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The development of chemical technologies, which involves a multistage process covering laboratory 
research, scale-up to industrial deployment, and necessitates interdisciplinary collaboration, is 
often accompanied by substantial time and economic costs. To address these challenges, in this 
work, we report ChemELLM, a domain-specific large language model (LLM) with 70 billion param-
eters for chemical engineering. ChemELLM demonstrates state-of-the-art performance across criti-
cal tasks ranging from foundational understanding to professional problem-solving. It outperforms 
mainstream LLMs (e.g., O1-Preview, GPT-4o, and DeepSeek-R1) on ChemEBench, the first multidi-
mensional benchmark for chemical engineering, which encompasses 15 dimensions across 101 
distinct essential tasks. To support robust model development, we curated ChemEData, a pur-
pose-built dataset containing 19 billion tokens for pre-training and 1 billion tokens for fine-tuning. 
This work establishes a new paradigm for artificial intelligence-driven innovation, bridging the gap 
between laboratory-scale innovation and industrial-scale implementation, thus accelerating tech-
nological advancement in chemical engineering. ChemELLM is publicly available at 
https://chemindustry.iflytek.com/chat. 
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1. Introduction 

The development of chemical technologies is a multi-stage 
process that typically begins with laboratory research, pro-
gresses through scale-up and basic engineering, and culminates 
in industrial deployment [1,2]. This complex process demands 
synergistic collaboration from experts with diverse disciplinary 
backgrounds, such as chemistry, physics, mathematics, electri-

cal engineering, process design, and architecture, to address 
technical bottlenecks while balancing economic viability [3]. 
Such multidisciplinary cooperation is essential for addressing 
the complexities inherent in each stage and ensuring the suc-
cessful industrial implementation of new technologies. Howev-
er, interdisciplinary collaboration is still constrained by disci-
plinary boundaries, resulting in a big challenge to maintain 
design intention consistency in chemical process development 
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[4]. Additionally, foundational stages like molecular under-
standing, kinetic modeling, reactor design, process operation, 
and complex-wide optimization necessitate specialized meth-
odologies that are hard, if not impossible, to follow the stand-
ardized and/or predefined approaches [5]. Consequently, 
translating laboratory-scale innovations into industrial applica-
tions tends to be labor-intensive and time-consuming [6]. 
While multidisciplinary frameworks have improved the success 
rates of technology transfer, persistent inefficiencies highlight 
the urgent need for transformative approaches by enhancing 
the proficiency of collaborative chemical process development 
to accelerate innovation cycles in chemical engineering. 

Recently, emerging strategies, such as data-driven artificial 
intelligence (AI) technologies, have gained increasing recogni-
tion for their potential to streamline development pipelines 
and enhance process efficiency [7–10]. Particularly, the emer-
gence of large language models (LLMs), trained on extensive 
corpora that encapsulate complex, cross-disciplinary infor-
mation [11,12], presents unprecedented opportunities to rev-
olutionize the scientific workflow. Notably, these systems ex-
hibit transformative potential in autonomously designing, 
planning, and executing complex chemical experiments, there-
by catalyzing a paradigm shift in chemical research methodolo-
gies [13–16]. Empirical evidence across multiple domains un-
derscores this potential, with LLMs demonstrating some ability 
in chemical entity recognition, molecular design, yield predic-
tion, catalyst discovery, and reaction optimization [17–22]. For 
example, these LLMs excel in processing chemical literature 
and datasets expressed in natural language, thereby enabling 
tasks such as literature mining, data extraction, and decision 
support in catalyst design [16,23]. Furthermore, recent studies 
have highlighted that, when integrated with search algorithms, 
LLMs can effectively identify plausible catalytic mechanisms by 
combining chemical principles with systematic reasoning [24]. 
Despite their versatility, general-purpose LLMs frequently face 
limitations in addressing specialized chemical task require-
ments due to the lack of domain-specific knowledge, resulting 
in a significant performance gap compared to specialized 
chemical models [25]. As a result, considerable attention has 
been directed toward the integration of chemical knowledge 
into LLMs, resulting in the development of specialized chemical 
LLMs, including ChemDFM [25], LlaSMol [26], BatGPT-Chem 
[27], and ChemLLM [28]. These models are designed with tai-
lored training strategies aimed at embedding domain-specific 
chemical knowledge, thereby improving their performance in 
chemical applications. Such advancements highlight the en-
hanced capabilities of fine-tuned LLMs in tackling complex 
chemical problems and highlight their potential to accelerate 
innovation in chemical sciences. However, current chemical 
LLMs mainly focus on molecular-scale tasks, with limited ap-
plicability to system engineering challenges. Consequently, 
significant limitations persist in addressing core chemical en-
gineering problems, such as process simulation, equipment 
design, and industrial-scale optimization. 

During the development of domain-specialized LLMs, a sys-
tematic assessment of their ability to comprehend and apply 
domain knowledge remains equally critical [29,30]. In the 

chemical sciences, several robust benchmarks, including 
ChemLLMbench [17], SciBench [31], and ChemEval [32], have 
been established to facilitate such assessments. For example, 
ChemLLMbench comprises eight tasks designed to evaluate 
fundamental competencies in chemical concept interpretation, 
logical reasoning, and explanatory proficiency [17]. Similarly, 
SciBench collects open-ended questions from college-level 
textbooks in physics, chemistry, and mathematics to assess the 
ability to solve complex scientific problems [31]. Meanwhile, 
ChemEval provides a comprehensive evaluation of LLMs’ per-
formance across diverse chemical domain tasks [32]. Despite 
these advancements, current benchmarks exhibit significant 
limitations in evaluating LLMs’ performance in chemical engi-
neering research, particularly in assessing the core competen-
cies required for industrial-scale challenges. This gap highlights 
the pressing need for the development of specialized bench-
marks that enable systematic and rigorous assessment of LLMs' 
proficiency in resolving chemical engineering problems. Such 
benchmarks would facilitate the effective deployment of LLMs 
in critical applications, including catalyst design, fluid dynamics 
simulation, process optimization, and apparatus selection. 

In this paper, to meet the growing demands of chemical en-
gineering for foundational language models, we present 
ChemELLM, the first domain-specialized LLM designed for 
chemical engineering applications. Built upon the Spark 70B 
foundation model, ChemELLM undergoes domain-adaptive 
pretraining and instruction fine-tuning using ChemEData, a 
carefully curated corpus of high-quality chemical engineering. 
Furthermore, to comprehensively evaluate the knowledge and 
problem-solving capabilities of LLMs in chemical engineering, 
we have developed ChemEBench, a comprehensive benchmark 
specifically designed for this domain. ChemEBench comprises 3 
levels, 15 dimensions, and 101 distinct tasks, covering a broad 
spectrum of challenges in chemical engineering research. Nota-
bly, it includes numerous tasks that have not been unexamined 
in existing benchmarks. Using ChemEBench with designed 
prompts, 10 general-purpose LLMs (O3-mini [33], O1-Preview 
[33], GPT-4o [33], Claude 3.7 [34], Llama 3.1 [35], DeepSeek-R1 
[36], DeepSeek-V3 [37], Kimi [38], GLM-4 [39], and ERNIE-4.0 
[40]) and 3 chemical domain LLMs (ChemLLM [28], ChemDFM 
[25], and LlaSMol-Mistra [41]) are evaluated. 

2.  Methodology 

In this section, the proposed dataset, evaluation benchmark, 
and the developed LLM will be sequentially introduced. 

2.1.  ChemEData 

The critical determinant in improving LLMs’ scientific prob-
lem-solving capabilities lies in the construction of large-scale, 
high-quality datasets. In the context of domain-specific applica-
tions in chemical engineering, this technology necessitates the 
creation of a purpose-built textual corpus. In response, we have 
constructed ChemEData, a high-quality collection of chemical 
engineering texts serving as the foundation for both the 
pre-training and fine-tuning stages of our specialized LLM. This 
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dataset enables the model to acquire domain expertise critical 
for excelling in specialized tasks. Specifically, the pre-training 
stage leverages an extensive volume of unlabeled raw text, 
comprising ~19 billion tokens derived from over 6.85 million 
chemical papers and patents and 1200 textbooks. This exten-
sive corpus facilitates the transfer of domain-specific 
knowledge to the LLM through self-supervised learning. For the 
fine-tuning stage, we have curated more than 2.75 million 
high-quality synthetic instructions, encompassing ~1 billion 
tokens, drawn from various chemical engineering databases. 
These instructions are designed to enhance the LLMs' ability to 
execute domain-relevant directives within professional con-
texts. 

2.1.1.  Pre-training data  
The text corpus collected for model pre-training comprises 

three components: papers published in high-quality journals, 
searchable patents retrieved from websites, and do-
main-specific textbooks. The statistics of the collected corpus 
are summarized in Table 1, which provides an overview of its 
volume and diversity. This comprehensive dataset forms the 
cornerstone for the pre-training efforts, enabling the model to 
assimilate a wide range of professional knowledge. Such a da-
taset is essential for achieving advanced performance in do-
main-specific tasks. 

This work constructs a pre-training corpus for a chemical 
engineering LLM by applying a multimodal deconstruction and 
restructuring approach to a curated collection of raw scientific 
literature. The processing workflow of the corpus, as elaborat-
ed in Fig. 1, consists of the following sequential steps: First, a 
preliminary screening is performed using keyword searches 
(e.g., "chemical engineering") across academic databases and 

patent repositories. The process prioritizes peer-reviewed arti-
cles published within the last five years, highly cited publica-
tions, and core patent documents to establish a foundational 
corpus. Next, optical character recognition (OCR) technology 
[42] is applied to parse PDF documents into structured for-
mats, decomposing full-text content into modular units such as 
text paragraphs, figures, and tabular data. The document pars-
ing process involves initial parsing using the in-house devel-
oped integrated PDF parsing tool, followed by a three-tier data 
correction mechanism customized for chemical documents. 
This pipeline includes: (1) fixing symbol confusion using prede-
ϐined character mapping tables (e.g., 0→O, 1→l, 9→g), (2) iden-
tifying and formatting molecular formulas based on regular 
expression templates (e.g., auto-completion of subscript tags), 
and (3) standardizing unit conversions with the Pint library for 
unit conversion. When evaluated on a manually annotated da-
taset comprising 100 research papers, the system achieved an 
overall recognition accuracy of 90%. This step is crucial as it 
breaks down complex scientific documents into more man-
ageable and analyzable components. To mine table-text rela-
tionships, a context-aware semantic matching approach is em-
ployed: explicit correlations between datasets and descriptions 
are established by identifying table reference markers (e.g., "as 
shown in Table 1") and analyzing keyword co-occurrence pat-
terns in adjacent paragraphs. Subsequently, a knowledge object 
tagging schema is designed and implemented. Text is tagged 
based on paragraph segmentation, while tables and figures are 
tagged according to their native numbering. This tagging sys-
tem provides a standardized way to identify and organize the 
knowledge objects. Finally, a standardized data organization 
framework is employed for the structured storage of the 
knowledge objects and their relationships while explicitly pre-
serving their relations. The resulting structured corpus data 
greatly facilitates the pre-training of the chemical engineering 
LLMs, enabling them to better learn and understand the com-
plex knowledge within the chemical engineering domain. 

2.1.2.  Fine-tuning data 
In the fine-tuning stage, to enable the model with the ability 

Table 1 
Statistics of pre-training data. 

Data source Document Size 
Scholarly paper 1.06 million 30.5 GB 
Chemical patent 5.79 million 58.9 GB 
Professional book 1200 106.2 GB 
 
  

 
Fig. 1. Flowchart for the conversion of scientific literature into the pre-training corpus. 
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to understand task instructions for multitasking, we con-
structed a large-scale, comprehensive, and high-quality dataset 
through self-supervised data synthesis for instruction tuning. 
This dataset covers over 2.75 million professional instructions 
and is divided into three levels: foundational knowledge, ad-
vanced knowledge, and professional skills.  

The foundational knowledge and advanced knowledge lev-
els were sourced from open-source datasets. After a rigorous 
screening process, 1.51 million high-quality data entries were 
retained from these sources. For the professional skills level, to 
better align with chemical engineering tasks, we created a 
training set of 1.24 million entries related to majors in the 
chemical industry field. Table 2 presents the distribution of 
1.24 million instruction-tuning question-answering (Q&A) 
within the supervised fine-tuning data. These pairs are system-
atically categorized across five task types: multiple choice, 
true/false, fill-in-the-blank, calculation, and short answer, and 
seven specialized chemical engineering domains: Catalyst, Sim-
ulation, Equipment, Separation, Safety, Heat, and Engineering. 

To construct such a dataset, a three-round prompt engi-
neering methodology “Question Generation - Answer Genera-
tion - Quality Check” was implemented by integrating few-shot 
examples and self-supervised learning methods, as schemati-
cally outlined in Fig. 2. The process initiates with the 
first-round prompt engineering of “Question Generation”, 
which involves extracting information from raw domain litera-
ture such as textbooks and patents. The parsed fragments are 
then utilized to generate five types of questions: Multiple 
choice (conceptual distinctions), Fill-in-the-blank (terminology 

recall), True/False (fact verification), Short answer (descriptive 
reasoning), and Calculation (numerical problem-solving), 
thereby forming corresponding Q&A pairs with detailed think-
ing processes. Notably, this first round incorporates an im-
portant step of manual annotation, which is crucial for ensuring 
the accuracy and relevance of the generated Q&A and adds a 
layer of quality control that automated processes might over-
look. Subsequently, the second and third iterations of prompt 
engineering, namely "Answer Generation" and "Quality Check," 
build upon the initial phase, refining the prompts and further 
expanding the diversity of the question-and-answer generation 
process. During the "Answer Generation" phase, we feed the 
original questions, fragmented responses, or referenced 
knowledge into the LLMs as the knowledge base for the gener-
ation of answers. And in the prompt template, emphasize the 
thinking process of requiring the LLM to supplement the an-
swer. This approach maximizes the authenticity of the answer 
sources, thereby enhancing the usability of the answers. Spe-
cifically, for answer generation, we employed multiple LLMs, 
including Spark model, GPT-4o, and LLaMA-3-70B, to produce 
candidate responses. These responses are then evaluated using 
a model-based scoring system with four criteria, as outlined in 
Table 3. To enhance the LLMs’ ability to assess answer quality, 
we provided illustrative scoring examples. Each LLM then re-
turns a score ranging from 0 to 5 based on the predefined crite-
ria. Only those question-answer pairs consistently assigned a 
score of 5 by multiple LLMs are added to the training set as 
high-quality data. An example of a scoring result from GPT-4o 
is presented in Supplementary Table S1 to illustrate this pro-

Table 2 
The supervised fine-tuning data contains 1.24 million instruction-tuning Q&A. 

Type Catalyst Simulation Equipment Separation Safety Heat Engineering 
Multiple choice 24600 43900 48600 96700 9200 10800 8000 
True/False 14100 46800 42400 80100 5800 10000 7000 
Fill-in-the-blank 19500 39900 44100 83100 9000 10000 2000 
Calculation 30500 54200 63700 116700 13100 12500 5000 
Short answer 31500 46300 63000 117500 13000 11200 7000 

Sum 120200 231100 261800 494100 50100 54500 29000 
1240800 

 

 
Fig. 2. The construction of fine-tuning data in the format of Q&A pairs. 
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cess. 
“Quality Check” is a continuous and crucial aspect. In re-

sponse to this issue, we have established a comprehensive set 
of quality control guidelines designed to direct LLMs in assist-
ing the evaluation of the logic, comprehensiveness, and accu-
racy of both the questions and answers in the dataset. Any data 
that fails to meet these standards is discarded. Considering that 
reliance on a singular Q&A format may undermine the model's 
robustness, we manually designed at least 30 instruction tem-
plates for each of the five question types in the supervised fi-
ne-tuning data. The comprehensive dataset, which passes the 
quality check, will be embedded into the corresponding tem-
plates based on the task type, thereby diversifying and enrich-
ing the expression of the questions. Detailed descriptions and 
examples for each task can be found in Supplementary Table 
S2. Ultimately, a high-quality fine-tuning dataset is formed by 
integrating generated questions, crawled knowledge, and the 
results of quality screening. This comprehensive dataset is de-
signed to train models for proficient question-answering in the 
chemical engineering domain. 

2.2.  ChemEBench 

To evaluate the effectiveness of LLMs in tackling chemical 
engineering queries and their proficiency in comprehending 
and applying chemical engineering knowledge, we have estab-
lished a multidimensional benchmark called ChemEBench. This 
benchmark comprises three progressive stages designed to 
evaluate the capabilities of LLMs in this specialized domain 
comprehensively： 

1. Foundational knowledge level (L1). This initial level fo-
cuses on developing a robust comprehension of core domain 
knowledge. During this stage, the model’s proficiency in under-
standing fundamental concepts in chemical engineering is as-
sessed, with a focus on its capacity to accurately interpret basic 
principles and terminology. This evaluation ensures that the 
model possesses a solid foundation upon which a more ad-
vanced understanding can be built. 

2. Advanced knowledge level (L2). The second level shifts to 
a deeper understanding of advanced domain knowledge. Here, 
the model is evaluated on its ability to understand properties 
and molecular structures. This assessment is designed to 
demonstrate the model’s advanced level of expertise, which 
extends beyond the foundational concepts and into more intri-
cate areas of chemical engineering. 

3. Professional skill level (L3). The final level focuses on the 
model's high-level professional capabilities. This stage assesses 

the model’s aptitude for handling complex tasks, including 
problem-solving in real-world scenarios and the practical ap-
plication of chemical engineering knowledge. By evaluating the 
model’s performance in these areas, its readiness for re-
al-world applications in the chemical engineering domain can 
be effectively gauged. 

By integrating these three levels, ChemEBench provides a 
structured and comprehensive evaluation framework. This 
framework not only ensures that the model has a solid founda-
tion in chemical engineering fundamentals but also confirms its 
capacity to demonstrate advanced reasoning abilities and prac-
tical application skills necessary for tackling professional-level 
tasks within the discipline. 

Table 4 presents detailed statistics of ChemEBench. The 
benchmark is structured into 15 categories and includes 5 
question types. This structure ensures a comprehensive evalu-
ation of a model's capabilities across diverse question formats. 
And the diversity of question types is essential for thoroughly 
assessing a model's ability to handle different presentations 
and responses to chemical engineering queries. Furthermore, 
ChemEBench covers a broad range of chemical engineering 
topics, from fundamental principles to specialized fields such as 
catalysis, simulation, safety, and engineering construction. This 
breadth and depth highlight the benchmark's effectiveness in 
evaluating models' proficiency in accurately recognizing and 
processing a wide spectrum of chemical engineering inquiries. 

Fig. 3 depicts the distribution of questions within 
ChemEBench, totaling 2835 questions across various catego-
ries and question types. The bar chart on the left illustrates the 
number of questions distributed among 15 different categories. 
Notably, the "Equipment" category, which encompasses six 
subcategories—general equipment, reactor, dryer, centrifuge, 
pump and tower, has the highest number of questions, totaling 
610. "Engineering Construction" includes ten subcategories 
and has 475 questions. "Separation" (three subcategories) and 
"Safety" (six subcategories) collectively contains 300 questions. 
Additionally, the "Fluid Simulation" category, with four subcat-
egories, has 250 questions. In contrast, category such as "Mo-
lecular Property Prediction" have the fewest questions, with 
only 25 questions. The pie chart on the right presents the dis-
tribution of questions based on their types. Among these, 
Short-answer questions (SA) are the most common, accounting 
for 885 questions. Multiple-choice questions (MCQs) follow 
with a total of 820 questions. True/False (T/F) questions to 
545, Fill-in-the-blank (FB) questions amount to 405, and Nu-
merical Calculation (NC) questions to 180. This detailed distri-
bution analysis provides insights into the composition of the 

Table 3 
Criteria for model-based scoring of answer generation. 

Dimension Definition Score range 
Objectivity the question should have a unique and objective answer under unified evaluation standards 0–5 
Rationality the question and answer must be complete and clear, without omitting critical information 0–5 
Accuracy the reasoning chain should be checked step by step to ensure the absence of factual, logical, computational,  

or knowledge errors 
0–5 

Generalizability questions and answers should be based on general domain knowledge rather than relying on specific papers  
or patents 

0–5 
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dataset, which is crucial for evaluating the performance of 
LLMs in chemical engineering tasks. 

2.3.  ChemELLM 

In this section, we outline the two-stage specialization pro-
cess for ChemELLM, an LLM with a 70 billion parameter con-
figuration tailored specifically for chemical engineering appli-
cations, as depicted in Fig. 4. The training pipeline consists of 
two essential stages: domain pre-training and supervised fi-
ne-tuning within the chemical engineering domain. During the 
domain pre-training stage, ChemELLM is exposed to a vast 
corpus of domain-specific knowledge extracted from chemical 
engineering papers and textbooks. This extensive exposure 
enables the model with a deep understanding of the terminol-
ogy, concepts, and methodologies unique to the field. After 
pre-training, the instruction-tuning phase further refines the 
model's capabilities to understand and follow instructions rel-
evant to chemical engineering. This stage equips ChemELLM 
with the specific language patterns, technical terms, and task 
structures prevalent in professional chemical engineering set-
tings, thereby enhancing its performance on domain-specific 
tasks. Through this two-stage specialization process, 
ChemELLM attains a distinct proficiency in the chemical engi-
neering domain. 

2.3.1.  Domain pre-training 
The datasets utilized for training general-purpose LLMs 

typically contain a wide range of topics, but they tend to be 
relatively shallow in any specific area. As a result, although 

these LLMs have successfully gained strong natural language 
understanding and reasoning abilities, they often exhibit limi-
tations when confronted with tasks requiring in-depth special-
ized knowledge [43]. Therefore, to address the limitations of 
general-purpose LLMs in specialized knowledge, we conducted 
domain pre-training on the foundational LLM, Spark-70B, using 
a comprehensive chemical engineering corpus consisting of 19 
billion tokens. In selecting the Spark model as the foundation 
model for ChemELLM over other comparable LLMs, we priori-
tized its demonstrated superiority in key performance metrics. 
As evidenced in Supplementary Table S3, the Spark model 
demonstrates exceptional performance across a spectrum of 
critical domains, including logical reasoning, mathematical 
problem-solving, and coding efficiency. Notably, the Spark 4.0 
Turbo model, updated in January 2025, demonstrates superior 
performance to GPT-4o across multiple domains, particularly 
in mathematics and coding tasks. Across seven standardized 
evaluation dimensions, the model achieved a performance im-
provement of 4.42 points compared to GPT-4o. This perfor-
mance makes the Spark model particularly well-suited to meet 
the diverse needs of chemical engineering applications. We 

 
Fig. 3. Distribution of questions in ChemEBench. The bar chart shows the number of questions in different sub-domains. The pie chart shows ques-
tions classified according to question structure 

 
Fig. 4. The overall framework of ChemELLM. 
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initialized ChemELLM with the parameters of Spark-70B and 
employed the Adam optimizer to fine-tune the model parame-
ters during training. The learning rate was incrementally in-
creased from 0 to 3×10–5 using a warm-up strategy, then grad-
ually decreased to 3×10–6 following a cosine decay schedule to 
ensure stable and smooth convergence. Besides, to improve 
training efficiency, we adopted a multi-dimensional parallel 
strategy that incorporated data parallelism, model parallelism, 
and pipeline parallelism [44]. The pre-training of ChemELLM 
was conducted on 128 Huawei Ascend 910b GPUs, completing 
one epoch of training on the 19 billion tokens dataset. This 
approach enabled ChemELLM to acquire additional do-
main-specific knowledge while retaining the foundational ca-
pabilities inherited from Spark-70B. 

2.3.2.  Supervised fine-tuning 
During the supervised fine-tuning (SFT) stage, our goal is to 

align ChemELLM with the specific linguistic patterns and ter-
minologies prevalent in chemical engineering. To this end, we 
fine-tuned the ChemELLM using a curated dataset comprising 
2.75 million high-quality data, totaling around 1 billion tokens. 
For weight initialization, we utilized the ChemELLM model 
parameters obtained after domain-specific secondary 
pre-training. The optimization process utilized the Adam opti-
mizer with an initial learning rate of 1×10–5, incorporating a 
cosine decay strategy to adjust the learning rate during fi-
ne-tuning. The training process was executed on 128 Huawei 
Ascend 910B GPUs over three epochs, balancing computational 
efficiency with model convergence. The Cross-Entropy Loss 
curve as a function of iterations is presented in Supplementary 
Fig. S1. The visualization provides a comprehensive represen-
tation of the loss function's optimization trend during training, 
offering an intuitive assessment of the training performance. 
During the supervised fine-tuning stage, the high-quality SFT 
data enabled ChemELLM to enhance its understanding of 
chemical engineering tasks, thereby facilitating the resolution 
of knowledge-based queries in the chemical engineering do-
main. 

2.4.  Baseline models  

For comparative analysis, we select 13 widely used and 
high-performing LLMs. These LLMs are strategically catego-
rized into two types based on their intended applications. The 
organizations, model sizes, and accessible approaches of these 
modes are detailed in Table 5. 

General-purpose LLMs: These models represent the cutting 
edge of language modeling and are designed to handle diverse 
tasks across multiple domains. The selected models include 
O3-mini, O1-Preview and GPT-4o by Open AI [33], Claude-3.7 
by Anthropic [34], DeepSeek-R1 [36] and DeepSeek-V3[37] by 
DeepSeek, Kimi released by Moonshot Ai [38], GLM-4 by Zhipu 
[39], Baidu’s ERNIE-4.0 [40], LLaMA 3.1-70B by Meta Platforms 
[35]. 

Scientific-domain LLMs: These models have been trained on 
specialized scientific data and have domain-specific knowledge 

to perform specialized tasks. Our selection focuses on models 
tailored for chemistry, including ChemDFM-13B [25], Chem-
LLM-7B-Char-1.5-SFT [28], and LlaSMol-Mistral-7B [41]. 

In our experimental design, each input begins with a system 
prompt that clearly delineates the types and categories of ques-
tions to be addressed. For each specific task, a standardized 
prompt template is employed. As illustrated in Fig. 5, using the 
Fill-in-the-blank as an example, we instruct ChemELLM to 
adopt the role of a chemical engineer and specify the tasks it is 
required to accomplish. The content enclosed within the pa-
renthesis is tailored for each task, aligning with its specific in-
puts and outputs. The responses generated from ChemELLM 
are confined to solely returning the desired output without any 
explanations. 

2.5.  Evaluation criteria 

We employ a set of evaluation metrics and assessment 
methodologies tailored to the diverse requirements of different 
task types. In particular, LLMs are used as judgment tools by 
designing distinct prompt templates for each task type to guide 
the LLMs in extracting or assessing predicted responses 
[26,45]. The specific prompt templates and detailed scoring 
guidelines are listed in Supplementary Figs. S2–S6. For each 
question, we design tailored evaluation rules and utilize the 
text comprehension capabilities of LLMs, coupled with specific 
evaluation code, to extract or score the answers. For tasks that 
allow multiple valid formulations, such as calculation and short 
answer questions, we embed the model's predicted answer, the 
manually annotated standard answer, and the corresponding 
scoring criteria into a carefully designed prompt template. By 
utilizing the semantic understanding capabilities of LLMs, we 
can efficiently evaluate and assign a score to the given question. 
For question types with a unique correct answer, such as Mul-
tiple-choice and True/False questions, we incorporate the 
standard answer along with explicit extraction rules into the 
prompt template. Utilizing LLMs, we can rapidly and accurately 
extract the predicted results. Through these approaches, we 
effectively leverage the semantic understanding capabilities of 
LLMs to systematically automate and standardize the evalua-
tion of results for various question types. 

For tasks including True/False questions, Multiple choice 
questions, Fill-in-the-blank, molecular translation and genera-
tion, property prediction, and reaction prediction, we employ 
LLMs to generate answers and subsequently compare them 
against the corresponding ground truth answers. Accuracy is 
used as the performance metric and is calculated as follows: 

ݕܿܽݎݑܿܿܣ =
ݏ݊݋݅ݐܿ݅݀݁ݎ݌ ݐܿ݁ݎݎ݋ܿ ݂݋ ݎܾ݁݉ݑܰ

ݏ݈݁݌݉ܽݏ ݂݋ ݎܾ݁݉ݑ݊ ݈ܽݐ݋ܶ × 100%    (1) 

It is important to note that for the Fill-in-the-blank ques-
tions, potential differences in expression between the predicted 
and correct answers necessitate the use of LLMs as a judgment 
mechanism. Specifically, by designing tailored prompts, the 
LLM evaluates the discrepancies between the predicted and 
correct answers for each blank and subsequently calculates the  
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Table 4 
The statistics of ChemEBench. It includes 3 progressive levels, evaluating 15 dimensions of LLMs capabilities and featuring 101 distinct chemical 
tasks. 

Level Category Task Type (Metric) 

Found- 
ational 
Knowledge  

subjective Q&A of 
domain 

knowledge 
objective question multiple choice(Acc), fill-in-the-blank (Acc), true/false (Acc) 

objective Q&A 
about domain 

knowledge 
subjective question short answer (score), calculation (score) 

Advanced 
Knowledge  

molecular name 
translation SMILES to IUPAC SMILES to IUPAC (Acc) 

molecular name 
generation 

molecular name generation 
from text description molecular name generation from text description (Score) 

molecular de-
scription 

generate text descriptions 
based on molecular smiles generate text descriptions based on molecular SMILES (Score) 

Molecular Prop-
erty Prediction 

prediction of molecular proper-
ties based on molecular smiles prediction of molecular properties based on molecular SMILES(Acc) 

reaction predic-
tion reaction prediction 

predict the reactants from the products (Acc), predict the products from the reactants 
(F1), and predict whether the reaction is high yield based on the reaction information 

(Acc) 

Professional 
Skill 

catalyst 
catalyst deactivation short answer (score) 

catalyst stability short answer (score) 
catalyst industrial process short answer (score) 

equipment 

general equipment multiple choice (Acc), fill-in-the-blank (Acc), true/false (Acc), short answer (score) 
reactor multiple choice (Acc), Fill-in-the-blank (Acc), true/false (Acc), short answer (score) 
dryer multiple choice (Acc), fill-in-the-blank (Acc), true/false (Acc), short answer (score) 

centrifuge multiple choice (Acc), fill-in-the-blank (Acc), true/false (Acc), short answer (score) 
pump multiple choice (Acc), fill-in-the-blank (Acc), true/false (Acc), short answer (score) 
tower multiple choice (Acc), fill-in-the-blank (Acc), true/false (Acc), short answer (score) 

fluid simulation 

computational fluid dynamics multiple choice (Acc), short Answer (score) 

discrete element method multiple choice (Acc), fill-in-the-blank (Acc), true/false (Acc), short answer (score), 
calculation (score) 

machine learning method short Answer (score) 
direct numerical simulation short answer (score), calculation (score) 

separation 
absorption multiple choice (Acc), fill-in-the-blank (Acc), true/false (Acc), short answer (score) 
distillation multiple choice (Acc), fill-in-the-blank (Acc), true/false (Acc), short answer (score) 
extraction multiple choice (Acc), fill-in-the-blank (Acc), true/false (Acc), short answer (score) 

heat heat exchanger multiple choice (Acc), fill-in-the-blank (Acc), true/false (Acc), short answer (score), 
calculation (score) 

safety 

regulations and standards multiple choice (Acc) 
process safety multiple choice (Acc), true/false (Acc), short answer (score) 

environment safety multiple choice (Acc), true/false (Acc), short answer (score) 
personnel safety multiple choice (Acc) 
equipment safety multiple choice (Acc) 

hazardous chemistry multiple choice (Acc), true/false (Acc), short answer (score) 
economics economics multiple choice(Acc), fill-in-the-blank (Acc), true/false (Acc), short answer (score) 

engineering  
construction 

electrical engineering multiple choice (Acc), fill-in-the-blank (Acc), true/false (Acc), short answer (score), 
calculation (score) 

automatic control multiple choice (Acc), true/false (Acc), short answer (score) 
material engineering multiple choice (Acc) 

equipment engineering multiple choice (Acc), true/false (Acc), short answer (score) 
civil engineering multiple choice (Acc) 

thermal engineering multiple choice (Acc) 
water supply and drainage 

engineering multiple choice (Acc) 

general plot plan multiple choice (Acc) 
chemical system multiple choice (Acc), true/false (Acc) 

fire protection engineering multiple choice (Acc) 
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accuracy rate for the current question. Similarly, for subjective 
questions, such as short-answer questions, computational 
questions, and molecular description tasks within the 
ChemEBench assessment system, we also adopt LLMs to evalu-
ate the responses. In these cases, the correct answer is used as 
a reference to assess the quality of the predicted answer. Ulti-
mately, a score within the range of [0, 1] is utilized to signify 
the degree of correctness of the predicted answer. 

Furthermore, for multi-label classification tasks, such as the 
products from the reactants, we employ the F1 score as the 
evaluation metric. The F1 score, which represents the harmon-
ic mean of precision and recall, is computed as follows: 

1ܨ =
2 × ܲ × ܴ

ܲ + ܴ                         (2) 

ܲ =
ܶܲ

ܶܲ +  (3)                     ܲܨ

ܴ =
ܶܲ

ܶܲ + ܰܨ
                      (4) 

where TP is true positive, FP is false positive, FN is the false 
negative. 

Finally, to comprehensively evaluate the overall perfor-
mance of LLMs across multiple tasks, the mean score is intro-
duced in this study, and the calculation formula is as follows: 

݁ݎ݋ܿܵ ݊ܽ݁ܯ =
∑ ݅ݓ ⋅ ݅݌

ܰ
݅=1
∑ ݅ݓ

ܰ
݅=1

                (5) 

where N denotes the total number of tasks, W represents the 
number of samples in the current task, and p signifies the index 
value of the current task, which corresponds numerically to 
metrics such as F1, accuracy, or overall score. 

3.  Results and discussion 

In this section, we conduct a thorough evaluation of 
ChemELLM using the ChemEBench to assess its performance 
relative to selected LLMs. Our objective is to meticulously 
document and analyze the performance of ChemELLM across a 
diverse array of tasks. This rigorous assessment provides 
in-depth insights into ChemELLM’s capabilities in real-world 
chemical engineering applications, highlighting its strengths 
and identifying potential areas for improvement. By comparing 
it against state-of-the-art LLMs, we demonstrate the ad-
vantages of domain-specific specialization in enhancing model 
proficiency and applicability. 

3.1.  Overall performance 

Firstly, we evaluated LLMs on ChemEBench. We then com-
puted the mean score of each model across the primary evalua-
tion dimensions. Table 6 summarizes the performance rank-
ings of the LLMs, providing valuable insights into the strengths 
and weaknesses of each model. The results indicate that signif-
icant differences exist among the LLMs. Representative exam-

ples demonstrating ChemELLM’s performance on do-
main-related problems are provided in Supplementary Tables 
S4-S18. 

In overall performance evaluations, ChemELLM attains the 
highest score (72.90) among all LLMs, outperforming the sec-
ond-ranked DeepSeek-R1 (70.33) by nearly two percentage 
points. O1-Preview (65.76) and DeepSeek‑V3 (62.96) follow 
closely behind. Models such as Claude 3.7, O3‑mini, ERNIE 4.0, 
GPT‑4o, and GLM‑4 rank fifth through ninth, respectively. At 
the lower end, Kimi (50.24) and LLaMA 3.1‑70B (45.26) show 
clear limitations on these specialized tasks. ChemELLM’s supe-
rior performance highlights its benefits from specialized archi-
tectural and training advantages that are finely attuned to the 
demands of chemical engineering tasks, even with a potentially 
smaller parameter size and training corpus. In contrast, the 
specialized chemical LLMs, including ChemDFM-13B, Chem-
LLM-7B-Char-1.5-SFT, and LlaSMol-Mistral-7B, which rank 
twelfth, thirteenth, and fourteenth, respectively, demonstrate 
significant shortcomings in addressing the diverse challenges 
posed by ChemEBench. Collectively, these findings illustrate 
that ChemELLM strikes an optimal balance between model 
complexity and performance, making it a highly promising 
candidate for advanced applications in chemical engineering. 

Additionally, to evaluate the potential impact of do-
main-specific pre-training and fine-tuning on ChemELLM’s 
general-purpose capabilities, we conducted a comprehensive 
assessment of the model's performance on general language 
tasks such as text generation and understanding. The experi-
mental setup involved comparing ChemELLM against several 
general-purpose LLMs, including DeepSeek-R1, GPT-4o, 
O1-Preview, and the Spark model. The results, summarized in 
Supplementary Table S19, indicate that while ChemELLM ex-

Table 5 
Detailed information of the LLMs chosen for evaluation in our experi-
ments. The “size” column represents the number of parameters of each 
model. The “access” column represents approaches to obtain models 
through API or loading models with weights. 

Model Developer Size (parameter) Access 
O3-mini OpenAI undisclosed API 
O1-Preview OpenAI undisclosed API 
GPT-4o OpenAI undisclosed API 
Claude-3.7 Anthropic undisclosed API 
LLaMA 3.1-70B Meta 70B weights 
DeepSeek-R1 DeepSeek 671B API 
DeepSeek-V3 DeepSeek 671B API 
Kimi Moonshot AI undisclosed API 
GLM-4 Zhipu AI undisclosed API 
ERNIE-4.0 Baidu undisclosed API 
ChemDFM-13B Suzhou Lab 13B weights 
ChemLLM-7B-Char-1.5-SFT Shanghai AILab 7B weights 
LlaSMol-Mistral-7B OSU 7B weights 
 

 
Fig. 5. The standardized prompt template for the task of fill-in-the-blank. 
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hibits a slight performance drop on certain general tasks com-
pared to the foundation Spark model, it retains competitive 
capabilities relative to other general-purpose LLMs. This 
demonstrates that ChemELLM's domain-specific training 
strategy effectively enhances its performance on chemical en-
gineering tasks without significantly compromising its general 
language abilities. 

3.2.  Performance on each level 

In the foundation knowledge dimension, L1 reflects the 
model’s grasp and memory of scientific knowledge. 
DeepSeek-R1, leveraging its extensive knowledge reserve and 
sophisticated model architecture, achieves the highest perfor-
mance with a mean score of 82.19, demonstrating a clear supe-
riority in fundamental tasks. DeepSeek-V3, equipped with 671 
billion parameters, also exhibits remarkable learning capabili-
ties, resulting in superior performance in relevant tasks. Re-
markably, ChemELLM, despite having only 70 billion parame-
ters, achieves a higher accuracy than DeepSeek-V3, underscor-
ing its exceptional adaptability and specialization in chemical 
engineering tasks. This performance highlights that in the 
chemical engineering domain, model performance is not de-
termined solely by the number of parameters but also by the 
effective integration of domain-specific knowledge. 

In the advanced knowledge dimension, L2 measures the 
model’s comprehension and exploration abilities within scien-
tific contexts across 5 critical tasks (molecular name transla-
tion, molecular name generation, molecular description, mo-
lecular property prediction, and reaction prediction). Overall, 
ChemELLM achieves a strong performance with a score of 
50.25, significantly outperforming the second-best model, 
ChemDFM-13B, which scores 28.25. In contrast, gen-
eral-purpose LLMs struggle with these tasks, highlighting the 
challenges they face in adapting to the nuanced demands of 
chemical engineering. 

In terms of the professional skill dimension (L3), which 
evaluates the model’s capability to handle specialized tasks in 
chemical engineering. ChemELLM achieves a leading score of 
74.72, outperforming DeepSeek-R1’s 73.49. While DeepSeek‑
R1 benefits from powerful reasoning abilities and a broad 
knowledge base, ChemELLM’s advantage reflects its superior 
domain adaptation. These findings underscore ChemELLM’s 
exceptional specialization and robust competitiveness in han-
dling professional-level challenges within chemical engineer-
ing. 

3.3.  Performance on different question types 

As shown in Table 7, the performance of the models across 
different question types within the ChemEBench evaluation 
system is presented. By analyzing the performance, we can 
categorize the question types into three distinct categories 
based on their difficulty levels: 

Firstly, multiple choice questions, which require selecting 
the correct answer from a set of provided options, are generally 
less difficult compared to other question types. LLMs endowed 

with robust textual comprehension capabilities and expansive 
knowledge repositories generally exhibit commendable profi-
ciency in this domain. As depicted in Table 7, DeepSeek-R1 and 
ChemELLM achieve the highest and second-highest accuracy, 
with scores of 78.54 and 77.32, respectively, evidencing their 
superior performance in objective tasks. 

Secondly, True/False and fill-in-the-blank questions, which 
primarily assess the LLM’s depth of chemical knowledge, pre-
sent greater difficulty than multiple-choice questions. Notably, 
ChemELLM scores 80.18 on the True/False problems, deci-
sively outperforming the second-ranked O1-Preview model, 
which scores 71.01. In fill-in-the-blank tasks, ChemELLM 
achieves a score of 66.60 , below the top-ranked DeepSeek‑R1 
(72.68 ), yet still demonstrating its robust domain expertise. 
These outcomes underscore ChemELLM's significant capabili-
ties and its potential for comprehending chemical engineering 
knowledge. 

Finally, both short answer and calculation questions are 
categorized as subjective tasks. Short answer questions pri-
marily assess the model's ability to accurately address specific 
chemical engineering problems, while calculation questions 
evaluate the model's logical reasoning processes and the cor-
rectness of its final results. These two tasks not only assess the 
model's grasp of chemical knowledge but also its ability to 
navigate and resolve complex logical relationships. Experi-
mental results indicate that ChemELLM achieves a score of 
68.81 on short-answer tasks, the highest performance among 
the LLMs. However, in calculation tasks, O3-mini demonstrates 
superior performance, achieving a score of 77.64. While 
ChemELLM excels in short-answer tasks, its comparatively 
lower performance in calculation tasks suggests a need for 
further refinement in logical reasoning and calculation profi-
ciency. 

3.4.  Performance on ChemLLMBench  

Building on the evaluation in Section 3.1, where ChemELLM 
demonstrated clear advantages across chemical engineering 

Table 6 
Performance of the selected LLMs and ChemELLM. The best and sec-
ond-best results are labeled in bold and underlined, respectively. 

Model L1 L2 L3 Mean score Overall rank 
O3-mini 74.72 23.13 59.74 58.85 6 
O1-Preview 76.10 23.88 67.94 65.76 3 
GPT-4o 62.81 23.19 58.48 56.48 8 
Claude-3.7 70.38 21.76 64.01 61.75 5 
LLaMA 3.1-70B 48.48 10.25 47.84 45.26 11 
DeepSeek-R1 82.19 14.75 73.49 70.33 2 
DeepSeek-V3 69.83 17.13 65.97 62.96 4 
Kimi 51.12 16.25 53.06 50.24 10 
GLM-4 54.95 11.75 57.24 53.77 9 
ERNIE-4.0 57.01 26.62 60.49 57.71 7 
ChemDFM-13B 29.71 28.25 31.69 31.22 12 
ChemLLM- 
7B-Char-1.5-SFT 20.10  6.50  21.97 20.67 13 

LlaSMol-Mistral-7B 16.90  26.38 19.64 19.81 14 
ChemELLM 73.88 50.25 74.72 72.90 1 
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tasks on ChemEBench, we further assessed its performance 
using ChemLLMBench [17]. ChemLLMBench is a comprehen-
sive benchmark encompassing a wide range of chemis-
try-related topics, making it an excellent supplement to 
ChemEBench. Table 8 presents a detailed comparison of 
ChemELLM against several LLMs, including DeepSeek-R1, GPT‑
4o, and O1-Preview. 

ChemELLM consistently outperforms other models in prop-
erty prediction tasks, achieving the highest accuracy across all 
datasets (c, BBBP, ClinTox, HIV, and Tox21 [46]). This high-
lights its strong ability to understand and predict molecular 
properties, which is crucial for applications in drug discovery, 
material science, and other chemistry domains [47]. However, 

in yield prediction tasks, ChemELLM falls short compared to 
other models, suggesting further improvement is needed. In 
name prediction tasks, ChemELLM's performance is mixed. It 
excels at converting SMILES to IUPAC names and vice versa, but 
struggles with IUPAC to formulas and SMILES to formulas. In 
text-based molecule design and molecule captioning, 
ChemELLM achieves significantly higher BLEU and score met-
rics, highlighting its strength in generating and interpreting 
textual descriptions of molecules. This is highly valuable for 
natural language understanding in chemistry. Additionally, 
ChemELLM also leads in reactant prediction, retro synthesis, 
and reactant selection with higher F1 scores. While its perfor-
mance in solvent and ligand selection is comparable or slightly 

Table 7 
Performance of the selected LLMs and ChemELLM on different question types. The best and second-best results are labeled in bold and underlined, 
respectively. 

Model 
Objective task Subjective task Mean 

score 
Overall 

rank multiple choice true/false fill-in-the-blank calculation short answer 
O3-mini 59.63  62.94  53.12  77.64  54.41  58.85  6 
O1-Preview 71.46  71.01 61.46  72.22  57.88  65.75  3 
GPT-4o 63.78  56.88  54.25  56.80  51.09  56.69  8 
Claude-3.7 67.93  63.49  55.97  67.78  56.37  61.75  5 
LLaMA 3.1-70B 52.81  60.73  37.81  39.03  33.43  45.26  11 
DeepSeek-R1 78.54  69.36  72.68  76.67  60.96  70.33  2 
DeepSeek-V3 72.93  61.28  62.63  63.89  54.72  62.96  4 
Kimi 53.05  56.88  46.19  43.89  46.69  50.24  10 
GLM-4 60.98  62.57  51.33  43.20  44.94  53.77  9 
ERNIE-4.0 64.63  64.22  54.50  49.31  50.45  57.71  7 
ChemDFM-13B 29.51  43.67  25.61  11.39  31.75  31.23  12 
ChemLLM-7B-Char-1.5-SFT 21.10  35.05  21.14  5.14  14.35  20.67  13 
LlaSMol-Mistral-7B 13.90  48.81  13.83  1.67  13.84  19.81  14 
ChemELLM 77.32 80.18  66.60 64.93  68.81 72.90  1 
 

Table 8 
Performance comparison of different LLMs on ChemLLMBench tasks. The best and second-best results are labeled in bold and underlined, respec-
tively. 

Task type Quantity Metric 
Models 

GPT-4o O1-Preview DeepSeek-R1 ChemELLM 

Property prediction 

BACE 100 ACC 35 40 38 64 
BBBP 100 ACC 61 56 52 67 

ClinTox 100 ACC 50 52 31.5 57.5 
HIV 100 ACC 33 78 40 81 

Tox21 1044 ACC 80.27 81.9 81.03 83.14 

Yield prediction 
Buchwald-Hartwig 100 ACC 62 75 63 61 

Suzuki-Miyaura 100 ACC 52 65 61 48 

Name prediction 

iupac2formula 100 Exact 28 65 38 4 
smiles2iupac 100 Exact 1 0 0 24 
iupac2smiles 100 Exact 8 14 9 20 

smiles2formula 100 Exact 9 42 24 5 

Molecule analysis 
text-based molecule design 100 BLEU 42.56 51.76 58.12 75.71 

molecule Captioning 100 score 20 23.5 18.25 26.5 

Synthetic analysis 

reactant Prediction 100 F1 3 32.67 25 61 
retro synthesis 100 F1 4.9 14.13 11.5 33.83 

solvent selection 100 F1 51 51 51 51 
reactant selection 100 F1 24.7 20.83 26 50.47 
ligands selection 100 F1 15.27 18.19 16.9 17.97 

Overall 2744 mean 48.78 56.67 51.36 58.89 
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inferior to other models, this still reflects its capabilities in 
synthetic tasks. 

Overall, with a mean score of 58.89 on ChemLLMBench, 
ChemELLM outperforms all other models. This reinforces that 
ChemELLM not only maintains its strengths in chemical engi-
neering tasks but also excels in typical chemistry challenges. It 
further emphasizes ChemELLM’s value for both theoretical 
research and practical engineering development, where con-
sistent and robust performance across diverse task types is 
essential. 

3.5.  The influence of few-shot learning 

Table 9 presents a detailed comparison of each LLM’s per-
formance under 3-shot versus 0-shot settings across 3 levels 
(L1-L3) and 15 dimensions (C1-C15). Overall trends reveal that 
the effectiveness of few-shot prompting depends heavily on 

task complexity and model capacity. 
For tasks at the L1 level, which evaluate foundational 

knowledge, few-shot learning has a limited impact. Most LLMs 
either maintain their performance or experience slight degra-
dation or improvement, indicating that models already possess 
sufficient knowledge. For example, ChemELLM’s performance 
on task C2 increases slightly from 63.56 (0-shot) to 66.35 
(3-shot), while on task C1, it remains stable (80.95 to 80.36). 
Other models like DeepSeek-R1 and LLaMA 3.1-70B exhibit 
mixed results, with some improvements and others declines.  

In the L2 level, which focuses on advanced knowledge, 
3-shot prompts consistently enhance model performance. 
These tasks are highly specialized, and relevant examples ena-
ble models to better understand task requirements. Notably, 
ChemELLM demonstrates significant improvements on tasks 
C5 (45.00 to 53.33) and C7 (52.94 to 54.12). Other models also 
benefit, such as Claude-3.7 on task C4 (16.67 to 30.00) and 

Table 9 
3-shot versus 0-shot performance across LLMs and tasks. Bold indicates performance improvement compared to the 0-shot setting. 

Category 
Model 

L1 L2 L3 
Overall 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 

O3-mini 
0*  74.39 75.19 0.00 6.67 60.83 36.00 20.00 57.33 59.07 72.50 67.31 72.78 61.00 53.21 47.75 58.85 
3*  80.92 72.69 3.33 10.00 56.67 56.00 37.65 51.00 56.29 71.44 69.36 73.48 67.25 54.74 56.14 61.46 

O1-Preview 
0*  80.01 70.39 3.33 3.33 45.83 44.00 24.71 59.67 66.92 73.57 74.31 77.26 73.33 63.21 59.53 65.76 
3*  79.12 72.88 6.67 20.00 39.17 64.00 30.59 54.67 64.02 70.55 73.89 75.46 70.92 61.99 66.16 65.94 

GPT-4o 
0*  67.63 55.77 3.75 6.67 37.50 76.00 15.29 53.33 56.89 66.71 65.36 61.54 62.83 54.54 51.84 56.69 
3*  65.93 54.62 1.67 10.00 25.00 72.00 10.59 48.33 56.57 68.09 66.45 60.98 68.00 54.92 59.16 58.03 

Claude-3.7 
0*  74.59 64.23 3.33 16.67 51.67 36.00 15.30 60.50 60.64 73.32 65.88 71.11 69.25 59.60 59.30 61.75 
3*  79.21 63.27 6.67 30.00 62.50 48.00 29.41 55.33 62.73 74.38 73.55 69.46 73.75 61.45 64.74 65.48 

LLaMA 3.1-70B 
0*  58.23 34.23 0.00 0.00 28.33 28.00 5.88 33.67 47.42 59.09 49.53 46.28 55.33 40.29 42.19 45.26 
3*  59.96 38.85 0.00 13.33 12.50 60.00 22.35 36.33 49.08 59.81 58.92 50.94 60.17 41.93 48.07 49.63 

DeepSeek-R1 
0*  85.92 76.73 3.33 16.67 45.00 12.00 8.24 59.00 73.44 78.13 79.16 81.46 78.50 67.92 66.68 70.33 
3*  85.03 70.58 3.33 20.00 41.67 48.00 40.00 55.67 71.19 77.30 79.97 78.00 80.08 71.55 75.28 72.38 

DeepSeek-V3 
0*  75.90 60.96 0.00 20.00 47.50 40.00 4.71 56.00 64.92 73.22 70.63 73.14 72.25 62.59 57.56 62.96 
3*  75.79 65.96 3.33 13.33 35.00 52.00 16.47 55.33 66.80 73.37 71.14 70.10 74.75 60.57 67.72 65.63 

Kimi 
0*  57.80 41.35 3.33 0.00 25.00 72.00 7.06 45.67 53.02 63.63 58.40 57.32 60.92 45.59 42.07 50.24 
3*  63.29 40.19 0.00 0.00 11.67 84.00 30.59 44.33 53.54 64.26 57.19 55.86 62.25 52.52 53.59 53.64 

GLM-4 
0*  63.99 41.73 0.00 0.00 28.33 44.00 4.71 47.33 54.76 65.57 60.04 56.84 66.84 55.63 50.48 53.77 
3*  60.52 41.73 0.00 3.33 17.50 56.00 14.12 49.00 56.30 67.31 62.06 55.74 66.00 57.36 53.60 55.08 

ERNIE-4.0 
0*  63.51 47.50 3.33 3.33 37.50 72.00 25.88 46.33 62.45 67.58 61.64 61.55 67.75 57.71 51.93 57.71 
3*  58.34 43.27 0.00 6.67 20.00 76.00 32.94 42.00 57.00 62.61 63.97 57.34 69.17 56.42 60.88 57.13 

ChemDFM-13B 
0*  40.17 14.42 10.00 56.67 28.33 40.00 21.18 31.67 30.69 34.03 33.86 31.16 45.67 31.13 21.91 31.23 
3*  43.68 15.96 10.00 40.00 11.67 44.00 20.00 26.33 35.44 36.64 33.72 34.81 44.58 32.45 31.29 33.98 

Chem-
LLM-7B-Char-1.5-SFT 

0*  27.41 9.42 0.00 0.00 0.00 48.00 1.18 13.33 24.25 22.07 28.25 18.12 25.50 16.48 17.24 20.67 
3*  25.29 14.62 0.00 0.00 0.00 48.00 1.18 6.67 16.65 15.50 15.76 12.46 15.92 10.25 14.14 14.87 

LlaSMol-Mistral-7B 
0*  25.70 4.04 3.33 30.00 19.17 64.00 24.71 9.00 24.48 17.23 18.31 23.54 23.00 24.67 12.16 19.81 
3*  28.27 7.31 0.00 3.33 0.00 80 1.18 4.33 18.51 12.43 12.67 31.18 16.00 15.85 24.11 17.65 

ChemELLM 
0*  80.95 63.56 30.00 56.67 45.00 64.00 52.94 60.67 72.59 75.56 80.42 74.06 80.75 69.53 73.95 72.90 
3*  80.36 66.35 26.67 53.33 53.33 64.00 54.12 60.00 72.07 74.70 82.19 75.44 82.08 64.49 72.93 72.73 

0* indicates 0-shot, 3* indicates 3-shot. 
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LLaMA 3.1-70B on task C6 (28.00 to 60.00).  
The L3 level, encompassing expert-level skills across diverse 

knowledge types, presents mixed results. Weaker models often 
benefit from few-shot examples, while stronger models may 
see limited gains or even performance declines. ChemELLM 
maintains strong performance, showing slight improvements 
or stability (e.g., C11: 80.42 to 82.19, C13: 80.75 to 82.08, C15: 
73.95 to 72.93). On task C14, ChemELLM experiences a minor 
drop from 69.53 to 64.49, while DeepSeek-R1 shows improve-
ment, increasing from 67.92 to 71.55. Similarly, on task C15, 
DeepSeek-R1 demonstrates notable improvement, rising from 
66.68 to 75.28.  

These findings underscore that few-shot learning is benefi-
cial when the provided examples are highly aligned with the 
task and the underlying knowledge is specialized. In contrast, 
for tasks where knowledge is already internalized, or for pro-
fessional-level tasks that primarily rely on reasoning, few-shot 
prompts offer limited value or may even introduce noise. 
Compared to other models, ChemELLM consistently demon-
strates strong performance across all levels, particularly in L2 
and L3, owing to its well-developed pre-trained knowledge 
base, which reduces its reliance on few-shot prompts. 

4.  Conclusions 

In this work, we introduce ChemELLM, a domain-specific 
LLM developed for chemical engineering, along with 
ChemEBench, the first benchmark specifically tailored to eval-
uate LLMs in this field. ChemEBench is structured into 3 levels, 
encompassing 15 domains and 101 specialized tasks, enabling 
a thorough and multidimensional assessment of LLM capabili-
ties. Extensive evaluations of both general-purpose and do-
main-specific LLMs demonstrate that ChemELLM exhibits su-
perior performance on domain-relevant tasks, highlighting its 
exceptional capability in understanding and solving complex 
challenges in chemical engineering. 

In future work, we will focus on further enhancing the caus-
al reasoning and multimodal capabilities of ChemELLM. Specif-
ically, the chain-of-thought (COT) reasoning framework will be 
implemented, enabling the decomposition of complex engi-
neering problems into logically sequenced sub-tasks, thereby 
facilitating the effective handling of multi-step problems. Fur-
thermore, we intend to incorporate multimodal processing 
techniques that will allow ChemELLM to seamlessly integrate 
and process various types of data. This includes textual data 
(e.g., technical literature), visual data (e.g., equipment schemat-
ics such as process flow diagrams and piping and instrumenta-
tion diagrams), and experimental data (e.g., time-series data 
from distributed control systems). This expansion will not only 
enrich ChemELLM’s contextual understanding but also signifi-
cantly expand its applicability within the field of chemical en-
gineering. With these enhancements, we anticipate that 
ChemELLM will evolve into an even more robust and versatile 
tool, thereby driving innovation and efficiency in both research 
and industrial applications within chemical engineering. 
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从实验室到工厂: 化学工程领域的大语言模型 
周吉彬a,1, 徐飞扬b,1, 常志军c, 刘对平a, 李路路a, 崔  健b, 李  益b,  
李  鑫b,d,e,*, 钱  力c, 张智雄c, 胡国平b,e, 叶  茂a,*, 刘中民a 

a中国科学院大连化学物理研究所, 低碳催化技术国家工程研究中心, 辽宁大连116023 
b科大讯飞股份有限公司, 人工智能研究院, 安徽合肥230000 

c中国科学院文献情报中心, 北京100190 
d中国科学技术大学, 安徽合肥230000 

e认知智能国家重点实验室, 安徽合肥230000 

摘要: 化学工程技术的开发是一个复杂多阶段的过程, 涵盖实验室研究、过程放大到工业部署应用等多个环节.  该过程不
仅需要化学、材料和工程等多学科的紧密协作, 还面临着漫长的研发周期和高昂的经济成本.  尽管以大语言模型为代表的
生成式人工智能在基础研究领域取得显著进展, 但其在复杂工程问题中的深度应用仍面临挑战.  现有通用大语言模型对
化学工程专业知识的理解有限, 难以支撑从实验室创新到工业化实施的全链条技术转化.  同时, 由于缺乏系统性评估基准, 
难以客观评价大语言模型在化工专业场景中的实际性能.   
为了应对上述挑战, 本文以星火大模型为基座, 成功开发出面向化学工程领域的垂直大语言模型ChemELLM, 其参数

规模高达700亿.  同时, 为了全面且系统地评估大语言模型在化学工程领域的综合能力, 本文精心构建了首个化学工程多
维度评估基准体系ChemEBench.  该体系采用从基础知识理解、领域高级解析到专业问题求解的递进式三级架构评估框架, 
涵盖了催化剂设计、流体模拟、设备选型和安全评估等15个核心领域, 并设置101项细粒度评估任务, 实现了从基础理论认
知到复杂工程建设的全维度能力评估.  基准测试结果表明, ChemELLM在上述关键指标上均表现卓越, 综合性能领先于
O1-Preview, GPT-4o和DeepSeek-R1等主流大语言模型 .  此外 , 为了支撑大语言模型的高质量训练与微调 , 构建了
ChemEData数据集, 其中预训练语料规模达190亿token, 包含106万篇高质量专业文献、579万篇高价值专利以及1200本专业
书籍;  微调数据集规模达10亿token, 包含275万对精心设计的问答对数据.   

综上, 本研究聚焦化学工程领域大语言模型的开发, 提升其对化学工程领域的理解和推理能力, 有望建立从实验室研
究到工业应用之间的桥梁, 加速化工新技术落地与产业化进程, 构建人工智能驱动化学工程创新的新范式.  ChemELLM已
上线部署并可公开访问, https://chemindustry.iflytek.com/chat.  
关键词: 大语言模型; 化学工程; 过程开发; 多维度基准评估体系; 领域适用性 
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