 represents the smallest critical sphere diameter passing
through 10-MR channels. The catalytic lifetime of ZSM-5 is sig-
nificantly prolonged [51], revealing the positive contribution of
the approximately 0.4 A widened orifice on conversion. When
MD5 < 4.335 A, MD; and A/T are additional important factors
which need to be modified especially for high conversion. Com-
bined with the results of the exit nodes, MD; should not be too
large (< 9.455 A), and A/T should not be too low (> 0.008). The
feature importance analysis given by DT classification provides
a comprehensive comparison for these impact factors. Accura-
cy is recognized as one of the best criteria for accomplishing
feature selection. The greater the Accuracy, the stronger the
discrimination ability of the corresponding features. As shown
on the left side of Fig. 4, the top two important features for zeo-
lite are A/T and MD» followed by CS and MD.. It suggests that
acidity and channel size are the basic requirements for a zeolite
to catalyze MTO reaction. It is a popular way to prolong the
catalytic lifetime by decreasing the crystal size of zeolite cata-
lyst [6,18,52-54]. The validity of this strategy is rationally con-
firmed from the perspective of data analysis. The importance of
cage size (MD;) for high conversion is less concerned although
cavity-controlled methanol conversion over zeolite catalysts
has been well discussed [55,56]. According to the previous
experience, the formed hydrocarbon species (HCPs) are re-
sponsible for the activity, selectivity and deactivation of the
catalyst material, which change with reaction temperature (RT)
[57], acidity (A/T and AS) [55] and reaction space (MD;)
[21-24]. It is reasonable to assume that the appropriate cavity
size matching the A/T and RT could determine the type of HCPs
formed, and thus control the catalytic capacity for methanol
conversion. An attractive method to synthesize zeolites with a
molecular-recognition MDi is to use organic structure-directing
agents that mimic the transition state of preestablished reac-
tions to be catalyzed [58]. More effective methods of synergistic
regulation of channel and cavity size, crystal morphology and

acidity (chemical composition) for zeolites are expected to be
developed. Comparatively, the previous mechanism research
using comparative experiments or theoretical simulation and
calculation usually needs to simplify the variables as much as
possible to facilitate the understanding of a certain impact fac-
tor [59-62]. DT classification has indeed acquired the intelli-
gence to identify the most influential parameters on MTO con-
version through data-driven, which even form a very compre-
hensive summary and certain clues for catalyst research.

3.3.  Regression of selectivity

The continuous product distribution in the MTO data ena-
bles regression analysis. The selectivity of ethene plus propene
are interrelated during the entire reaction process (Fig. S17).
Therefore, instead of considering them individually, we took
their sum (Sc,=+cs=, Fig. S18) and ratio (P/E, Fig. S19) into ac-
count to construct a joint distribution subject to the following
constraint. The Box-Cox transformation [63] is conducted to
improve the Gaussianity of the data distribution (Figs. S20 and
S21) for enhancing their performance of a ML algorithm.

Scs+c5 = Sethene (%) + Spropene (%) < 1,
Spropene” (%)

{ Seene )

Twenty-three regression methods were trained and evalu-
ated using four different metrics (MAE, RMSE, R2 and RMSLE),
to determine which model provided fits best. The R? value (co-
efficient of determination) is a widely used indicator that takes
values between 0 to 1. The closer the value is to 1, the better
the model fits the data. As depicted in Figs. 5(a) and 5(b), the R2
values of all the tree-based ensemble learning methods, such as
RF, ET and XGBoost, are close to 1. In contrast, there is a signif-
icant drop in R? values after Decision tree (DT, with R? of 0.88
for Sc,=+c;= and 0.87 for P/E) and Gradient Boosting Regressor
(GBR, with R2 of 0.85 for Sc,~+c;= and 0.88 for P/E). This indi-
cates that the tree-based methods outperform other methods.
These results are consistent with those obtained from other
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these methods. The ML methods before the gray line are better. The training and test sets of Sc,=+c;= (¢) and P/E (d) by Stacking Regressor.

evaluation indicators, like MAE, RMSE and RMSLE, where the
smaller values are more favorable (Figs. 5(a) and 5(b), and
Tables S7-S10). The Blending and Stacking methods can har-
ness the capabilities of the well-performing methods men-
tioned above, and they exhibit better performance than any
single one. The predictive capabilities of the Stacking regressor
for Sc,=+c;= and P/E are shown in Figs. 5(c) and 5(d), respec-
tively. The similar R? values exceeding 90% for both training
and test sets confirm the high reliability of the models and in-
dicate the minimal overfitting of the data. For the P/E ratio,
certain data points in Fig. 5(d) deviate markedly from the ideal
trend line, which is primarily attributed to the skewed distribu-
tion of P/E data. It is highly desirable to supplement more rel-
evant data and explore more appropriate descriptors in the
future.

The DT regression aids in identifying the most universal in-
put features necessary for achieving a high Sc,=+c;=, which offers
some interpretability and provides guidance regarding our
concerns. As depicted in Fig. 6(a), all data points with an Sc,=+c;=
above 80% (marked by blue lines) correspond to cases of LRS <
9 and MD; < 7.71 A. The optimal range for MD; is between
7.35-7.71 A&, and an A/T ratio < 0.105 is also preferable. In
contrast, the parts of MD; > 7.71 &, as well as the branch of LRS
> 9 (marked by red lines) lead to more Sc,=+c;= less than 63%.
When LRS exceeds 9, an A/T ratio less than 0.01 becomes more
crucial as it leads to an Sc,=+cs= higher than 50%. In the feature
importance analysis (Fig. 6(b)), LRS is the most important pa-
rameters as expected, and the A/T and the MD; are two other
significant factors influencing Sc,=+c;=. SHAP plots (Fig. 6(c))
demonstrate that a lower A/T ratio, smaller LRS and MD; have
a positive effect on Sc,=+c;=. Based on the above analysis, zeolite
with parameter combination of LRS <9, A/T < 0.01, and MD; in

the range of 7.35-7.71 A might possess potential characteris-
tics for achieving a high Sc,=:c;=. Checking the IZA database
found that seven topologies including AEI [64,65], AWW
[66,67], AFT [68,69], AFX [70-72], CHA [73-76], DDR [77,78],
and SFW [79] meet these structural criteria roughly. The cur-
rent synthetic status of these molecular sieves is listed in Table
2. It can be seen that to synthesize these materials with low
acid density (0 < A/T < 0.01), is a main challenge at present.
Noting that the current selectivity analysis did not correlate
with conversion, a relationship analysis between olefin yields
and discrete input variables was further carried out. The re-
sults are presented in the violin plots of Fig. S22. The crucial
input variables for an ideal MTO catalyst are further elucidated.
Based on the experimental data obtained thus far, 8-MR (LRS =
8) SAPO materials (AS = 0) with three-dimensional channels
(CD = 3) will yield higher amounts of light olefins, and the mod-
ification of zeolites has minimal impact on the results. This
conclusion is consistent with the fact that SAPO-34 molecular
sieve with CHA structure is the optimal MTO catalyst currently.
Besides achieving a high selectivity of ethene plus propene,
attaining high selectivity for either ethene or propene alone is
also appealing yet challenging. There are 3274 P/E data points
in the range of 1.0-2.0 at a RT lower than 437.5 °C, as seen in
Fig. S23(a) marked by blue lines. It represents the most com-
mon MTO product distribution. The P/E data greater than 3.0 is
the second-most common part belonging to condition of RT >
437 °Cand A/T < 0.01, which is marked by red lines. Compara-
tively, the P/E data below 1.0 is quite rare, resulting in the dif-
ficulty for decision rules extraction for enhancing ethene selec-
tivity. RT presents as the most important factor in the feature
importance analysis (Fig. S23(b)), followed by the A/T and the
MD.. However, the effect of RT on the P/E ratio appears uncer-
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tain in the SHAP analysis (Fig. S23(c)), whose importance rank
drops to the 7t herein. This ambiguous result suggests a com-
plex relationship between RT and the P/E ratio. In addition, it
seems that the lower A/T, the higher the P/E.

The above regression analyses reflect the correlation be-
tween structural and physicochemical parameters of zeolite
catalysts and the light-olefins selectivity to the greatest extent,
which are basically consistent with the current recognition
[80]. It is worth noting that these recognitions on MTO were
derived from years involving numerous
well-designed experiments and analyses conducted by re-

of research

searchers. In this work, the similar knowledge can be easily
achieved through the ML analysis of the collected MTO data.
When a large amount of multi-parameter data that is beyond
the analysis ability of human brain comes in quickly and di-

Table 2

Lists of the information on materials belonging to the seven topologies.

Topology SAPOs A/T Zeolites A/T CD

AEI SAPO-18[64] 0-0.1  SSZ-39 [65] 0.1 3

AIPO-22 [66]

AWW apo-gBie7]  ° none - 1

AFT AIPO-52 [68] 0 SSZ-112 [69] ~0.13 3

AFX SAPO-56 [70,71] 0.15-0.2 SSZ-16[72] 0.14 3

CHA SAPO-34[73] 0.05-0.2 SSZ-13 [74-76] 0.02-0.2, 3
0

DDR none —  ZSM-58[77,78] 0.01-0.02, 2
0

SFW none — SSZ-52[79] 0.11 3

rectly (fast and automatic access to experimental and computa-
tional data), ML will be an indispensable tool for efficiently
extracting the underlying rules and correlations.

3.4. Prediction and experimental validation

Data-driven ML analysis has assimilated a substantial
amount of the expertise of MTO chemists. A software Z-MTO-P
V1.1 [81] was thus designed to assist the development of MTO
catalyst. The logic and process of MTO catalyst design and
screening are presented in Fig. S24. An extensive prediction
and screening of zeolite catalysts using it indicates that CHA
remains the most promising candidate for MTO catalysts,
probably due to the limitation of known molecular sieve struc-
ture data. Considering the DT extracted decision rules of LRS <
9, A/T < 0.01, and MD; within 7.35-7.71 A for achieving a high
Sc,=+c35, and the searching results shown in Table 2, the synthe-
sis of microporous high-silica SSZ-13 has become our primary
objective again. Surprisingly, the MTO study on SSZ-13 with a
Si/Al ratio greater than 50 are quite rare [82], and the MTO
data at RT = 450 °C is insufficient [83] although SSZ-13 has
been well studied as a very popular MTO catalyst. This scarcity
can likely be ascribed to negative presumptions about its MTO
performance based on prior experience, like the higher synthe-
sis cost and faster deactivation than SAPO-34. Much effort has
been put into controlling the synthesis cost [76] and morphol-
ogy of SSZ-13 [84,85].
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In this work, an SSZ-13 with a Si/Al ratio of 100 (A/T =
0.01), named SSZ-13-100, was synthesized (Fig. S25) to evalu-
ate its MTO performance. The optimal reaction conditions were
forecast in advance by software Z-MTO-P V1.0 to be 450 °C
with a WHSV of 1.0 h-1. The catalytic results were presented in
Fig. 7(a) and Table S11. Interestingly, the initial selectivity of
ethene plus propene (Sc,=+cs=) is very high (82.6%) at TOS of 3
min, with 100% methanol conversion. The SC2=+C3= quickly
rises to 87.6% at 37 min, accompanied by an unexpectedly high
ethene selectivity of 61.1%. In contrast, the SSZ-13-19 with a
Si/Al ratio of 19 (A/T ratio of 0.05) show a low start (75.4%)
but gradually increased Sc,=+c;= curve reaching to its peak of
82.6% before deactivation (258 min). The highest ethene selec-
tivity of 56.2% also appears before inactivation at 326 min. The
MTO result of SSZ-13-19 is quite typical and similar to the pre-
viously reported results of SAPO-34 and SSZ-13, which is quite
different from those of SSZ-13-100. Although SSZ-13-100
sacrifices part of lifespan, it receives the highest Sc,=+c;= and the
highest ethene selectivity (lowest P/E ratio) in the shortest
reaction time (TOS = 37 min) among the known MTO results up
to now [6,10,24,55,86].

Currently, pre-accumulation carbon technology is widely
adopted to bypass the initial low selectivity stage for higher
olefin yields [87]. The rapid attainment of high Sc,=+c;= furnish-
es inspiration for the design of a new MTO catalyst that does
not necessitate the precoke-deposition step. Additionally, the
harvest of a high ethene selectivity is extremely appealing
regarding to the requirements of precise product regulation. It
is possible to understand the mechanism and design a metha-
nol-to-ethene catalyst based on the findings [26]. Recently, a
water-assisted shape-selective production of ethene in the
MTO reaction was reported by Zhang et al. [88] With the aid of
ML, we have identified a new catalytic material capable of
producing ethene efficiently without any additional assistance.

In addition to SSZ-13, we recently synthesized a high-silica
STT zeolite via a chain rearrangement process of lamellar
Si-MWW zeolite [89]. The structure of STT features both 9-MR
and 7-MR windows without any 8-MR one. Its STT cage (11.7 x
8.1 A?) is located at the intersection of its 7-MR and 9-MR
channels. The corresponding descriptors of STT are as follows:
LRS = 9, FDsi = 17.0 T/1000 A3, CD = 2, MDq = 2.76 A, MD, =

(a)
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1.89 A, MD. = 2.76 A, and MD; = 7.04 A. This zeolite was previ-
ously excluded from our MTO database because its MTO data
was not available before. The successful synthesis of STT allows
us to experimentally validate the generalization ability and
accuracy of the ML models. The Z-MTO-P V1.0 software enables
the prediction of optimal MTO evaluation conditions and the
corresponding results, which exhibit close consistency with
experimental findings, as depicted in Fig. 7(b). These results
confirm the reliability and practicality of the ML models. We
demonstrate ML can be an effective and reliable research tool
for catalysis research.

4. Conclusions

A data-driven ML workflow has been developed for screen-
ing potential MTO catalysts. Tree-based ensemble methods
perform better with prediction accuracy in both conversion
(classification) and light-olefins selectivity (regression) above
90%. The reliability and practicality of the ML models has been
further validated by experiments external to the database.
Based on the decision rules for high selectivity extracted from
ML models, zeolite catalysts should simultaneously possess the
following characteristics: the largest channel size should be
smaller than or equal to 9-membered ring (LRS < 9), and the
maximum diameter of a sphere that can be entrapped in a zeo-
lite (MD;) should be in the range of 7.35-7.71 A. Combined with
the desired acid density of around 1% for the zeolite catalyst
(A/T < 0.01), the available molecular sieves candidates that
meet the above standards are very rare. We thus refocus on
high-silica SSZ-13 (Si/Al = 100) and observe its unexpectedly
high initial selectivity, 87.6% for ethene plus propene at 37 min
time on stream, with a notable ethene selectivity of 61.1%. It
represents the highest level of ethene selectivity in the MTO
reaction. This finding expected eliminate the
pre-carbon-deposition step in the MTO industrial process,

is to
which is specifically designed to bypass the initial stage
characterized by low selectivity.

ML allows us to circumvent the intricate MTO reaction
mechanism and construct reliable models for direct prediction
of potential MTO catalyst candidates, which offers new oppor-
tunities for tackling specific catalyst-related issues. The merits
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Fig. 7. (a) MTO catalytic performance of SSZ-13s with different Si/Al ratios at 450 °C, WHSV of 1.0 h-1. (b) The experimental (solid symbols) and pre-
dicted (hollow symbols) MTO catalytic performance of STT-100 at 450 °C and WHSV of 1.0 h-L. The predicted lifetime is labeled by the gray dotted

line.
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of ML technology, including efficiency, accuracy and adaptabil-
ity, have been fully utilized to curtail labor-intensive laboratory
R&D costs. Nonetheless, we recognize that ML methods rely
heavily on the quantity and quality of data. In the context of
limited data availability, it is arduous for ML to generate inno-
vative predictions. Therefore, it is imperative to integrate the
expertise and intuition of domain experts to attain innovative
outcomes. The automated rapid acquisition of experimental
data, along with the development of precise descriptors, rep-
resents two pivotal directions for future research. Moreover,
the advancement of large language models (LLMs) to reconcile
experimental data, literature data and computational data is
also of substantial significance. We anticipate that artificial
intelligence (AI) will serve as a potent technology, empowering
chemists to overcome a wider array of intricate chemical chal-
lenges in the future, thereby revolutionizing the landscape of
chemistry research.
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HEBEBAFERMFMIER, ERHERELALRE, L EF H266580
“HERFE A, 3100049
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