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 With the continuous advancement of the industrialized methanol-to-olefins (MTO) process and a 
profound understanding of its mechanism, designing MTO catalysts to enhance light olefin yields 
and flexibly regulate product distribution has emerged as a significant challenge. Data-driven mod-
eling allows chemists to anticipate reaction trends and outcomes. However, for models to be in-
structive for specific chemical issues, chemists must collect experimental data, encode the relevant 
variables and retrain specialized models. In this work, we demonstrate how to use a machine 
learning (ML) workflow to discover a potential MTO zeolite catalyst. An MTO database was built, on 
which over 20 types of ML models were trained, followed by their evaluation and experimental 
validation. The decision rules for high selectivity were extracted, facilitating the targeting of poten-
tial MTO catalysts and the understanding of MTO reaction mechanism. A rapid prediction of optimal 
MTO evaluation conditions and results for a given zeolite catalyst was also realized, greatly saving 
the cost of trial and error. In particular, a special MTO catalyst with high initial ethene selectivity 
over 60% was found, demonstrating the effectiveness and capability of ML techniques. 
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1.  Introduction 

Molecular sieve-catalyzed chemical reactions and industrial 
processes have created enormous economic value in industrial 
manufacturing and daily life [1,2], but the rational design and 

synthesis of molecular sieves for their catalytic applications 
remains a major challenge due to the lack of theoretical guid-
ance. As a prime example, the methanol-to-olefins (MTO) reac-
tion catalyzed by the molecular sieve catalyst represents an 
important catalytic pathway for the production of light olefins 
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from non-petroleum sources [3,4]. Since the world’s first com-
mercial MTO plant was put into operation in China in 2010, the 
total effective capacity of the sectors has exceeded 20 million 
tons/year [5]. The regulation of light olefin selectivity and cat-
alyst lifetime has reached an optimal balance that is difficult to 
break through [6]. However, it is still highly desirable to modify 
the product distribution according to the fluctuating market 
demand and retard the carbon deposition rate, so that the eco-
nomic efficiency of MTO technology can be further improved, 
and the goals of carbon peaking and carbon neutralization can 
be realized [7].  

MTO is a typical shape-selective catalytic reaction. The three 
classes of shape-selectivity, including selection of the reactants, 
transition states, and products are all strongly influenced by 
the catalyst used. An extensive screening of MTO catalysts with 
different topologies (channels/cavity networks and dimen-
sions; window openings providing access to internal cavities), 
compositions (number and distribution of acidic sites, defects), 
and morphologies (crystal dimensions, micro- and mesoporos-
ity) has been performed over the last four decades [8]. Inter-
estingly, the selectivity limits are difficult to overcome by in-
fluences other than changing the zeolite topology [9–11]. As 
verified, medium-porous 10-membered ring (MR) MFI (ZSM-5) 
[12,13] and large-porous 12-MR BEA [14,15] and CON [16] 
catalysts can obtain high propene selectivity by modifying the 
acidity and increasing the reaction temperature to intensify the 
olefins-based cycle and cracking reaction. But the yield of eth-
ene is always much lower than 8-MR zeolites such as SAPO-34 
[17], SAPO-18 [18], SSZ-13 [19], and SSZ-39 [19] due to the 
insufficient shape selectivity on light olefins by 10- and 12-MR 
windows. The shape and size of 8-MR pore openings of mi-
croporous zeolite catalysts affect the distribution of C2=, C3= and 
C4= light olefins also [20]. In addition, a suitable reaction space 
is required for a zeolite catalyst to form and accommodate hy-
drocarbon pool intermediates (HCPs), and the HCPs types are 
responsible for the different MTO activity, pathway, and prod-
uct selectivity [21–24]. It is the so-called autocatalysis and “hy-
drocarbon pool” mechanism [25]. To develop a struc-
ture-property relationship between the framework topology 
and the MTO light olefin product distribution, a geometric con-
cept of cage-defining ring size has been proposed, which shows 
a strong correlation to the light olefin product distributions 
with the sizes of polymethyl aromatic intermediate species [9]. 
As an interesting example, a 8-MR SAPO-14 with a narrow 
10-MR sized AFN cage exhibits unexpectedly highest record of 
propene selectivity [26,27]. The ultra-narrow 10-MR like AFN 
cage and weak acidity allow the MTO reaction occur in an 
olefins-based dominant route. Combined with the diffusion 
limitation of the flat round 8-MR pore openings, the propylene 
selectivity is maximized. Although a considerable amount of 
catalytic data and experience has been accumulated 
[25,28–30], the mechanism of MTO reaction is still insufficient 
to guide the design and preparation of MTO catalysts [31,32]. A 
quantitative principle of shape selectivity for MTO zeolite ca-
talysis has been constructed recently [33]. The assembly of 
descriptors involved thermodynamics, reaction kinetics and 
molecular diffusion within confined zeolite framework is nec-

essary for the MTO modelling, but the collection of these de-
scriptors needs high acquisition cost. It is still expected to cor-
relate the apparent characteristics of molecular sieve catalysts 
directly to their MTO catalytic performance. 

Artificial intelligence (AI) technology can extract knowledge 
from big data and form independent opinions on handling 
practical issues [34–37]. To accomplish laborious data mining 
tasks, machine learning (ML), one of the most important da-
ta-driven branches of AI, has been developed, which uses ad-
vanced algorithms to analyze data and build reliable relation-
ships. These revolutions have a great impact on traditional 
catalysis research and could accelerate the development of 
catalysts [38,39]. Using support vector machines and deep 
feed-forward neural networks, Zahrt et al. [38] demonstrate 
accurate predictive modeling in the chiral phosphoric ac-
id-catalyzed thiol addition to N-acylimines. Nielsen et al. [40] 
demonstrates that a random forest (RF) model can accurately 
predict reaction outcomes and aid in identifying optimal condi-
tions for new alcohols formation from deoxyfluorination reac-
tions. In addition to organic reactions, Ding et al. [41] tried 16 
popular AI algorithms to analyze the features and predict the 
performance of the membrane electrode assembly (MEA) in 
proton-exchange membrane fuel cells (PEMFCs), where the 
decision tree (DT) and the extreme gradient boosting machine 
classifier (XGBoost) showed good accuracy in determining the 
key factors for high performance MEA, and the artificial neural 
network (ANN) showed the best accuracy in predicting the 
maximum power density. A DT ML model was also constructed 
and used to evaluate the relationship between the characteris-
tics and the NOx removal efficiency of zeolite-based SCR cata-
lysts at low temperatures [42]. The ML methods are very well 
suited to replace the intuition-based approaches traditionally 
used to guide experiments, and have also been developed to 
process inorganic synthesis data and guide the synthesis of 
new materials including oxides [43], MOFs [34,44], and zeolites 
[37,45–47]. 

The molecular sieve-catalyzed MTO reaction has been stud-
ied for more than 30 years, and a large amount of experimental 
data has been accumulated. It is reasonable to build a database 
and learn from it by using ML technology [48]. The complicated 
MTO reaction mechanism can be directly ignored to establish 
reliable models by locking the structural parameters and phys-
icochemical properties of molecular sieve catalysts, and to pre-
dict the possible catalytic performance. Herein, we construct a 
zeolite-catalyzed MTO reaction database to train ML models 
and search for potential MTO catalysts. The MTO reaction 
mechanism can be better understood by using interpretable ML 
models. Decision rules for potential MTO zeolite catalysts were 
meanwhile extracted, and experiments were conducted to ver-
ify the reliability and accuracy of the ML-model predictions. In 
particular, a unique MTO catalyst with high initial ethene selec-
tivity has been discovered under the guidance of ML. Our work 
demonstrates that ML, as an effective new tool, can help to 
break through traditional cognition and experience, bringing 
new opportunities for zeolite catalyst research and develop-
ment.  
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2.  Experimental 

2.1.  Materials  

All reagents are commercially obtained without further pu-
rification, including sodium hydroxide (NaOH, 96 wt%, Tianjin 
Guangfu Reagent Co., Ltd., Tianjin, China), sodium aluminate 
(NaAlO2, Al2O3 ≥ 41%, Sinopharm Chemical Reagent Co., Ltd., 
Shanghai, China), N,N,N-Trimethyl-1-adamantammonium hy-
droxide hydroxide (TMAdaOH, 25 wt%, Shanghai Macklin Bio-
chemical Technology Co., Ltd., Shanghai, China) and col-
umn-layer chromatographic silica gel (SiO2, 99 wt%, Qingdao 
Chengyu Chemical Co., Ltd., Shandong, China). 

2.2.  Syntheses  

The typical synthesis procedure of SSZ-13 was as follows. 
Sodium hydroxide was added to an aqueous solution contain-
ing TMAdaOH and deionized water under stirring. After a clear 
solution is obtained (about 10 min), column-layer chromato-
graphic silica gel was further added and stirred for 4 h. The 
final gel with a molar composition of 100 SiO2: 0.33/1.25 Al2O3: 
3.5 Na2O: 1000 H2O: 16 TMAdaOH was transferred to a Tef-
lon-lined stainless-steel autoclave and crystallized at 160 °C for 
2 d. The product was collected by filtration, washed three times 
with deionized water, and dried at 100 °C for 24 h. The proton 
forms of the zeolites were obtained by triple ion-exchange of 
the calcined zeolite with a 1 mol L‒1 NH4Cl solution at 80 °C for 
2 h and calcination in air at 550 °C for 4 h.  

2.3.  Characterizations 

The powder X-ray diffraction (PXRD) data used for the 
phase identification were collected on a PANalytical X’Pert PRO 
X-ray diffract meter using the Cu Kα radiation (λ = 1.54059 Å), 
operating at 40 kV and 40 mA. The inorganic elemental compo-
sitions of the solid samples were measured with Philips 
Magix-601 X-ray fluorescence (XRF) spectrometer. The crystal 
morphology was observed using a scanning electron micro-
scope (Hitachi SU8020). The textural properties of the calcined 
samples were measured by N2 sorption at ‒196 °C on a Mi-
cromeritics ASAP2020 volumetric adsorption analyzer. Prior to 
the measurement, the sample was degassed at 350 °C under 
vacuum for 4 h. The total surface area was evaluated based on 
the BET equation. The micropore surface area and micropore 
volume were calculated using the t-plot method. 

2.4.  Catalytic tests 

Methanol-to-olefin (MTO) reaction was performed in a 
quartz tubular fixed-bed reactor at atmospheric pressure. 0.3 g 
of catalyst (40‒60 mesh) was loaded in the quartz reactor and 
activated at 550 °C in a N2 flow of 30 mL min‒1 for 30 min be-
fore starting each reaction run, and then the temperature was 
adjusted to reaction temperature as required. The methanol 
was fed by passing the carrier gas through a saturator contain-
ing methanol and was mixed with empty carrier gas, which 

gave a desired WHSV. The reaction products were analyzed 
using an online gas chromatograph (Agilent GC 7890N), 
equipped with a flame ionization detector (FID) and a Plot-Q 
column. The conversion and selectivity were calculated on the 
basis of CH2. Dimethyl ether (DME) was considered to be a re-
actant in the calculation.  

General introduction of ML methods can be found in Sup-
porting Information. 

3.  Results and discussion 

3.1.  Database construction and curation  

Fig. 1 presents a pipeline schematic of extracting and com-
bining zeolite-catalyzed MTO data. Parts of the structural pa-
rameters of zeolites, including the largest ring size (LRS), 
framework density (FDSi), channel dimension (CD), maximum 
diameter of a sphere that can diffuse along the a, b and c direc-
tions (MDa, MDb, MDc), and maximum diameter of a sphere that 
can be entrapped (MDi), were first extracted from the Interna-
tional Zeolite Association (IZA) database [49]. All of these pa-
rameters are considered as important inputs since the MTO 
activity and selectivity varies with the cavity and channel ar-
chitectures [50]. Then CrossRef searching and literature infor-
mation extraction were conducted (Table S1 and Table S2).  

Various physicochemical parameters of zeolite catalysts, in-
cluding whether modified or not (Mod.), acid strength (AS) and 
density (A/T), and crystal size (CS), were collected from litera-
tures to describe more details of molecular sieve catalysts. 
Since the acid strength (AS) of SAPO molecular sieves is typi-
cally weaker than that of aluminosilicate zeolites, we tentative-
ly classified AS into two types: the aluminosilicate type (as-
signed a value of 1) and the SAPO type (assigned a value of 0). 
The acid amount is associated with both the incorporation level 
and environments of the respective atoms, where the relevant 
atoms refer to framework Al atoms for aluminosilicates and 
framework Si atoms for SAPOs. Herein, atomic environments 
are not considered for the present study, primarily due to the 
difficulties in their characterization and description. Acid den-
sity is quantified using the A/T ratio, which is uniformly de-
fined as the molar ratio of Al atoms (for aluminosilicates) or Si 
atoms (for SAPOs) to the total number of normalized frame-
work atoms (T), ignoring their specific positions. Reaction 
temperature (RT), time on stream (TOS) and weight hourly 
space velocity of methanol (WHSV) are also taken as inputs. 
Methanol conversion, selectivity towards ethene and propene 
were collected as outputs. Since we focus on exploring more 
structural possibilities in MTO molecular sieve catalysts, the 
catalytic data over various molecular sieves are tried to keep 
balance. And the redundant reports on several MTO popular 
molecular sieves such as CHA, AEI, and MFI zeolites, were ex-
cluded. In total, 69 papers were filtered and selected from more 
than 70 thousand journal articles covering 41 type IZA codes, 
over 80 type molecular sieve materials, and more than 6000 
MTO data points (Table S3 and Fig. S1). The distributions of 
categorical variables and units are listed in Table 1 and Figs. 
S2‒S10. Given the significant imbalance in the data, the data 
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needs to be randomly split for a sufficient number of times 
during the training of ML models to avoid any potential bias. In 
addition, ensemble methods, such as RF and XGBoost, will be 
employed particularly in ML model training, as these methods 
exhibit robustness to imbalanced data at the algorithmic level. 
A schematic diagram on some parameters and the correlation 

heatmap of all input features are depicted in Fig. 2. The colline-
arity effects may be present, as the absolute values of some 
correlation coefficients are higher than 0.5. Therefore, some 
traditional statistical linear models are also considered to 
compare with the ML models. 

3.2.  Classification of conversion  

A classification method has to be used to handle the conver-
sion data, since the points with 100% conversion are signifi-
cantly more than those with other values (Fig. S11). The value 
of 98% was thus used to categorize the data into two groups, 
resulting in 2621 and 3553 samples labeled as “High (≥ 98%)” 
and “Low (< 98%)”, respectively. 20 kinds of ML algorithms 
were tried. As shown in Fig. 3, all the tree-based learning 
methods perform well with AUC above 0.9. In particular, the 
random forest (RF) classifier, the extreme gradient boosting 
(XGBoost), the CatBoost classifier, the extra trees (ET), and the 
light gradient boosting (LGB) show AUC metrics equal to or 
greater than 0.96. Comparatively, these ensemble methods are 
more robust to imbalanced data and more suitable for analyz-
ing the MTO issue. When making decisions, decision trees 
mainly split data based on local feature rather than the overall 
sample distribution. Even if the overall data is imbalanced, the 
sample distribution within the local space may be relatively 
balanced, enabling the decision tree to better capture the char-
acteristics of the minority class. Ensemble methods, such as RF, 
further enhance the ability to identify the minority class by 
aggregating the votes or weighted averages of multiple decision 
trees, thereby reducing the bias of a single tree. The blending 
and stacking methods are procedures designed to increase the 
predictive performance by blending or combining the predic-
tions of multiple ML models, received the highest AUC score of 

 
Fig. 1. Schematic for curating the datasets: extracting structural parameters of zeolites from the IZA database, searching for MTO catalytic results of 
different zeolites from published papers, downloading the papers, and mining text, tables and graphs for reaction conditions and catalytic results. 

Table 1 
The type, name and range of the variables in the MTO database. 

Variables Name of variables/units Range/counts 

Input 
variables 

catalyst 
property Mod. 0/5463 

1/1273 

AS 0 (SAPO)/1959 
1 (zeolite)/4777 

A/T 0–1 
FDSi/T/1000Å [3] 12.80–19.70 

LRS 

8-MR/4159 
10-MR/1843 
12-MR/712 
18-MR/22 

MDa/Å 1.27–7.35 
MDb/Å 1.49–7.35 
MDc/Å 1.53–11.20 
MDi/Å 5.25–11.74 

CD 
1D/436 

2D/1421 
3D/4879 

CS/µm 0.02–5.00 
reaction  

conditions 
RT/°C 270–700 

WHSV/h‒1 0.35–48.00 
TOS/min 0–30156.92 

Output  
variables 

 methanol conversion/% 0.00–100.00 

Sethene/% 0.00–68.61 
Spropene/% 0.00–68.90 
SC2=+C3=/% 0.00–92.21 

  P/E 0.00–37.37 
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0.98. The optimal tuning parameters of six representative 
methods are listed in Table S4. Further evaluation of these 
methods by the other metrics confirms the better performance 
of the ensemble learning methods, as shown in Table S5 and 
Figs. S12‒S16. A confusion matrix was performed by the stack-
ing classifier on the entire dataset to assess its quality. As seen 
in the inset of Fig. 3 and Table S6. An accuracy of 97.2% indi-
cating a weighted precision of the method that would be truly 
reliable when faced with new samples in real-world situations. 
Note that the classification methods do not provide a complete 
S-shape conversion curve as a function of TOS, but only wheth-
er or not the conversion is greater than 98% at a given reaction 
time. We therefore consider the catalyst to be deactivated if 
there are three consecutive conversion points showing “low”. 

The decision tree (DT), as a strong interpretable model, 

presents decision rules and possible outcomes in the form of a 
tree graph which can clearly show the catalytic behavior of a 
zeolite in MTO reaction by combining different variables. 
Herein, the DT classification (Fig. 4 and Table S4) with a satis-
factory prediction ability (AUC = 0.90) was used to compre-
hend the essential relationship between the inputs and conver-
sion. As shown on the right side of Fig. 4, the root node MDb 
divides the data into two parts. Some of the typical leave nodes 
have been circled. It is clear that the “High” results are more 
when follows the rule of MDb > 4.335 Å and RT > 375 °C (red 
circles). High WHSV (> 5.425 h‒1) or long TOS (>5571.632 min) 
can even have opportunities to receive “High” results. On the 
contrary, “Low” results are more likely when MDb ≤ 4.335 Å, 
and it’s hard for TOS to last 192.837 min. It should be noted 
that 4.335 Å is the maximum sphere diameter that can diffuse 

 
Fig. 2. (a) Illustration of some inputs including AS (acid strength): 0 for SAPO and 1 for aluminosilicate; A/T (acid density): Si/T for SAPO and Al/T for 
aluminosilicate (T refers to the sum of framework atoms [T atoms]); Mod.: 1 for modified and 0 for unmodified. (b) The correlation heatmap of all 
inputs in the MTO dataset. 

 
Fig. 3. Summary of the AUC for each ML algorithm for classification of methanol conversion. The inset is the performance of classification on the 
whole dataset given by the stacking classifier. 
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along the 8-MR channels, examples are known as LTA and ITE 
topologies with the 8-MR size of ca. 4.1 Å. The MDb of 4.46 Å for 
ZSM-5 represents the smallest critical sphere diameter passing 
through 10-MR channels. The catalytic lifetime of ZSM-5 is sig-
nificantly prolonged [51], revealing the positive contribution of 
the approximately 0.4 Å widened orifice on conversion. When 
MDb ≤ 4.335 Å, MDi and A/T are additional important factors 
which need to be modified especially for high conversion. Com-
bined with the results of the exit nodes, MDi should not be too 
large (≤ 9.455 Å), and A/T should not be too low (> 0.008). The 
feature importance analysis given by DT classification provides 
a comprehensive comparison for these impact factors. Accura-
cy is recognized as one of the best criteria for accomplishing 
feature selection. The greater the Accuracy, the stronger the 
discrimination ability of the corresponding features. As shown 
on the left side of Fig. 4, the top two important features for zeo-
lite are A/T and MDb followed by CS and MDi. It suggests that 
acidity and channel size are the basic requirements for a zeolite 
to catalyze MTO reaction. It is a popular way to prolong the 
catalytic lifetime by decreasing the crystal size of zeolite cata-
lyst [6,18,52–54]. The validity of this strategy is rationally con-
firmed from the perspective of data analysis. The importance of 
cage size (MDi) for high conversion is less concerned although 
cavity-controlled methanol conversion over zeolite catalysts 
has been well discussed [55,56]. According to the previous 
experience, the formed hydrocarbon species (HCPs) are re-
sponsible for the activity, selectivity and deactivation of the 
catalyst material, which change with reaction temperature (RT) 
[57], acidity (A/T and AS) [55] and reaction space (MDi) 
[21–24]. It is reasonable to assume that the appropriate cavity 
size matching the A/T and RT could determine the type of HCPs 
formed, and thus control the catalytic capacity for methanol 
conversion. An attractive method to synthesize zeolites with a 
molecular-recognition MDi is to use organic structure-directing 
agents that mimic the transition state of preestablished reac-
tions to be catalyzed [58]. More effective methods of synergistic 
regulation of channel and cavity size, crystal morphology and 

acidity (chemical composition) for zeolites are expected to be 
developed. Comparatively, the previous mechanism research 
using comparative experiments or theoretical simulation and 
calculation usually needs to simplify the variables as much as 
possible to facilitate the understanding of a certain impact fac-
tor [59–62]. DT classification has indeed acquired the intelli-
gence to identify the most influential parameters on MTO con-
version through data-driven, which even form a very compre-
hensive summary and certain clues for catalyst research. 

3.3.  Regression of selectivity  

The continuous product distribution in the MTO data ena-
bles regression analysis. The selectivity of ethene plus propene 
are interrelated during the entire reaction process (Fig. S17). 
Therefore, instead of considering them individually, we took 
their sum (SC2=+C3=, Fig. S18) and ratio (P/E, Fig. S19) into ac-
count to construct a joint distribution subject to the following 
constraint. The Box-Cox transformation [63] is conducted to 
improve the Gaussianity of the data distribution (Figs. S20 and 
S21) for enhancing their performance of a ML algorithm. 

 
Twenty-three regression methods were trained and evalu-

ated using four different metrics (MAE, RMSE, R2 and RMSLE), 
to determine which model provided fits best. The R2 value (co-
efficient of determination) is a widely used indicator that takes 
values between 0 to 1. The closer the value is to 1, the better 
the model fits the data. As depicted in Figs. 5(a) and 5(b), the R2 
values of all the tree-based ensemble learning methods, such as 
RF, ET and XGBoost, are close to 1. In contrast, there is a signif-
icant drop in R2 values after Decision tree (DT, with R2 of 0.88 
for SC2=+C3= and 0.87 for P/E) and Gradient Boosting Regressor 
(GBR, with R2 of 0.85 for SC2=+C3= and 0.88 for P/E). This indi-
cates that the tree-based methods outperform other methods. 
These results are consistent with those obtained from other 

 
Fig. 4. Feature importance heuristic given by the DT classifier for methanol conversion and visual structure of the DT. Some of the typical leave notes 
mentioned have been highlighted with bule solid (with more “low” points) and red dotted line (with more “high” points) circles. 
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evaluation indicators, like MAE, RMSE and RMSLE, where the 
smaller values are more favorable (Figs. 5(a) and 5(b), and 
Tables S7‒S10). The Blending and Stacking methods can har-
ness the capabilities of the well-performing methods men-
tioned above, and they exhibit better performance than any 
single one. The predictive capabilities of the Stacking regressor 
for SC2=+C3= and P/E are shown in Figs. 5(c) and 5(d), respec-
tively. The similar R2 values exceeding 90% for both training 
and test sets confirm the high reliability of the models and in-
dicate the minimal overfitting of the data. For the P/E ratio, 
certain data points in Fig. 5(d) deviate markedly from the ideal 
trend line, which is primarily attributed to the skewed distribu-
tion of P/E data. It is highly desirable to supplement more rel-
evant data and explore more appropriate descriptors in the 
future. 

The DT regression aids in identifying the most universal in-
put features necessary for achieving a high SC2=+C3=, which offers 
some interpretability and provides guidance regarding our 
concerns. As depicted in Fig. 6(a), all data points with an SC2=+C3= 
above 80% (marked by blue lines) correspond to cases of LRS ≤ 
9 and MDi ≤ 7.71 Å. The optimal range for MDi is between 
7.35‒7.71 Å, and an A/T ratio ≤ 0.105 is also preferable. In 
contrast, the parts of MDi > 7.71 Å, as well as the branch of LRS 
> 9 (marked by red lines) lead to more SC2=+C3= less than 63%. 
When LRS exceeds 9, an A/T ratio less than 0.01 becomes more 
crucial as it leads to an SC2=+C3= higher than 50%. In the feature 
importance analysis (Fig. 6(b)), LRS is the most important pa-
rameters as expected, and the A/T and the MDi are two other 
significant factors influencing SC2=+C3=. SHAP plots (Fig. 6(c)) 
demonstrate that a lower A/T ratio, smaller LRS and MDi have 
a positive effect on SC2=+C3=. Based on the above analysis, zeolite 
with parameter combination of LRS ≤ 9, A/T ≤ 0.01, and MDi in 

the range of 7.35‒7.71 Å might possess potential characteris-
tics for achieving a high SC2=+C3=. Checking the IZA database 
found that seven topologies including AEI [64,65], AWW 
[66,67], AFT [68,69], AFX [70–72], CHA [73–76], DDR [77,78], 
and SFW [79] meet these structural criteria roughly. The cur-
rent synthetic status of these molecular sieves is listed in Table 
2. It can be seen that to synthesize these materials with low 
acid density (0 < A/T ≤ 0.01), is a main challenge at present.  

Noting that the current selectivity analysis did not correlate 
with conversion, a relationship analysis between olefin yields 
and discrete input variables was further carried out. The re-
sults are presented in the violin plots of Fig. S22. The crucial 
input variables for an ideal MTO catalyst are further elucidated. 
Based on the experimental data obtained thus far, 8-MR (LRS = 
8) SAPO materials (AS = 0) with three-dimensional channels 
(CD = 3) will yield higher amounts of light olefins, and the mod-
ification of zeolites has minimal impact on the results. This 
conclusion is consistent with the fact that SAPO-34 molecular 
sieve with CHA structure is the optimal MTO catalyst currently. 

Besides achieving a high selectivity of ethene plus propene, 
attaining high selectivity for either ethene or propene alone is 
also appealing yet challenging. There are 3274 P/E data points 
in the range of 1.0‒2.0 at a RT lower than 437.5 °C, as seen in 
Fig. S23(a) marked by blue lines. It represents the most com-
mon MTO product distribution. The P/E data greater than 3.0 is 
the second-most common part belonging to condition of RT > 
437 °C and A/T ≤ 0.01, which is marked by red lines. Compara-
tively, the P/E data below 1.0 is quite rare, resulting in the dif-
ficulty for decision rules extraction for enhancing ethene selec-
tivity. RT presents as the most important factor in the feature 
importance analysis (Fig. S23(b)), followed by the A/T and the 
MDa. However, the effect of RT on the P/E ratio appears uncer-

 
Fig. 5. The performance of 23 ML methods for SC2=+C3= (a) and P/E (b) respectively. Four metrics, MAE, RMSE, R2, and RMSLE were used to evaluate 
these methods. The ML methods before the gray line are better. The training and test sets of SC2=+C3= (c) and P/E (d) by Stacking Regressor. 
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tain in the SHAP analysis (Fig. S23(c)), whose importance rank 
drops to the 7th herein. This ambiguous result suggests a com-
plex relationship between RT and the P/E ratio. In addition, it 
seems that the lower A/T, the higher the P/E.  

The above regression analyses reflect the correlation be-
tween structural and physicochemical parameters of zeolite 
catalysts and the light-olefins selectivity to the greatest extent, 
which are basically consistent with the current recognition 
[80]. It is worth noting that these recognitions on MTO were 
derived from years of research involving numerous 
well-designed experiments and analyses conducted by re-
searchers. In this work, the similar knowledge can be easily 
achieved through the ML analysis of the collected MTO data. 
When a large amount of multi-parameter data that is beyond 
the analysis ability of human brain comes in quickly and di-

rectly (fast and automatic access to experimental and computa-
tional data), ML will be an indispensable tool for efficiently 
extracting the underlying rules and correlations. 

3.4.  Prediction and experimental validation 

Data-driven ML analysis has assimilated a substantial 
amount of the expertise of MTO chemists. A software Z-MTO-P 
V1.1 [81] was thus designed to assist the development of MTO 
catalyst. The logic and process of MTO catalyst design and 
screening are presented in Fig. S24. An extensive prediction 
and screening of zeolite catalysts using it indicates that CHA 
remains the most promising candidate for MTO catalysts, 
probably due to the limitation of known molecular sieve struc-
ture data. Considering the DT extracted decision rules of LRS ≤ 
9, A/T ≤ 0.01, and MDi within 7.35‒7.71 Å for achieving a high 
SC2=+C3=, and the searching results shown in Table 2, the synthe-
sis of microporous high-silica SSZ-13 has become our primary 
objective again. Surprisingly, the MTO study on SSZ-13 with a 
Si/Al ratio greater than 50 are quite rare [82], and the MTO 
data at RT ≥ 450 °C is insufficient [83] although SSZ-13 has 
been well studied as a very popular MTO catalyst. This scarcity 
can likely be ascribed to negative presumptions about its MTO 
performance based on prior experience, like the higher synthe-
sis cost and faster deactivation than SAPO-34. Much effort has 
been put into controlling the synthesis cost [76] and morphol-
ogy of SSZ-13 [84,85].  

 
Fig. 6. (a) The visual structure of the DT. The numbers below the points are the average values of SC2=+C3=. (b) The feature importance heuristic given 
by the DT Regressor for SC2=+C3=. (c) SHAP analysis for SC2=+C3=. A color gradient, ranging from blue solid line (low feature values) to pink/red dotted line 
(high feature values), helps visualize the correlation between feature values and their SHAP values. 

Table 2 
Lists of the information on materials belonging to the seven topologies. 

Topology SAPOs A/T Zeolites A/T CD 
AEI SAPO-18 [64] 0‒0.1 SSZ-39 [65] 0.1 3 

AWW AlPO-22 [66] 
AlPO-CJB1 [67] 0 none — 1 

AFT AlPO-52 [68] 0 SSZ-112 [69] ~0.13 3 
AFX SAPO-56 [70,71] 0.15‒0.2 SSZ-16 [72] 0.14 3 
CHA SAPO-34 [73] 0.05‒0.2 SSZ-13 [74‒76] 0.02‒0.2,  

0 
3 

DDR none — ZSM-58 [77,78] 0.01‒0.02, 
 0 

2 

SFW none — SSZ-52 [79] 0.11 3 
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In this work, an SSZ-13 with a Si/Al ratio of 100 (A/T = 
0.01), named SSZ-13-100, was synthesized (Fig. S25) to evalu-
ate its MTO performance. The optimal reaction conditions were 
forecast in advance by software Z-MTO-P V1.0 to be 450 °C 
with a WHSV of 1.0 h‒1. The catalytic results were presented in 
Fig. 7(a) and Table S11. Interestingly, the initial selectivity of 
ethene plus propene (SC2=+C3=) is very high (82.6%) at TOS of 3 
min, with 100% methanol conversion. The SC2=+C3= quickly 
rises to 87.6% at 37 min, accompanied by an unexpectedly high 
ethene selectivity of 61.1%. In contrast, the SSZ-13-19 with a 
Si/Al ratio of 19 (A/T ratio of 0.05) show a low start (75.4%) 
but gradually increased SC2=+C3= curve reaching to its peak of 
82.6% before deactivation (258 min). The highest ethene selec-
tivity of 56.2% also appears before inactivation at 326 min. The 
MTO result of SSZ-13-19 is quite typical and similar to the pre-
viously reported results of SAPO-34 and SSZ-13, which is quite 
different from those of SSZ-13-100. Although SSZ-13-100 
sacrifices part of lifespan, it receives the highest SC2=+C3= and the 
highest ethene selectivity (lowest P/E ratio) in the shortest 
reaction time (TOS = 37 min) among the known MTO results up 
to now [6,10,24,55,86]. 

Currently, pre-accumulation carbon technology is widely 
adopted to bypass the initial low selectivity stage for higher 
olefin yields [87]. The rapid attainment of high SC2=+C3= furnish-
es inspiration for the design of a new MTO catalyst that does 
not necessitate the precoke-deposition step. Additionally, the 
harvest of a high ethene selectivity is extremely appealing 
regarding to the requirements of precise product regulation. It 
is possible to understand the mechanism and design a metha-
nol-to-ethene catalyst based on the findings [26]. Recently, a 
water-assisted shape-selective production of ethene in the 
MTO reaction was reported by Zhang et al. [88] With the aid of 
ML, we have identified a new catalytic material capable of 
producing ethene efficiently without any additional assistance. 

In addition to SSZ-13, we recently synthesized a high-silica 
STT zeolite via a chain rearrangement process of lamellar 
Si-MWW zeolite [89]. The structure of STT features both 9-MR 
and 7-MR windows without any 8-MR one. Its STT cage (11.7 × 
8.1 Å2) is located at the intersection of its 7-MR and 9-MR 
channels. The corresponding descriptors of STT are as follows: 
LRS = 9, FDSi = 17.0 T/1000 Å3, CD = 2, MDa = 2.76 Å, MDb = 

1.89 Å, MDc = 2.76 Å, and MDi = 7.04 Å. This zeolite was previ-
ously excluded from our MTO database because its MTO data 
was not available before. The successful synthesis of STT allows 
us to experimentally validate the generalization ability and 
accuracy of the ML models. The Z-MTO-P V1.0 software enables 
the prediction of optimal MTO evaluation conditions and the 
corresponding results, which exhibit close consistency with 
experimental findings, as depicted in Fig. 7(b). These results 
confirm the reliability and practicality of the ML models. We 
demonstrate ML can be an effective and reliable research tool 
for catalysis research. 

4.  Conclusions 

A data-driven ML workflow has been developed for screen-
ing potential MTO catalysts. Tree-based ensemble methods 
perform better with prediction accuracy in both conversion 
(classification) and light-olefins selectivity (regression) above 
90%. The reliability and practicality of the ML models has been 
further validated by experiments external to the database. 
Based on the decision rules for high selectivity extracted from 
ML models, zeolite catalysts should simultaneously possess the 
following characteristics: the largest channel size should be 
smaller than or equal to 9-membered ring (LRS ≤ 9), and the 
maximum diameter of a sphere that can be entrapped in a zeo-
lite (MDi) should be in the range of 7.35‒7.71 Å. Combined with 
the desired acid density of around 1% for the zeolite catalyst 
(A/T ≤ 0.01), the available molecular sieves candidates that 
meet the above standards are very rare. We thus refocus on 
high-silica SSZ-13 (Si/Al = 100) and observe its unexpectedly 
high initial selectivity, 87.6% for ethene plus propene at 37 min 
time on stream, with a notable ethene selectivity of 61.1%. It 
represents the highest level of ethene selectivity in the MTO 
reaction. This finding is expected to eliminate the 
pre-carbon-deposition step in the MTO industrial process, 
which is specifically designed to bypass the initial stage 
characterized by low selectivity. 

ML allows us to circumvent the intricate MTO reaction 
mechanism and construct reliable models for direct prediction 
of potential MTO catalyst candidates, which offers new oppor-
tunities for tackling specific catalyst-related issues. The merits 

 
Fig. 7. (a) MTO catalytic performance of SSZ-13s with different Si/Al ratios at 450 °C, WHSV of 1.0 h−1. (b) The experimental (solid symbols) and pre-
dicted (hollow symbols) MTO catalytic performance of STT-100 at 450 °C and WHSV of 1.0 h−1. The predicted lifetime is labeled by the gray dotted 
line. 
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of ML technology, including efficiency, accuracy and adaptabil-
ity, have been fully utilized to curtail labor-intensive laboratory 
R&D costs. Nonetheless, we recognize that ML methods rely 
heavily on the quantity and quality of data. In the context of 
limited data availability, it is arduous for ML to generate inno-
vative predictions. Therefore, it is imperative to integrate the 
expertise and intuition of domain experts to attain innovative 
outcomes. The automated rapid acquisition of experimental 
data, along with the development of precise descriptors, rep-
resents two pivotal directions for future research. Moreover, 
the advancement of large language models (LLMs) to reconcile 
experimental data, literature data and computational data is 
also of substantial significance. We anticipate that artificial 
intelligence (AI) will serve as a potent technology, empowering 
chemists to overcome a wider array of intricate chemical chal-
lenges in the future, thereby revolutionizing the landscape of 
chemistry research. 
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机器学习辅助发现具有超高初始选择性的甲醇制烯烃分子筛催化剂 
王心怡a,d,1, 王朝旗b,1, 杨  淼a,*, 王晓光b,*, 左越中b, 张壮壮b, 吴一墨a,e, 韩晶峰a,  

李  冰a, 黄  玮c, 任利敏c, 魏迎旭a, 刘欣梅d, 田  鹏a, 刘中民a,e,* 
a中国科学院大连化学物理研究所, 低碳催化技术国家工程研究中心, 辽宁大连116023 

b大连理工大学数学科学学院, 辽宁大连116024 
c大连理工大学化工学院, 精细化工国家重点实验室, 辽宁大连116024 

d中国石油大学(华东)化学化工学院, 重质油国家重点实验室, 山东青岛266580 
e中国科学院大学, 北京100049 

摘要: 随着甲醇制烯烃(MTO)工业化进程的持续推进和反应机理研究的不断深入, 设计合成优质的MTO催化剂以持续提

升MTO工业过程的经济性和灵活调控烯烃产物分布已成为极具挑战的课题.  数据驱动模拟可以帮助研究者预测化学反应

趋势和结果.  借助机器学习(ML)研究MTO催化问题, 有望打破以往经验桎梏, 带来反应机制和催化剂设计的新突破.  但要

获得特定化学问题的具体指导策略, 仍要求研究者针对具体体系收集和整理实验数据、编码相关变量并重新训练专用模

型.   
本研究展示如何利用ML工作流程发现潜在的MTO分子筛催化剂.  首先建设分子筛催化MTO反应的数据库, 自变量包

含分子筛结构与物性参数和反应条件等, 因变量包含甲醇转化率以及乙烯和丙烯选择性等.  其次构建自变量与因变量的

关联模型.  基于数据特征训练了20多种机器学习模型、并对其准确性和可靠性进行评估和实验验证.  结果显示:  基于树类

的集成学习方法在转化率(分类分析)和低碳烯烃选择性(回归分析)预测方面均表现出色, 准确率超过90%.  基于机器学习

模型、开发出可用于预测分子筛MTO催化性能和最佳操作条件的软件, 方便分子筛催化剂研发.  为验证机器学习模型的泛

化能力和准确性, 进一步合成了此前数据库中并未包含的STT分子筛, 使用软件预测最佳MTO评价条件及结果.  实验结果

显示与预测值基本吻合, 证实了集成机器学习方法的可靠性和实用性.  从机器学习的可解释性出发, 利用决策树、特征重

要性及SHAP分析, 提取获得高选择性的决策规则:  分子筛最大孔道不超过9元环(LRS≤9), 分子筛中可容纳球体的最大直

径(MDi)在7.35‒7.71 Å之间.  结合较低酸密度更为理想(A/T≤0.01)的结论, 重新聚焦高硅SSZ-13 (Si/Al = 100)分子筛, 意外

发现该材料在450 ºC, 空速1 h‒1条件下展现出超高的初始低碳烯烃选择性(反应37 min时乙烯加丙烯选择性高达87.6%, 其
中乙烯选择性高达61.1%), 这样高的单乙烯选择性在MTO反应中极为罕见.   

综上, ML在分子筛催化剂研发方面展示出有效性和应用潜力, 它可以避开复杂的反应机理, 降低实验室试错成本, 并
为解决特定催化剂问题提供新机遇.  然而, 我们也认识到, ML方法高度依赖数据质量和数量.  在有限数据情况下, 还必须

结合领域专家的专业知识与判断, 才能获得创新性成果.  
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