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Abstract: As an excellent catalyst for the coupling reaction of alkanes and CO, to produce high-value
bulk chemical products, Zn-ZSM-5 will be exposed to high-temperature hydrothermal environment for a
long time during the reaction process. Therefore, the changes in the physicochemical properties of the
catalyst under high-temperature water steam treatment and its impact on the reaction performance are cru-
cial to clarify the reasonable use conditions of the catalyst. This article systematically characterizes the

structure and properties, acid centers, and the existence status of Zn species on Zn-ZSM-5 catalysts un-
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der different high-temperature water steam treatment conditions using various techniques, and the effect of

physicochemical properties of catalyst on the coupling reaction is also discussed. The results show that af-

ter high-temperature water steam treatment, the four coordinated frame Al in Zn-ZSM-5 is significantly re-

moved , leading to a decrease in the crystallinity of the molecular sieve and the appearance of mesoporous

structure. The content of B- and L-acid centers in the sample decrease, and the distribution of Si species

change. Simultaneously, the frame Zn (Zn, ) species with good catalytic activity relying on the existence

of frame Al are transformed into ZnO species, resulting in a decrease in the catalytic activity of the cata-

lyst, but the reaction stability is improved. This article provides guidance for the further improvement of

catalysts for the coupling reaction of alkanes and CO,.
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Fig.1 SEM images of Zn-ZSM-5 with different temperature of steam treatment
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Fig.2 Characterization results of all samples
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Table 1 Composition and textural properties of various samples
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%
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%
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(em’-g") nm

Zn-ZSM-5

Zn-ZSM-5-ST-650 C
Zn-ZSM-5-ST-700 C
Zn-ZSM-5-ST-750 C
Zn-ZSM-5-ST-800 C

15.9
15.9
15.9
15.9
15.9
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311
291
275
238
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176
149
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0.16
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3 (a)”Al MAS NMR iEFAMERERER; (b) Al T4 % ;(c) ¥Si MAS NMR iZFENHRERER;

(d)Si# 5 Tn; (e) HIMAT IS

W F0 () Zn 2p,,, B XPS H it

Fig.3 (a) Al MAS NMR spectra and corresponding deconvolution results; (b) Al species distribution;

(¢) ¥Si MAS NMR spectra and corresponding deconvolution results; (d) Si species distribution;

(e) UV-vis spectra and (f) XPS spectra of Zn 2p,,

1o K Z8 AL B S AR S g E 230 nm DL
AR AT HS JE AR 2%, 6 W R il /K 28 AL 38 45 23U Zn,,
WP & OKIE R %, 4547 A1 MAS NMR F17Si MAS
NMR 2555 AT AT, R B G2 s B A D PR i JiR /K 28 <Ak
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Pt SCHR M IE , 26 ZnO MS5GHEN 1 021.8 eV T LAH]
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{45 Zn-OH" Al (Zn-0-Zn) > PP, HR4E ZnO Fl Zn,,
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Table 2 Zn species distribution of all samples

Zn by type
Sample Total */ Zrl,-,.h/ Zn0 "/ n(Zny)/
% % %o n(Zn0)"
Zn-7ZSM-5 .10 2.75 2.35 1.17

Zn-ZSM-5-ST-700 C .10 0.71 4.39 0.16
Zn-ZSM-5-ST-750 C .10 0.56 4.54 0.12
Zn-ZSM-5-ST-800 C 5.10 0.36 4.74 0.08

5

Zn-ZSM-5-ST-650 C 5.10 0. 87 4.23 0.20
5
5

TR Zn OB (AR AR Zn 1Y R S50
i XRF U5 " Zn B9 F0 85046 i XPS I 5E
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N In-ZSM-5 HE MG m iR K ZZEA LM Z G,
n(Zn,)/n(ZnO) MEE B KT 1 ZR/NT 1, BEE
IKZESAL BRI E T Zn, E Zn W) Bl BT & L%
Wi B R R 4 Zng, IR G AE S ZnO W) FD X
se i T T e 2R 4 B AL FE IR K 78 Ak B

H g B B3 T B, aE — 2B EDIE T 48 A0 AT O 3 A 25 2R
2.3 BMAARIE

Wit H MAS NMR HR (& 4(a) ) R T HE i
R TE OH B #h 9 43 4, %' H NMR 3% & i ;2 % 1
LA AR B OH Wi Fh HE A5 RNk 3 R

4 (a)'HMAS NMR EEFMBEMEERER; (b) FTIR #i%; (c) NH,-TPD i & ; (d) Py-FTIR 3 i

Fig.4 (a) '"H MAS NMR spectra and corresponding deconvolution results; (b) FTIR spectra; (c) NH,-TPD profile;
(d) Py-FTIR spectra
x3 ZHSH OHYMAT (mmol-g™')
Table 3 OH species concentration of all samples( mmol-g™")

Sample Si—OH—AL ) Si—OH—Al Al—OH Si—OH Zn—OH
7Zn-ZSM-5 0.25 0.36 0.14 0.25 0.19
7Zn-ZSM-5-ST-650 C 0 0.04 0.03 0. 06 0.05
7Zn-ZSM-5-ST-700 C 0 0.03 0.02 0.05 0.03
7Zn-ZSM-5-ST-750 C 0 0 0.02 0.07 0.02
7Zn-ZSM-5-ST-800 C 0 0 0 0.08 0

TEE 4(a) i AL2E0i R 4. 85 F1 3,91 4 Ay 3L IR
S5 )R T BAT AR K Si—OH—AL JE A1 F1 9K 7 1Y
Si—OH—Al £ M H 5 Bronsted B2 {7 i A 5%,
ERKZE R Z G X 2 A H ARG S 2 RZF
R a3 7E 750 COKZE AL FR S 58 2 TH O, R iR
IKZEE NS o T B2 AL AR ZU BEBRVE . L%
% 1.53 Fil 2. 45 4 (415 5 4 315 )8 F Si—OH™
1 Al—OH L™ 45 B 1Y 2, 5 225 Al—OH
WRETEES X EN T REKEILHRE,
Al—OH R ALK ALO, ¥1Fh, 0.93 kb3R5

SR Zn—OH" A5 5 1270 0 Bl 5 K 75 S Ak B B
Tt Zn—OH " L FA (¥ B R WG T B, 3 2 Rl oy 1
B AL 8% KR B BR JS , Zn—OH " ¥y B JC 1 7715,
it — LA R ZnO Py Fh

K 4(b) MR MY FTIR 3% ,3 607 em™ b
W W U U JE T A F R A KR Si—OH—
AL ,5 Bronsted PR AH I, Bl 3 7K 28 S Ab BRIE &
FH 5,3 607 em™" Ab (1) I RO 5 B 3 R ARG X 0H [
F 4 BB AR AL TE R TR K 28 A B gl BB
3660 cm™ Ab W UH R T4 T 0 B 4R A Al—
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W= A T 3 i 3 R b ' L SR K 28 A B S
R i B 5 TR v R 55 R bl B 3 B R e D gk —

A UE B e K 28 AL B B O AR AL N RR
FIEF Zn 5848 AL A BLVE P2 00 55 8 o0t 2%
A L b

) W mE W B S, A 20 403 B ( Py-FTIR ) R
1 540 F1 1 450 em™" A il W e e T ARk 0 o 5 o o
Bronsted Fll Lewis B2 1.0 i & &% JEE R UK 4
(d) iR, Zn-ZSM-5 ¥ g i DL L IR R 32, &
HF Zn 557 F i #fF 2N 5L Si—OH—AL A B /EH
TR T B LR, F 4 ALV H miR K
MG RES Y B R L R 2 R R
oL R R K

x4 BEEENBRLSG
Table 4 Acidic properties of all samples

Acidity by strength * /(mmol-g™")

Acidity by type */(mmol-g™")

Sample

Strong Weak Total Bronsted Lewis B-acid/L-acid
Zn-ZSM-5 0. 349 0.906 1.255 0.113 1. 142 0. 100
Zn-ZSM-5-ST-650 C 0.118 0. 431 0.548 0.010 0.538 0.018
Zn-ZSM-5-ST-700 C 0.078 0.253 0. 331 0. 007 0.324 0.023
Zn-ZSM-5-ST-750 C 0.051 0. 139 0.190 0. 005 0.185 0. 027
Zn-ZSM-5-ST-800 C 0. 025 0. 047 0.072 0. 002 0. 070 0. 028

TE L PRYEBE B NH,-TPD W52 ;" MRFh S B Py-FTIR 52 .

2.4 fELMEREITEN
BT IR K 28 R AL BT SRR S 7R R T s F

CO, M & SRR R By AL TERE, B 5(a) ~ &1 5
(e) 7R TIET ke Ml CO, M KL i Fe Ak 1 B0 e

5 BEMBERNMAENLEERR M E(TOS)HEWL

Fig. 5 Variation of catalytic performances of coupling reaction of all samples with the reaction time on stream ( TOS)
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