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work, we report ChemELLM, a domain-specific large language model (LLM) with 70 billion param-
eters for chemical engineering. ChemELLM demonstrates state-of-the-art performance across criti-
cal tasks ranging from foundational understanding to professional problem-solving. It outperforms
mainstream LLMs (e.g, O1-Preview, GPT-40, and DeepSeek-R1) on ChemEBench, the first multidi-
mensional benchmark for chemical engineering, which encompasses 15 dimensions across 101
distinct essential tasks. To support robust model development, we curated ChemEData, a pur-
pose-built dataset containing 19 billion tokens for pre-training and 1 billion tokens for fine-tuning.
This work establishes a new paradigm for artificial intelligence-driven innovation, bridging the gap
between laboratory-scale innovation and industrial-scale implementation, thus accelerating tech-
nological advancement in chemical engineering. ChemELLM is publicly available at
https://chemindustry.iflytek.com/chat.
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1. Introduction

cal engineering, process design, and architecture, to address
technical bottlenecks while balancing economic viability [3].

The development of chemical technologies is a multi-stage
process that typically begins with laboratory research, pro-
gresses through scale-up and basic engineering, and culminates
in industrial deployment [1,2]. This complex process demands
synergistic collaboration from experts with diverse disciplinary
backgrounds, such as chemistry, physics, mathematics, electri-

Such multidisciplinary cooperation is essential for addressing
the complexities inherent in each stage and ensuring the suc-
cessful industrial implementation of new technologies. Howev-
er, interdisciplinary collaboration is still constrained by disci-
plinary boundaries, resulting in a big challenge to maintain
design intention consistency in chemical process development
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[4]. Additionally, foundational stages like molecular under-
standing, kinetic modeling, reactor design, process operation,
and complex-wide optimization necessitate specialized meth-
odologies that are hard, if not impossible, to follow the stand-
ardized and/or predefined approaches [5]. Consequently,
translating laboratory-scale innovations into industrial applica-
tions tends to be labor-intensive and time-consuming [6].
While multidisciplinary frameworks have improved the success
rates of technology transfer, persistent inefficiencies highlight
the urgent need for transformative approaches by enhancing
the proficiency of collaborative chemical process development
to accelerate innovation cycles in chemical engineering.

Recently, emerging strategies, such as data-driven artificial
intelligence (Al) technologies, have gained increasing recogni-
tion for their potential to streamline development pipelines
and enhance process efficiency [7-10]. Particularly, the emer-
gence of large language models (LLMs), trained on extensive
corpora that encapsulate complex, cross-disciplinary infor-
mation [11,12], presents unprecedented opportunities to rev-
olutionize the scientific workflow. Notably, these systems ex-
hibit transformative potential in autonomously designing,
planning, and executing complex chemical experiments, there-
by catalyzing a paradigm shift in chemical research methodolo-
gies [13-16]. Empirical evidence across multiple domains un-
derscores this potential, with LLMs demonstrating some ability
in chemical entity recognition, molecular design, yield predic-
tion, catalyst discovery, and reaction optimization [17-22]. For
example, these LLMs excel in processing chemical literature
and datasets expressed in natural language, thereby enabling
tasks such as literature mining, data extraction, and decision
support in catalyst design [16,23]. Furthermore, recent studies
have highlighted that, when integrated with search algorithms,
LLMs can effectively identify plausible catalytic mechanisms by
combining chemical principles with systematic reasoning [24].
Despite their versatility, general-purpose LLMs frequently face
limitations in addressing specialized chemical task require-
ments due to the lack of domain-specific knowledge, resulting
in a significant performance gap compared to specialized
chemical models [25]. As a result, considerable attention has
been directed toward the integration of chemical knowledge
into LLMs, resulting in the development of specialized chemical
LLMs, including ChemDFM [25], LlaSMol [26], BatGPT-Chem
[27], and ChemLLM [28]. These models are designed with tai-
lored training strategies aimed at embedding domain-specific
chemical knowledge, thereby improving their performance in
chemical applications. Such advancements highlight the en-
hanced capabilities of fine-tuned LLMs in tackling complex
chemical problems and highlight their potential to accelerate
innovation in chemical sciences. However, current chemical
LLMs mainly focus on molecular-scale tasks, with limited ap-
plicability to system engineering challenges. Consequently,
significant limitations persist in addressing core chemical en-
gineering problems, such as process simulation, equipment
design, and industrial-scale optimization.

During the development of domain-specialized LLMs, a sys-
tematic assessment of their ability to comprehend and apply
domain knowledge remains equally critical [29,30]. In the

chemical sciences, several robust benchmarks, including
ChemLLMbench [17], SciBench [31], and ChemEval [32], have
been established to facilitate such assessments. For example,
ChemLLMbench comprises eight tasks designed to evaluate
fundamental competencies in chemical concept interpretation,
logical reasoning, and explanatory proficiency [17]. Similarly,
SciBench collects open-ended questions from college-level
textbooks in physics, chemistry, and mathematics to assess the
ability to solve complex scientific problems [31]. Meanwhile,
ChemEval provides a comprehensive evaluation of LLMs’ per-
formance across diverse chemical domain tasks [32]. Despite
these advancements, current benchmarks exhibit significant
limitations in evaluating LLMs’ performance in chemical engi-
neering research, particularly in assessing the core competen-
cies required for industrial-scale challenges. This gap highlights
the pressing need for the development of specialized bench-
marks that enable systematic and rigorous assessment of LLMs'
proficiency in resolving chemical engineering problems. Such
benchmarks would facilitate the effective deployment of LLMs
in critical applications, including catalyst design, fluid dynamics
simulation, process optimization, and apparatus selection.

In this paper, to meet the growing demands of chemical en-
gineering for foundational language models, we present
ChemELLM, the first domain-specialized LLM designed for
chemical engineering applications. Built upon the Spark 70B
foundation model, ChemELLM undergoes domain-adaptive
pretraining and instruction fine-tuning using ChemEData, a
carefully curated corpus of high-quality chemical engineering.
Furthermore, to comprehensively evaluate the knowledge and
problem-solving capabilities of LLMs in chemical engineering,
we have developed ChemEBench, a comprehensive benchmark
specifically designed for this domain. ChemEBench comprises 3
levels, 15 dimensions, and 101 distinct tasks, covering a broad
spectrum of challenges in chemical engineering research. Nota-
bly, it includes numerous tasks that have not been unexamined
in existing benchmarks. Using ChemEBench with designed
prompts, 10 general-purpose LLMs (03-mini [33], O1-Preview
[33], GPT-40 [33], Claude 3.7 [34], Llama 3.1 [35], DeepSeek-R1
[36], DeepSeek-V3 [37], Kimi [38], GLM-4 [39], and ERNIE-4.0
[40]) and 3 chemical domain LLMs (ChemLLM [28], ChemDFM
[25], and LlaSMol-Mistra [41]) are evaluated.

2. Methodology

In this section, the proposed dataset, evaluation benchmark,
and the developed LLM will be sequentially introduced.

2.1. ChemEData

The critical determinant in improving LLMs’ scientific prob-
lem-solving capabilities lies in the construction of large-scale,
high-quality datasets. In the context of domain-specific applica-
tions in chemical engineering, this technology necessitates the
creation of a purpose-built textual corpus. In response, we have
constructed ChemEData, a high-quality collection of chemical
engineering texts serving as the foundation for both the
pre-training and fine-tuning stages of our specialized LLM. This
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Table 1

Statistics of pre-training data.

Data source Document Size
Scholarly paper 1.06 million 30.5GB
Chemical patent 5.79 million 58.9 GB
Professional book 1200 106.2 GB

dataset enables the model to acquire domain expertise critical
for excelling in specialized tasks. Specifically, the pre-training
stage leverages an extensive volume of unlabeled raw text,
comprising ~19 billion tokens derived from over 6.85 million
chemical papers and patents and 1200 textbooks. This exten-
sive corpus facilitates the transfer of domain-specific
knowledge to the LLM through self-supervised learning. For the
fine-tuning stage, we have curated more than 2.75 million
high-quality synthetic instructions, encompassing ~1 billion
tokens, drawn from various chemical engineering databases.
These instructions are designed to enhance the LLMs' ability to
execute domain-relevant directives within professional con-
texts.

2.1.1. Pre-training data

The text corpus collected for model pre-training comprises
three components: papers published in high-quality journals,
searchable patents retrieved from websites, and do-
main-specific textbooks. The statistics of the collected corpus
are summarized in Table 1, which provides an overview of its
volume and diversity. This comprehensive dataset forms the
cornerstone for the pre-training efforts, enabling the model to
assimilate a wide range of professional knowledge. Such a da-
taset is essential for achieving advanced performance in do-
main-specific tasks.

This work constructs a pre-training corpus for a chemical
engineering LLM by applying a multimodal deconstruction and
restructuring approach to a curated collection of raw scientific
literature. The processing workflow of the corpus, as elaborat-
ed in Fig. 1, consists of the following sequential steps: First, a
preliminary screening is performed using keyword searches
(e.g., "chemical engineering") across academic databases and

patent repositories. The process prioritizes peer-reviewed arti-
cles published within the last five years, highly cited publica-
tions, and core patent documents to establish a foundational
corpus. Next, optical character recognition (OCR) technology
[42] is applied to parse PDF documents into structured for-
mats, decomposing full-text content into modular units such as
text paragraphs, figures, and tabular data. The document pars-
ing process involves initial parsing using the in-house devel-
oped integrated PDF parsing tool, followed by a three-tier data
correction mechanism customized for chemical documents.
This pipeline includes: (1) fixing symbol confusion using prede-
fined character mapping tables (e.g., 0—0, 1-1, 9-g), (2) iden-
tifying and formatting molecular formulas based on regular
expression templates (e.g., auto-completion of subscript tags),
and (3) standardizing unit conversions with the Pint library for
unit conversion. When evaluated on a manually annotated da-
taset comprising 100 research papers, the system achieved an
overall recognition accuracy of 90%. This step is crucial as it
breaks down complex scientific documents into more man-
ageable and analyzable components. To mine table-text rela-
tionships, a context-aware semantic matching approach is em-
ployed: explicit correlations between datasets and descriptions
are established by identifying table reference markers (e.g., "as
shown in Table 1") and analyzing keyword co-occurrence pat-
terns in adjacent paragraphs. Subsequently, a knowledge object
tagging schema is designed and implemented. Text is tagged
based on paragraph segmentation, while tables and figures are
tagged according to their native numbering. This tagging sys-
tem provides a standardized way to identify and organize the
knowledge objects. Finally, a standardized data organization
framework is employed for the structured storage of the
knowledge objects and their relationships while explicitly pre-
serving their relations. The resulting structured corpus data
greatly facilitates the pre-training of the chemical engineering
LLMs, enabling them to better learn and understand the com-
plex knowledge within the chemical engineering domain.

2.1.2. Fine-tuning data
In the fine-tuning stage, to enable the model with the ability
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Fig. 1. Flowchart for the conversion of scientific literature into the pre-training corpus.
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Table 2

The supervised fine-tuning data contains 1.24 million instruction-tuning Q&A.

Type Catalyst Simulation Equipment Separation Safety Heat Engineering

Multiple choice 24600 43900 48600 96700 9200 10800 8000

True/False 14100 46800 42400 80100 5800 10000 7000

Fill-in-the-blank 19500 39900 44100 83100 9000 10000 2000

Calculation 30500 54200 63700 116700 13100 12500 5000

Short answer 31500 46300 63000 117500 13000 11200 7000

Sum 120200 231100 261800 494100 50100 54500 29000
1240800

to understand task instructions for multitasking, we con-
structed a large-scale, comprehensive, and high-quality dataset
through self-supervised data synthesis for instruction tuning.
This dataset covers over 2.75 million professional instructions
and is divided into three levels: foundational knowledge, ad-
vanced knowledge, and professional skills.

The foundational knowledge and advanced knowledge lev-
els were sourced from open-source datasets. After a rigorous
screening process, 1.51 million high-quality data entries were
retained from these sources. For the professional skills level, to
better align with chemical engineering tasks, we created a
training set of 1.24 million entries related to majors in the
chemical industry field. Table 2 presents the distribution of
1.24 million instruction-tuning question-answering (Q&A)
within the supervised fine-tuning data. These pairs are system-
atically categorized across five task types: multiple choice,
true/false, fill-in-the-blank, calculation, and short answer, and
seven specialized chemical engineering domains: Catalyst, Sim-
ulation, Equipment, Separation, Safety, Heat, and Engineering.

To construct such a dataset, a three-round prompt engi-
neering methodology “Question Generation - Answer Genera-
tion - Quality Check” was implemented by integrating few-shot
examples and self-supervised learning methods, as schemati-
cally outlined in Fig. 2. The process initiates with the
first-round prompt engineering of “Question Generation”,
which involves extracting information from raw domain litera-
ture such as textbooks and patents. The parsed fragments are
then utilized to generate five types of questions: Multiple
choice (conceptual distinctions), Fill-in-the-blank (terminology
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recall), True/False (fact verification), Short answer (descriptive
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swer. This approach maximizes the authenticity of the answer
sources, thereby enhancing the usability of the answers. Spe-
cifically, for answer generation, we employed multiple LLMs,
including Spark model, GPT-40, and LLaMA-3-70B, to produce
candidate responses. These responses are then evaluated using
a model-based scoring system with four criteria, as outlined in
Table 3. To enhance the LLMs’ ability to assess answer quality,
we provided illustrative scoring examples. Each LLM then re-
turns a score ranging from 0 to 5 based on the predefined crite-
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high-quality data. An example of a scoring result from GPT-40
is presented in Supplementary Table S1 to illustrate this pro-
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Table 3
Criteria for model-based scoring of answer generation.
Dimension Definition Score range
Objectivity the question should have a unique and objective answer under unified evaluation standards 0-5
Rationality the question and answer must be complete and clear, without omitting critical information 0-5
Accuracy the reasoning chain should be checked step by step to ensure the absence of factual, logical, computational, 0-5

or knowledge errors
Generalizability questions and answers should be based on general domain knowledge rather than relying on specific papers 0-5

or patents

cess. the model’s aptitude for handling complex tasks, including

“Quality Check” is a continuous and crucial aspect. In re-
sponse to this issue, we have established a comprehensive set
of quality control guidelines designed to direct LLMs in assist-
ing the evaluation of the logic, comprehensiveness, and accu-
racy of both the questions and answers in the dataset. Any data
that fails to meet these standards is discarded. Considering that
reliance on a singular Q&A format may undermine the model's
robustness, we manually designed at least 30 instruction tem-
plates for each of the five question types in the supervised fi-
ne-tuning data. The comprehensive dataset, which passes the
quality check, will be embedded into the corresponding tem-
plates based on the task type, thereby diversifying and enrich-
ing the expression of the questions. Detailed descriptions and
examples for each task can be found in Supplementary Table
S2. Ultimately, a high-quality fine-tuning dataset is formed by
integrating generated questions, crawled knowledge, and the
results of quality screening. This comprehensive dataset is de-
signed to train models for proficient question-answering in the
chemical engineering domain.

2.2. ChemEBench

To evaluate the effectiveness of LLMs in tackling chemical
engineering queries and their proficiency in comprehending
and applying chemical engineering knowledge, we have estab-
lished a multidimensional benchmark called ChemEBench. This
benchmark comprises three progressive stages designed to
evaluate the capabilities of LLMs in this specialized domain
comprehensively:

1. Foundational knowledge level (L1). This initial level fo-
cuses on developing a robust comprehension of core domain
knowledge. During this stage, the model’s proficiency in under-
standing fundamental concepts in chemical engineering is as-
sessed, with a focus on its capacity to accurately interpret basic
principles and terminology. This evaluation ensures that the
model possesses a solid foundation upon which a more ad-
vanced understanding can be built.

2. Advanced knowledge level (L2). The second level shifts to
a deeper understanding of advanced domain knowledge. Here,
the model is evaluated on its ability to understand properties
and molecular structures. This assessment is designed to
demonstrate the model’s advanced level of expertise, which
extends beyond the foundational concepts and into more intri-
cate areas of chemical engineering.

3. Professional skill level (L3). The final level focuses on the
model's high-level professional capabilities. This stage assesses

problem-solving in real-world scenarios and the practical ap-
plication of chemical engineering knowledge. By evaluating the
model's performance in these areas, its readiness for re-
al-world applications in the chemical engineering domain can
be effectively gauged.

By integrating these three levels, ChemEBench provides a
structured and comprehensive evaluation framework. This
framework not only ensures that the model has a solid founda-
tion in chemical engineering fundamentals but also confirms its
capacity to demonstrate advanced reasoning abilities and prac-
tical application skills necessary for tackling professional-level
tasks within the discipline.

Table 4 presents detailed statistics of ChemEBench. The
benchmark is structured into 15 categories and includes 5
question types. This structure ensures a comprehensive evalu-
ation of a model's capabilities across diverse question formats.
And the diversity of question types is essential for thoroughly
assessing a model's ability to handle different presentations
and responses to chemical engineering queries. Furthermore,
ChemEBench covers a broad range of chemical engineering
topics, from fundamental principles to specialized fields such as
catalysis, simulation, safety, and engineering construction. This
breadth and depth highlight the benchmark's effectiveness in
evaluating models' proficiency in accurately recognizing and
processing a wide spectrum of chemical engineering inquiries.

Fig. 3 depicts the distribution of questions within
ChemEBench, totaling 2835 questions across various catego-
ries and question types. The bar chart on the left illustrates the
number of questions distributed among 15 different categories.
Notably, the "Equipment” category, which encompasses six
subcategories—general equipment, reactor, dryer, centrifuge,
pump and tower, has the highest number of questions, totaling
610. "Engineering Construction" includes ten subcategories
and has 475 questions. "Separation” (three subcategories) and
"Safety" (six subcategories) collectively contains 300 questions.
Additionally, the "Fluid Simulation" category, with four subcat-
egories, has 250 questions. In contrast, category such as "Mo-
lecular Property Prediction” have the fewest questions, with
only 25 questions. The pie chart on the right presents the dis-
tribution of questions based on their types. Among these,
Short-answer questions (SA) are the most common, accounting
for 885 questions. Multiple-choice questions (MCQs) follow
with a total of 820 questions. True/False (T/F) questions to
545, Fill-in-the-blank (FB) questions amount to 405, and Nu-
merical Calculation (NC) questions to 180. This detailed distri-
bution analysis provides insights into the composition of the
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Fig. 3. Distribution of questions in ChemEBench. The bar chart shows the number of questions in different sub-domains. The pie chart shows ques-
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dataset, which is crucial for evaluating the performance of
LLMs in chemical engineering tasks.

2.3. ChemELLM

In this section, we outline the two-stage specialization pro-
cess for ChemELLM, an LLM with a 70 billion parameter con-
figuration tailored specifically for chemical engineering appli-
cations, as depicted in Fig. 4. The training pipeline consists of
two essential stages: domain pre-training and supervised fi-
ne-tuning within the chemical engineering domain. During the
domain pre-training stage, ChemELLM is exposed to a vast
corpus of domain-specific knowledge extracted from chemical
engineering papers and textbooks. This extensive exposure
enables the model with a deep understanding of the terminol-
ogy, concepts, and methodologies unique to the field. After
pre-training, the instruction-tuning phase further refines the
model's capabilities to understand and follow instructions rel-
evant to chemical engineering. This stage equips ChemELLM
with the specific language patterns, technical terms, and task
structures prevalent in professional chemical engineering set-
tings, thereby enhancing its performance on domain-specific
tasks. Through this two-stage specialization process,
ChemELLM attains a distinct proficiency in the chemical engi-
neering domain.

2.3.1. Domain pre-training

The datasets utilized for training general-purpose LLMs
typically contain a wide range of topics, but they tend to be
relatively shallow in any specific area. As a result, although

these LLMs have successfully gained strong natural language
understanding and reasoning abilities, they often exhibit limi-
tations when confronted with tasks requiring in-depth special-
ized knowledge [43]. Therefore, to address the limitations of
general-purpose LLMs in specialized knowledge, we conducted
domain pre-training on the foundational LLM, Spark-70B, using
a comprehensive chemical engineering corpus consisting of 19
billion tokens. In selecting the Spark model as the foundation
model for ChemELLM over other comparable LLMs, we priori-
tized its demonstrated superiority in key performance metrics.
As evidenced in Supplementary Table S3, the Spark model
demonstrates exceptional performance across a spectrum of
critical domains, including logical reasoning, mathematical
problem-solving, and coding efficiency. Notably, the Spark 4.0
Turbo model, updated in January 2025, demonstrates superior
performance to GPT-40 across multiple domains, particularly
in mathematics and coding tasks. Across seven standardized
evaluation dimensions, the model achieved a performance im-
provement of 4.42 points compared to GPT-4o. This perfor-
mance makes the Spark model particularly well-suited to meet
the diverse needs of chemical engineering applications. We

Domain Instruction Instruction Data
Data Generation
Pre-training Data

Pre-training

J ChemELLM

Domain Corpus

Fine-tuning

Evaluation
ChemEBench

Fig. 4. The overall framework of ChemELLM.

Spark-70B




Jibin Zhou et al. / Chinese Journal of Catalysis 73 (2025) 159-173 165

initialized ChemELLM with the parameters of Spark-70B and
employed the Adam optimizer to fine-tune the model parame-
ters during training. The learning rate was incrementally in-
creased from 0 to 3x10-5 using a warm-up strategy, then grad-
ually decreased to 3x10-¢ following a cosine decay schedule to
ensure stable and smooth convergence. Besides, to improve
training efficiency, we adopted a multi-dimensional parallel
strategy that incorporated data parallelism, model parallelism,
and pipeline parallelism [44]. The pre-training of ChemELLM
was conducted on 128 Huawei Ascend 910b GPUs, completing
one epoch of training on the 19 billion tokens dataset. This
approach enabled ChemELLM to acquire additional do-
main-specific knowledge while retaining the foundational ca-
pabilities inherited from Spark-70B.

2.3.2. Supervised fine-tuning

During the supervised fine-tuning (SFT) stage, our goal is to
align ChemELLM with the specific linguistic patterns and ter-
minologies prevalent in chemical engineering. To this end, we
fine-tuned the ChemELLM using a curated dataset comprising
2.75 million high-quality data, totaling around 1 billion tokens.
For weight initialization, we utilized the ChemELLM model
parameters obtained after domain-specific secondary
pre-training. The optimization process utilized the Adam opti-
mizer with an initial learning rate of 1x10-5, incorporating a
cosine decay strategy to adjust the learning rate during fi-
ne-tuning. The training process was executed on 128 Huawei
Ascend 910B GPUs over three epochs, balancing computational
efficiency with model convergence. The Cross-Entropy Loss
curve as a function of iterations is presented in Supplementary
Fig. S1. The visualization provides a comprehensive represen-
tation of the loss function's optimization trend during training,
offering an intuitive assessment of the training performance.
During the supervised fine-tuning stage, the high-quality SFT
data enabled ChemELLM to enhance its understanding of
chemical engineering tasks, thereby facilitating the resolution
of knowledge-based queries in the chemical engineering do-
main.

2.4. Baseline models

For comparative analysis, we select 13 widely used and
high-performing LLMs. These LLMs are strategically catego-
rized into two types based on their intended applications. The
organizations, model sizes, and accessible approaches of these
modes are detailed in Table 5.

General-purpose LLMs: These models represent the cutting
edge of language modeling and are designed to handle diverse
tasks across multiple domains. The selected models include
03-mini, O1-Preview and GPT-40 by Open Al [33], Claude-3.7
by Anthropic [34], DeepSeek-R1 [36] and DeepSeek-V3[37] by
DeepSeek, Kimi released by Moonshot Ai [38], GLM-4 by Zhipu
[39], Baidu’s ERNIE-4.0 [40], LLaMA 3.1-70B by Meta Platforms
[35].

Scientific-domain LLMs: These models have been trained on
specialized scientific data and have domain-specific knowledge

to perform specialized tasks. Our selection focuses on models
tailored for chemistry, including ChemDFM-13B [25], Chem-
LLM-7B-Char-1.5-SFT [28], and LlaSMol-Mistral-7B [41].

In our experimental design, each input begins with a system
prompt that clearly delineates the types and categories of ques-
tions to be addressed. For each specific task, a standardized
prompt template is employed. As illustrated in Fig. 5, using the
Fill-in-the-blank as an example, we instruct ChemELLM to
adopt the role of a chemical engineer and specify the tasks it is
required to accomplish. The content enclosed within the pa-
renthesis is tailored for each task, aligning with its specific in-
puts and outputs. The responses generated from ChemELLM
are confined to solely returning the desired output without any
explanations.

2.5.  Evaluation criteria

We employ a set of evaluation metrics and assessment
methodologies tailored to the diverse requirements of different
task types. In particular, LLMs are used as judgment tools by
designing distinct prompt templates for each task type to guide
the LLMs in extracting or assessing predicted responses
[26,45]. The specific prompt templates and detailed scoring
guidelines are listed in Supplementary Figs. S2-S6. For each
question, we design tailored evaluation rules and utilize the
text comprehension capabilities of LLMs, coupled with specific
evaluation code, to extract or score the answers. For tasks that
allow multiple valid formulations, such as calculation and short
answer questions, we embed the model's predicted answer, the
manually annotated standard answer, and the corresponding
scoring criteria into a carefully designed prompt template. By
utilizing the semantic understanding capabilities of LLMs, we
can efficiently evaluate and assign a score to the given question.
For question types with a unique correct answer, such as Mul-
tiple-choice and True/False questions, we incorporate the
standard answer along with explicit extraction rules into the
prompt template. Utilizing LLMs, we can rapidly and accurately
extract the predicted results. Through these approaches, we
effectively leverage the semantic understanding capabilities of
LLMs to systematically automate and standardize the evalua-
tion of results for various question types.

For tasks including True/False questions, Multiple choice
questions, Fill-in-the-blank, molecular translation and genera-
tion, property prediction, and reaction prediction, we employ
LLMs to generate answers and subsequently compare them
against the corresponding ground truth answers. Accuracy is
used as the performance metric and is calculated as follows:

Number of correct predictions

Accuracy = x 100% (1)

Total number of samples

It is important to note that for the Fill-in-the-blank ques-
tions, potential differences in expression between the predicted
and correct answers necessitate the use of LLMs as a judgment
mechanism. Specifically, by designing tailored prompts, the
LLM evaluates the discrepancies between the predicted and
correct answers for each blank and subsequently calculates the
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Table 4
The statistics of ChemEBench. It includes 3 progressive levels, evaluating 15 dimensions of LLMs capabilities and featuring 101 distinct chemical
tasks.

Level Category Task Type (Metric)
subjective Q&A of
Found- domain objective question multiple choice(Acc), fill-in-the-blank (Acc), true/false (Acc)
ational knowledge
Knowledge objective ngA . . .
about domain subjective question short answer (score), calculation (score)
knowledge
molecular name SMILES to IUPAC SMILES to IUPAC (Acc)
translation
molecular name  molecular name generation . _—
generation from text description molecular name generation from text description (Score)
Advanced mOIeC.Uk.H de- generate text descriptic.)ns generate text descriptions based on molecular SMILES (Score)
Knowledge scription ba.se.d on molecular smiles
Molecular‘ PI«.OP_ pll"edlctlon of molecular proPer— prediction of molecular properties based on molecular SMILES(Acc)
erty Prediction ties based on molecular smiles
. . predict the reactants from the products (Acc), predict the products from the reactants
reaction predic- . - . L . L .
tion reaction prediction (F1), and predict whether the reaction is high yield based on the reaction information
(Acc)
catalyst deactivation short answer (score)
catalyst catalyst stability short answer (score)
catalyst industrial process short answer (score)
general equipment multiple choice (Acc), fill-in-the-blank (Acc), true/false (Acc), short answer (score)
reactor multiple choice (Acc), Fill-in-the-blank (Acc), true/false (Acc), short answer (score)
equipment dryer multiple choice (Acc), fill-in-the-blank (Acc), true/false (Acc), short answer (score)
centrifuge multiple choice (Acc), fill-in-the-blank (Acc), true/false (Acc), short answer (score)
pump multiple choice (Acc), fill-in-the-blank (Acc), true/false (Acc), short answer (score)
tower multiple choice (Acc), fill-in-the-blank (Acc), true/false (Acc), short answer (score)
computational fluid dynamics multiple choice (Acc), short Answer (score)
o . discrete element method multiple choice (Acc), fill-in-the-blank (Acc), true/false (Acc), short answer (score),
fluid simulation calculation (score)
machine learning method short Answer (score)
direct numerical simulation short answer (score), calculation (score)
absorption multiple choice (Acc), fill-in-the-blank (Acc), true/false (Acc), short answer (score)
separation distillation multiple choice (Acc), fill-in-the-blank (Acc), true/false (Acc), short answer (score)
extraction multiple choice (Acc), fill-in-the-blank (Acc), true/false (Acc), short answer (score)
. heat heat exchanger multiple choice (Acc), fill-in-the-blank (Acc), true/false (Acc), short answer (score),
Professional calculation (score)
Skill regulations and standards multiple choice (Acc)
process safety multiple choice (Acc), true/false (Acc), short answer (score)
environment safety multiple choice (Acc), true/false (Acc), short answer (score)
safety . .
personnel safety multiple choice (Acc)
equipment safety multiple choice (Acc)
hazardous chemistry multiple choice (Acc), true/false (Acc), short answer (score)
economics economics multiple choice(Acc), fill-in-the-blank (Acc), true/false (Acc), short answer (score)
. . . multiple choice (Acc), fill-in-the-blank (Acc), true/false (Acc), short answer (score),
electrical engineering .
calculation (score)
automatic control multiple choice (Acc), true/false (Acc), short answer (score)
material engineering multiple choice (Acc)
equipment engineering multiple choice (Acc), true/false (Acc), short answer (score)
engineering civil engineering multiple choice (Acc)
construction thermal engineering multiple choice (Acc)

water supply and drainage multiple choice (Acc)

engineering
general plot plan multiple choice (Acc)
chemical system multiple choice (Acc), true/false (Acc)

fire protection engineering multiple choice (Acc)
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You are a chemical engineer, and your task is to complete the fill-in-the-blank question:
In the absorption process, an increase in operating pressure does not always lead to the () absorption rate.

Please fill in the content within the parentheses without any additional explanations or other information.

Fig. 5. The standardized prompt template for the task of fill-in-the-blank.

accuracy rate for the current question. Similarly, for subjective
questions, such as short-answer questions, computational
questions, and molecular description tasks within the
ChemEBench assessment system, we also adopt LLMs to evalu-
ate the responses. In these cases, the correct answer is used as
a reference to assess the quality of the predicted answer. Ulti-
mately, a score within the range of [0, 1] is utilized to signify
the degree of correctness of the predicted answer.

Furthermore, for multi-label classification tasks, such as the
products from the reactants, we employ the F1 score as the
evaluation metric. The F1 score, which represents the harmon-
ic mean of precision and recall, is computed as follows:

2XPXR
_ 2
p1 20X @

TP
P=7rv7p 3)

TP

R=TpsiN (4)
where TP is true positive, FP is false positive, FN is the false

negative.

Finally, to comprehensively evaluate the overall perfor-
mance of LLMs across multiple tasks, the mean score is intro-
duced in this study, and the calculation formula is as follows:

N
Mean Score = w 5)
i=1 Wi
where N denotes the total number of tasks, W represents the
number of samples in the current task, and p signifies the index
value of the current task, which corresponds numerically to

metrics such as F1, accuracy, or overall score.
3. Results and discussion

In this section, we conduct a thorough evaluation of
ChemELLM using the ChemEBench to assess its performance
relative to selected LLMs. Our objective is to meticulously
document and analyze the performance of ChemELLM across a
diverse array of tasks. This rigorous assessment provides
in-depth insights into ChemELLM’s capabilities in real-world
chemical engineering applications, highlighting its strengths
and identifying potential areas for improvement. By comparing
it against state-of-the-art LLMs, we demonstrate the ad-
vantages of domain-specific specialization in enhancing model
proficiency and applicability.

3.1. Overall performance

Firstly, we evaluated LLMs on ChemEBench. We then com-
puted the mean score of each model across the primary evalua-
tion dimensions. Table 6 summarizes the performance rank-
ings of the LLMs, providing valuable insights into the strengths
and weaknesses of each model. The results indicate that signif-
icant differences exist among the LLMs. Representative exam-

ples demonstrating ChemELLM’s performance on do-
main-related problems are provided in Supplementary Tables
S4-S18.

In overall performance evaluations, ChemELLM attains the
highest score (72.90) among all LLMs, outperforming the sec-
ond-ranked DeepSeek-R1 (70.33) by nearly two percentage
points. O1-Preview (65.76) and DeepSeek-V3 (62.96) follow
closely behind. Models such as Claude 3.7, 03-mini, ERNIE 4.0,
GPT-40, and GLM-4 rank fifth through ninth, respectively. At
the lower end, Kimi (50.24) and LLaMA 3.1-70B (45.26) show
clear limitations on these specialized tasks. ChemELLM'’s supe-
rior performance highlights its benefits from specialized archi-
tectural and training advantages that are finely attuned to the
demands of chemical engineering tasks, even with a potentially
smaller parameter size and training corpus. In contrast, the
specialized chemical LLMs, including ChemDFM-13B, Chem-
LLM-7B-Char-1.5-SFT, and LlaSMol-Mistral-7B, which rank
twelfth, thirteenth, and fourteenth, respectively, demonstrate
significant shortcomings in addressing the diverse challenges
posed by ChemEBench. Collectively, these findings illustrate
that ChemELLM strikes an optimal balance between model
complexity and performance, making it a highly promising
candidate for advanced applications in chemical engineering.

Additionally, to evaluate the potential impact of do-
main-specific pre-training and fine-tuning on ChemELLM’s
general-purpose capabilities, we conducted a comprehensive
assessment of the model's performance on general language
tasks such as text generation and understanding. The experi-
mental setup involved comparing ChemELLM against several
general-purpose LLMs, including DeepSeek-R1, GPT-4o,
01-Preview, and the Spark model. The results, summarized in
Supplementary Table S19, indicate that while ChemELLM ex-

Table 5

Detailed information of the LLMs chosen for evaluation in our experi-
ments. The “size” column represents the number of parameters of each
model. The “access” column represents approaches to obtain models
through API or loading models with weights.

Model Developer Size (parameter) Access
03-mini OpenAl undisclosed API
01-Preview OpenAl undisclosed API
GPT-40 OpenAl undisclosed API
Claude-3.7 Anthropic undisclosed API
LLaMA 3.1-70B Meta 70B weights
DeepSeek-R1 DeepSeek 671B API
DeepSeek-V3 DeepSeek 671B API
Kimi Moonshot Al undisclosed API
GLM-4 Zhipu Al undisclosed API
ERNIE-4.0 Baidu undisclosed API
ChemDFM-13B Suzhou Lab 13B weights
ChemLLM-7B-Char-1.5-SFT Shanghai AlLab 7B weights
LlaSMol-Mistral-7B 0oSuU 7B weights
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hibits a slight performance drop on certain general tasks com-
pared to the foundation Spark model, it retains competitive
capabilities relative to other general-purpose LLMs. This
demonstrates that ChemELLM's domain-specific training
strategy effectively enhances its performance on chemical en-
gineering tasks without significantly compromising its general
language abilities.

3.2. Performance on each level

In the foundation knowledge dimension, L1 reflects the
model's grasp and memory of scientific knowledge.
DeepSeek-R1, leveraging its extensive knowledge reserve and
sophisticated model architecture, achieves the highest perfor-
mance with a mean score of 82.19, demonstrating a clear supe-
riority in fundamental tasks. DeepSeek-V3, equipped with 671
billion parameters, also exhibits remarkable learning capabili-
ties, resulting in superior performance in relevant tasks. Re-
markably, ChemELLM, despite having only 70 billion parame-
ters, achieves a higher accuracy than DeepSeek-V3, underscor-
ing its exceptional adaptability and specialization in chemical
engineering tasks. This performance highlights that in the
chemical engineering domain, model performance is not de-
termined solely by the number of parameters but also by the
effective integration of domain-specific knowledge.

In the advanced knowledge dimension, L2 measures the
model's comprehension and exploration abilities within scien-
tific contexts across 5 critical tasks (molecular name transla-
tion, molecular name generation, molecular description, mo-
lecular property prediction, and reaction prediction). Overall,
ChemELLM achieves a strong performance with a score of
50.25, significantly outperforming the second-best model,
ChemDFM-13B, which scores 28.25. In contrast, gen-
eral-purpose LLMs struggle with these tasks, highlighting the
challenges they face in adapting to the nuanced demands of
chemical engineering.

In terms of the professional skill dimension (L3), which
evaluates the model’s capability to handle specialized tasks in
chemical engineering. ChemELLM achieves a leading score of
74.72, outperforming DeepSeek-R1’s 73.49. While DeepSeek-
R1 benefits from powerful reasoning abilities and a broad
knowledge base, ChemELLM'’s advantage reflects its superior
domain adaptation. These findings underscore ChemELLM’s
exceptional specialization and robust competitiveness in han-
dling professional-level challenges within chemical engineer-
ing.

3.3.  Performance on different question types

As shown in Table 7, the performance of the models across
different question types within the ChemEBench evaluation
system is presented. By analyzing the performance, we can
categorize the question types into three distinct categories
based on their difficulty levels:

Firstly, multiple choice questions, which require selecting
the correct answer from a set of provided options, are generally
less difficult compared to other question types. LLMs endowed

with robust textual comprehension capabilities and expansive
knowledge repositories generally exhibit commendable profi-
ciency in this domain. As depicted in Table 7, DeepSeek-R1 and
ChemELLM achieve the highest and second-highest accuracy,
with scores of 78.54 and 77.32, respectively, evidencing their
superior performance in objective tasks.

Secondly, True/False and fill-in-the-blank questions, which
primarily assess the LLM’s depth of chemical knowledge, pre-
sent greater difficulty than multiple-choice questions. Notably,
ChemELLM scores 80.18 on the True/False problems, deci-
sively outperforming the second-ranked O1-Preview model,
which scores 71.01. In fill-in-the-blank tasks, ChemELLM
achieves a score of 66.60, below the top-ranked DeepSeek-R1
(72.68), yet still demonstrating its robust domain expertise.
These outcomes underscore ChemELLM's significant capabili-
ties and its potential for comprehending chemical engineering
knowledge.

Finally, both short answer and calculation questions are
categorized as subjective tasks. Short answer questions pri-
marily assess the model's ability to accurately address specific
chemical engineering problems, while calculation questions
evaluate the model's logical reasoning processes and the cor-
rectness of its final results. These two tasks not only assess the
model's grasp of chemical knowledge but also its ability to
navigate and resolve complex logical relationships. Experi-
mental results indicate that ChemELLM achieves a score of
68.81 on short-answer tasks, the highest performance among
the LLMs. However, in calculation tasks, O3-mini demonstrates
superior performance, achieving a score of 77.64. While
ChemELLM excels in short-answer tasks, its comparatively
lower performance in calculation tasks suggests a need for
further refinement in logical reasoning and calculation profi-
ciency.

3.4. Performance on ChemLLMBench

Building on the evaluation in Section 3.1, where ChemELLM
demonstrated clear advantages across chemical engineering

Table 6
Performance of the selected LLMs and ChemELLM. The best and sec-
ond-best results are labeled in bold and underlined, respectively.

Model L1 L2 L3 Mean score Overall rank
03-mini 74.72 23.13 59.74 58.85 6
01-Preview 7610 23.88 67.94 65.76 3
GPT-40 62.81 23.19 5848 56.48 8
Claude-3.7 7038 21.76 64.01 61.75 5
LLaMA 3.1-70B 4848 10.25 47.84 45.26 11
DeepSeek-R1 82.19 14.75 73.49 70.33 2
DeepSeek-V3 69.83 17.13 6597 62.96 4
Kimi 51.12 16.25 53.06 50.24 10
GLM-4 5495 11.75 57.24 53.77 9
ERNIE-4.0 57.01 26.62 6049 57.71 7
ChemDFM-13B 29.71 2825 31.69 31.22 12
ChemLLM-

7B-Char-1.5-SFT 20.10 6.50 2197 20.67 13
LlaSMol-Mistral-7B 1690 26.38 19.64 19.81 14
ChemELLM 73.88 50.25 74.72 72.90 1
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Table 7

Performance of the selected LLMs and ChemELLM on different question types. The best and second-best results are labeled in bold and underlined,

respectively.

Model Objective task Subjective task Mean  Overall
multiple choice true/false fill-in-the-blank calculation short answer score rank

03-mini 59.63 62.94 53.12 77.64 54.41 58.85 6
01-Preview 71.46 71.01 61.46 72.22 57.88 65.75 3
GPT-40 63.78 56.88 54.25 56.80 51.09 56.69 8
Claude-3.7 67.93 63.49 55.97 67.78 56.37 61.75 5
LLaMA 3.1-70B 52.81 60.73 37.81 39.03 33.43 45.26 11
DeepSeek-R1 78.54 69.36 72.68 76.67 60.96 70.33 2
DeepSeek-V3 72.93 61.28 62.63 63.89 54.72 62.96 4
Kimi 53.05 56.88 46.19 43.89 46.69 50.24 10
GLM-4 60.98 62.57 51.33 43.20 4494 53.77 9
ERNIE-4.0 64.63 64.22 54.50 4931 50.45 57.71
ChemDFM-13B 29.51 43.67 25.61 11.39 31.75 31.23 12
ChemLLM-7B-Char-1.5-SFT 21.10 35.05 21.14 5.14 14.35 20.67 13
LlaSMol-Mistral-7B 13.90 48.81 13.83 1.67 13.84 19.81 14
ChemELLM 77.32 80.18 66.60 64.93 68.81 72.90 1

tasks on ChemEBench, we further assessed its performance
using ChemLLMBench [17]. ChemLLMBench is a comprehen-
sive benchmark encompassing a wide range of chemis-
try-related topics, making it an excellent supplement to
ChemEBench. Table 8 presents a detailed comparison of
ChemELLM against several LLMs, including DeepSeek-R1, GPT-
40, and O1-Preview.

ChemELLM consistently outperforms other models in prop-
erty prediction tasks, achieving the highest accuracy across all
datasets (c, BBBP, ClinTox, HIV, and Tox21 [46]). This high-
lights its strong ability to understand and predict molecular
properties, which is crucial for applications in drug discovery,
material science, and other chemistry domains [47]. However,

in yield prediction tasks, ChemELLM falls short compared to
other models, suggesting further improvement is needed. In
name prediction tasks, ChemELLM's performance is mixed. It
excels at converting SMILES to IUPAC names and vice versa, but
struggles with IUPAC to formulas and SMILES to formulas. In
text-based molecule design and molecule captioning,
ChemELLM achieves significantly higher BLEU and score met-
rics, highlighting its strength in generating and interpreting
textual descriptions of molecules. This is highly valuable for
natural language understanding in chemistry. Additionally,
ChemELLM also leads in reactant prediction, retro synthesis,
and reactant selection with higher F1 scores. While its perfor-
mance in solvent and ligand selection is comparable or slightly

Table 8
Performance comparison of different LLMs on ChemLLMBench tasks. The best and second-best results are labeled in bold and underlined, respec-
tively.
. . Models
Tasktype Quantity Metric GPT-40 01-Preview DeepSeek-R1 ChemELLM
BACE 100 ACC 35 40 38 64
BBBP 100 ACC 61 56 52 67
Property prediction ClinTox 100 ACC 50 52 315 57.5
HIV 100 ACC 33 78 40 81
Tox21 1044 ACC 80.27 819 81.03 83.14
Yield prediction Buchwald-Hartwig 100 ACC 62 75 63 61
Suzuki-Miyaura 100 ACC 52 65 61 48
iupac2formula 100 Exact 28 65 38 4
Name prediction smiles2iupac 100 Exact 1 0 0 24
iupac2smiles 100 Exact 8 14 9 20
smiles2formula 100 Exact 9 42 24 5
. text-based molecule design 100 BLEU 42.56 51.76 58.12 75.71
Molecule analysis o
molecule Captioning 100 score 20 23.5 18.25 26.5
reactant Prediction 100 F1 3 32.67 25 61
retro synthesis 100 F1 4.9 1413 11.5 33.83
Synthetic analysis solvent selection 100 F1 51 51 51 51
reactant selection 100 F1 24.7 20.83 26 50.47
ligands selection 100 F1 15.27 18.19 16.9 17.97
Overall 2744 mean 48.78 56.67 51.36 58.89
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inferior to other models, this still reflects its capabilities in
synthetic tasks.

Overall, with a mean score of 58.89 on ChemLLMBench,
ChemELLM outperforms all other models. This reinforces that
ChemELLM not only maintains its strengths in chemical engi-
neering tasks but also excels in typical chemistry challenges. It
further emphasizes ChemELLM’s value for both theoretical
research and practical engineering development, where con-
sistent and robust performance across diverse task types is
essential.

3.5. The influence of few-shot learning

Table 9 presents a detailed comparison of each LLM’s per-
formance under 3-shot versus 0-shot settings across 3 levels
(L1-L3) and 15 dimensions (C1-C15). Overall trends reveal that
the effectiveness of few-shot prompting depends heavily on
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task complexity and model capacity.

For tasks at the L1 level, which evaluate foundational
knowledge, few-shot learning has a limited impact. Most LLMs
either maintain their performance or experience slight degra-
dation or improvement, indicating that models already possess
sufficient knowledge. For example, ChemELLM'’s performance
on task C2 increases slightly from 63.56 (0-shot) to 66.35
(3-shot), while on task C1, it remains stable (80.95 to 80.36).
Other models like DeepSeek-R1 and LLaMA 3.1-70B exhibit
mixed results, with some improvements and others declines.

In the L2 level, which focuses on advanced knowledge,
3-shot prompts consistently enhance model performance.
These tasks are highly specialized, and relevant examples ena-
ble models to better understand task requirements. Notably,
ChemELLM demonstrates significant improvements on tasks
C5 (45.00 to 53.33) and C7 (52.94 to 54.12). Other models also
benefit, such as Claude-3.7 on task C4 (16.67 to 30.00) and

;‘:asll'jlloet(\)lersus 0-shot performance across LLMs and tasks. Bold indicates performance improvement compared to the 0-shot setting.
Category L1 L2 L3
Model a4 @< @G @ G 6 « @ @ co o1 az a3 ca cs ol
. 0* 7439 7519 000 6.67 60.83 36.00 20.00 57.33 59.07 72.50 67.31 72.78 61.00 53.21 47.75 58.85
O3-mint 3* 80.92 7269 3.33 10.00 56.67 56.00 37.65 51.00 56.29 71.44 69.36 73.48 67.25 54.74 56.14 61.46
_ 0* 80.01 7039 3.33 3.33 45.83 44.00 2471 59.67 66.92 73.57 74.31 77.26 73.33 63.21 59.53 65.76
O1-Preview 3* 7912 72.88 6.67 20.00 39.17 64.00 30.59 54.67 64.02 70.55 73.89 75.46 70.92 61.99 66.16 65.94
0* 67.63 55.77 3.75 6.67 37.50 76.00 15.29 53.33 56.89 66.71 65.36 61.54 62.83 5454 51.84 56.69
GPTo 3* 6593 5462 1.67 10.00 25.00 72.00 1059 4833 56.57 68.09 66.45 60.98 68.00 54.92 59.16 58.03
0* 7459 64.23 333 16.67 51.67 36.00 1530 60.50 60.64 73.32 65.88 71.11 69.25 59.60 59.30 61.75
Claude-3.7 3* 79.21 6327 6.67 30.00 62.50 48.00 29.41 5533 62.73 74.38 73.55 69.46 73.75 61.45 64.74 65.48
0* 5823 3423 000 0.00 2833 2800 588 33.67 4742 59.09 49.53 4628 5533 40.29 42.19 45.26
LLaMA31-708 3* 59.96 38.85 0.00 13.33 1250 60.00 22.35 36.33 49.08 59.81 58.92 50.94 60.17 41.93 48.07 49.63
0* 8592 76.73 3.33 16.67 45.00 12.00 824 59.00 73.44 78.13 79.16 81.46 7850 67.92 66.68 70.33
DeepSeeleRl 3* 8503 70.58 3.33 20.00 41.67 48.00 40.00 55.67 71.19 77.30 79.97 78.00 80.08 71.55 75.28 72.38
0* 75.90 60.96 0.00 20.00 47.50 40.00 4.71 56.00 64.92 73.22 70.63 73.14 7225 62.59 57.56 62.96
DeepSeelcV3 3* 7579 65.96 3.33 13.33 35.00 52.00 16.47 5533 66.80 73.37 71.14 70.10 74.75 60.57 67.72 65.63
. 0* 5780 41.35 3.33 0.00 25.00 72.00 7.06 45.67 53.02 63.63 58.40 57.32 60.92 4559 42.07 50.24
Kimi 3* 63.29 40.19 000 0.0 11.67 84.00 30.59 4433 53.54 64.26 57.19 55.86 62.25 52.52 53.59 53.64
0* 63.99 41.73 000 0.00 2833 4400 471 4733 5476 6557 60.04 56.84 66.84 5563 50.48 53.77
GLM-A 3* 6052 41.73 000 3.33 17.50 56.00 14.12 49.00 56.30 67.31 62.06 55.74 66.00 57.36 53.60 55.08
0* 63.51 47.50 3.33 3.33 37.50 72.00 25.88 46.33 62.45 67.58 61.64 61.55 67.75 57.71 51.93 57.71
FRNIE-40 3* 5834 4327 000 6.67 20.00 76.00 32.94 42.00 57.00 62.61 63.97 57.34 69.17 56.42 60.88 57.13
0* 4017 14.42 10.00 56.67 28.33 40.00 21.18 31.67 30.69 34.03 33.86 31.16 45.67 31.13 2191 31.23
ChemDEM-138 3* 43.68 15.96 10.00 40.00 11.67 44.00 20.00 2633 35.44 36.64 33.72 34.81 4458 32.45 31.29 33.98
Chem- 0* 27.41 942 000 000 000 4800 1.18 13.33 24.25 22.07 28.25 18.12 25.50 16.48 17.24 20.67
LLM-7B-Char-1.5-SFT 3% 2579 14.62 0.00 0.0 0.00 4800 1.18 6.67 16.65 1550 1576 12.46 1592 1025 14.14 14.87
0* 2570 4.04 3.33 30.00 19.17 64.00 24.71 9.00 24.48 17.23 18.31 23.54 23.00 24.67 12.16 19.81
LlaSMol-Mistral-7B
3* 2827 731 000 333 000 80 118 433 1851 1243 12.67 31.18 16.00 1585 24.11 17.65
0* 80.95 63.56 30.00 56.67 45.00 64.00 52.94 60.67 72.59 75.56 80.42 74.06 80.75 69.53 73.95 72.90
ChemELLM 3* 80.36 66.35 26.67 53.33 53.33 64.00 54.12 60.00 72.07 74.70 82.19 75.44 82.08 6449 7293 72.73

0* indicates 0-shot, 3* indicates 3-shot.
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LLaMA 3.1-70B on task C6 (28.00 to 60.00).

The L3 level, encompassing expert-level skills across diverse
knowledge types, presents mixed results. Weaker models often
benefit from few-shot examples, while stronger models may
see limited gains or even performance declines. ChemELLM
maintains strong performance, showing slight improvements
or stability (e.g., C11: 80.42 to 82.19, C13: 80.75 to 82.08, C15:
73.95 to 72.93). On task C14, ChemELLM experiences a minor
drop from 69.53 to 64.49, while DeepSeek-R1 shows improve-
ment, increasing from 67.92 to 71.55. Similarly, on task C15,
DeepSeek-R1 demonstrates notable improvement, rising from
66.68 to 75.28.

These findings underscore that few-shot learning is benefi-
cial when the provided examples are highly aligned with the
task and the underlying knowledge is specialized. In contrast,
for tasks where knowledge is already internalized, or for pro-
fessional-level tasks that primarily rely on reasoning, few-shot
prompts offer limited value or may even introduce noise.
Compared to other models, ChemELLM consistently demon-
strates strong performance across all levels, particularly in L2
and L3, owing to its well-developed pre-trained knowledge
base, which reduces its reliance on few-shot prompts.

4. Conclusions

In this work, we introduce ChemELLM, a domain-specific
LLM developed for chemical engineering, along with
ChemEBench, the first benchmark specifically tailored to eval-
uate LLMs in this field. ChemEBench is structured into 3 levels,
encompassing 15 domains and 101 specialized tasks, enabling
a thorough and multidimensional assessment of LLM capabili-
ties. Extensive evaluations of both general-purpose and do-
main-specific LLMs demonstrate that ChemELLM exhibits su-
perior performance on domain-relevant tasks, highlighting its
exceptional capability in understanding and solving complex
challenges in chemical engineering.

In future work, we will focus on further enhancing the caus-
al reasoning and multimodal capabilities of ChemELLM. Specif-
ically, the chain-of-thought (COT) reasoning framework will be
implemented, enabling the decomposition of complex engi-
neering problems into logically sequenced sub-tasks, thereby
facilitating the effective handling of multi-step problems. Fur-
thermore, we intend to incorporate multimodal processing
techniques that will allow ChemELLM to seamlessly integrate
and process various types of data. This includes textual data
(e.g., technical literature), visual data (e.g., equipment schemat-
ics such as process flow diagrams and piping and instrumenta-
tion diagrams), and experimental data (e.g., time-series data
from distributed control systems). This expansion will not only
enrich ChemELLM'’s contextual understanding but also signifi-
cantly expand its applicability within the field of chemical en-
gineering. With these enhancements, we anticipate that
ChemELLM will evolve into an even more robust and versatile
tool, thereby driving innovation and efficiency in both research
and industrial applications within chemical engineering.
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