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Propane dehydrogenation (PDH) to propylene holds immense industrial application value and
encompasses pivotal scientific issues in fossil resources utilization, particularly the C-H bond activation and

transformation in alkane conversion. Metal-containing zeolites have emerged as efficient catalysts for alkane

dehydrogenation. However, the fundamental understanding of how the metal center and zeolite

microenvironment participate in alkane dehydrogenation remains elusive. Here we constructed a Cr-MFI

zeolite featuring single Cr centers embedded within the MFI framework and utilized this highly efficient

PDH catalyst to comprehensively illustrate the synergistic interplay between metal active centers and the

zeolite microenvironment for alkane dehydrogenation. Through in situ X-ray absorption spectroscopy

(XAS) and in situ Fourier transform infrared (FTIR) spectroscopy, we successfully captured the dynamic

evolution of Cr electronic states and the migration of H species to Cr and its adjacent O atoms under PDH

conditions. Theoretical calculations and isotope labeling elucidated the synergy principle between Cr active

centers and the zeolite microenvironment in Cr-MFI, demonstrating that the zeolite microenvironment

intensifies propane activation and the flexible Cr—O-Si centers consecutively extract H* from propane.

These findings provide great insights into the dynamic catalytic behavior of metal-zeolite systems under

alkane dehydrogenation conditions and offer valuable guidelines for the rational design and optimization of

such catalysts for industrial application.

Keywords: propane dehydrogenation, metal zeolite, single Cr center, zeolite microenvironment,

dehydrogenation mechanism

INTRODUCTION

The cooperation between the microenvironment
and active sites in zeolite catalysts produces a
unique catalysis. Zeolites distribute individual acid
sites and/or metallic active sites on regular skele-
ton structure with high surface area. Owing to the
unique environment with molecular-scale pores, pe-
riodic structure and highly uniform isolated ac-
tive centers, zeolites show great potential and ex-
cellent performance in industrial applications, such
as fluid catalytic cracking (FCC) [1,2], methanol
to olefins (MTO) [3,4], dimethyl ether carbonyla-
tion to ethanol [5,6] and olefin epoxidation [7,8].

The catalytic behavior of zeolites, governed by both
their structural framework and active sites, bears
remarkable similarity to metalloenzyme catalysis
in biological systems. In metalloenzyme catalytic
systems, such as particulate methane monooxyge-
nase (pMMO) for methane selective oxidation to
methanol, the magnitude and orientation of electric
field from the surrounding microenvironment and
the metal active sites determine the catalytic perfor-
mance, because both of the two counterparts can
adjust and optimize the adsorbed position, strength
and orientation of the reactant molecules on the
active site throughout the catalytic cycle [9—11].
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Figure 1. Schematic illustration of the reinforced catalysis from dynamical interac-
tions between the active site and the surrounding microenvironment in metalloenzyme
and metal-zeolite materials. The metalloenzyme contains dynamic and flexible tunnels
(electric field orientation from metal and organic fragment grafting to the tunnels). The
metal-zeolite contains well-defined topological structure and pores (confined electric
field orientation from metal to the whole pore environment). Both of these two kinds of
materials are a combination of active sites and microenvironments, with similar fea-
tures of homogeneity, cooperation and periodicity.
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Similar to the metalloenzymes, zeolites with isolated
metal atoms embedded into the zeolite framework
possess a specific orientation and microenvironment
(Fig. 1), which exhibit much better performance
than metal clusters and nanoparticles [12—14]. The
mutual fusion of metal atom and zeolite generates
unique coordination in the framework, resulting in
a local metallic center with metal-oxygen (M-O)
bonds reinforced by the zeolite microenvironment.
So far, there has never been a carrier capable of pro-
viding dispersion like zeolites, while reinforcing the
active center through the specific topology and coor-
dination environment, and achieving specific orien-
tation with respect to the reactant and intermediate
species [15,16].

Alkanes, especially methane and C,-C, alkanes,
are highly stable molecules, but their abundance
and low cost have been the two main driving forces
for the development of efficient processes to utilize
them. Among the industrial processes, alkane de-
hydrogenation, such as propane dehydrogenation
(PDH), has been employed for alkene produc-
tion since the 1940s, and two catalyst systems,
PtSn/ALO; and CrO,/Al, O3, are commercially
utilized in Oleflex and CATOFIN technologies, but
both suffer from fast deactivation and low propylene
selectivity [17,18]. To alleviate this problem, incor-
poration of metal species into zeolite to develop
metal-zeolites (Zn-MFI, Co-MFI etc.) has been
demonstrated to be a strategy with great prospects
to improve alkane dehydrogenation performance
[19—25]. In particular, metal species enter into the
zeolite framework by accommodation by zeolite,
forming single metal atom sites embedded into the

Page 2 of 11

regular skeleton structure and zeolite microenvi-
ronment. For decades, metal-zeolites containing
oxygen-bridged metal atoms and/or adjacent
silanols have been found to exhibit extremely high
activity for various reactions, such as alkane acti-
vation and biomass conversion [26,27]. However,
how the zeolite microenvironment empowers the
active center, and how the zeolite environment and
metal sites cooperate to carry the reactants to prod-
ucts, and these key scientific issues of metal-zeolite
catalysis, are still unanswered despite considerable
research efforts in recent years.

Herein, we constructed Cr-MFI zeolite featuring
isolated Cr centers, where Cr occupies the T sites
of MFI to form a locally distorted tetrahedral struc-
ture, comprising one adjacent Si—-OH and three Si-
O-Cr ({(=Si0)3;Cr(=SiOH)}). We then investi-
gated the catalytic application and mechanism of Cr-
MFI in the PDH process and revealed the role of the
Cr atom and its surrounding microenvironment. We
underscore that a holistic consideration of the com-
bined effects of the metal-zeolite active centers and
their microenvironments is crucial for truly under-
standing the active sites and catalytic mechanisms
of metal-zeolites in alkane dehydrogenation. Both
the metal center and zeolite microenvironment acti-
vate the reactant and participate in the completion of
the reaction cycle until the product is generated and
leaves the catalyst. Finally, we summarize the Cr-MFI
catalysis and propose a Zeo-MOST concept to deci-
pher metal-zeolite catalysis for alkane activation and
conversion.

RESULTS AND DISCUSSION
Architecture of Cr-MFI

To holistically and accurately present the active
centers with their surrounding microenvironment
at reaction conditions in metal-zeolites, we con-
structed a Cr-MFI zeolite with isolated Cr atoms in
a purely siliceous MFI zeolite framework (Fig. 2a).
X-ray diffraction (XRD) analysis confirms that
Cr-MFI exhibits a well-defined MFI structure
without detectable CrO,, species (Fig. S1). UV-vis
spectra of Cr-MFI zeolites with Cr content below
1.01 wt% display three distinct absorption bands
at 276, 357 and 467 nm (Fig. S2), confirming the
exclusive presence of isolated Cr-O-Si species.
When the Cr loading increases to 1.8 wt%, an ad-
ditional band emerges at 655 nm, corresponding to
the octahedral symmetry Ty, < Ay, transition in
a-Cr, O3, indicating the formation of Cr, Oj; clusters
or nanoparticles [28,29]. Consequently, Cr-MFI
with 1.01 wt% Cr was chosen for subsequent in-
vestigations. The 3'P magic angle spinning (MAS)
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Figure 2. Electronic and coordination structure of Cr-MFI zeolite featuring an atomically dispersed Cr site
({(=Si0)3Cr(=Si0H)}) in the MFI microenvironment. (a) Overall view of Cr-MFI zeolite: microenvironment embedded with
active sites. (b) Straight and sinusoidal channels of Cr-MFI from [010] view. (c) MFI topology with 10-ring channel as the
microenvironment. (d) Cs-corrected iDPC-STEM image of Cr-MFI. (e) The enlarged part of the Cr-MFI body and edge in (d).
(f) The corresponding models of Cr-MFl in (e). (g) Cr K-edge XANES spectra of Cr foil, Cr,03, (NH,),CrO4 and Cr-MFI. The data
were collected at the BL14W1 beamline of the Shanghai Synchrotron Radiation Facility (SSRF). (h) Structure, orientation and
charge of the Cr-MFI and S-1 at the T; position by DFT calculations. The bond length, 0—Cr—0 angles, and charges of Si, O
and Cr are provided. (i) PDOS of the p-orbital of the O atom surrounding the Si atom and the Cr atom, and the d-orbital of the

Cr atom.

nuclear magnetic resonance (NMR) spectrum of
Cr-MFI after trimethylphosphine oxide (TMPO)
adsorption-desorption exhibits a single peak at ~50
ppm (Fig. $3), attributed to TMPO interacting with
framework Cr atoms. The absence of correlations
in the corresponding 2D spectra further verifies the
uniform incorporation of Cr species into the MFI
zeolite framework [30-32]. Energy dispersive spec-
troscopy (EDS) elemental mapping, CD;CN-FTIR
and pyridine-Fourier transform infrared (FTIR)
analyses collectively demonstrate that at 1.01 wt%
Cr loading, the Cr species are homogeneously
distributed within the MFI framework, exhibiting
solely Lewis acidity while maintaining a closed
structure (Figs S4-S6, Table S1) [33—35]. The Cr-
MFI zeolite possesses a zeolite microenvironment
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with a well-defined 10-membered ring and straight
and sinusoidal channels (Fig. 2b and c). Integrated
differential phase contrast scanning transmission
electron microscopy (iDPC-STEM) images clearly
present the overall architecture of Cr-MFI (Fig. 2d).
The presence of complete and partial microenvi-
ronments is separately indicated in the bulk and at
the edges of MFI zeolite (Fig. 2e and f). To accu-
rately identify the structure and electronic states of
Cr-MF], Cr K-edge X-ray absorption spectroscopy
(XAS, Fig. 2g) and density functional theory (DFT)
analysis are performed, revealing the single Cr
center in Cr-MFI, ({(=Si0);Cr(=SiOH)}) with
Cr-0-Si (3) and Cr--OH-Si (1) (Fig. 2h, Figs S7-
S9). This incorporation of Cr atoms into the MFI
framework leads to partial loss of the tetrahedral
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Figure 3. PDH performance of Cr-MFI and Cr-based catalysts. (a) Comparison of the PDH performances over Cr-MFI and
previously reported Cr-based catalysts. The detailed comparisons are provided in Table S4. (b) Comparison of the TOF of
Cr-based catalysts for PDH. (c) Propane conversion and propylene selectivity over Cr-MFI, Cr/Al,03 and Cr/Si0; with time-
on-stream. Reaction conditions: 0.2 g, 580°C, weight hourly space velocity (WHSV) = 0.6 h=". (d) CsHg formation rate and

selectivity over Cr-MFI for 10 cycles. Regeneration conditions: 580°C, air (20 mL min~

1), 10 min. (e) Initial C3Hg formation

rates of over Cr-MFl and Cr/SiQ,. (f) Ethane conversion and ethylene selectivity over Cr-MFI with time-on-stream. Reaction

conditions: 0.2 g, 5%C;Hs/N,, 600°C, WHSV = 0.4 h~".

symmetry and gives rise to the distortion of local
tetrahedral structures with the radical change in
bond length, bond angle and charges of the Cr, O
and H atoms, and thereby results in a unique spatial
positioning and orientation with distorted tetrahe-
dral microstructure, which are different to those of
S-1 zeolite (purely siliceous MFI zeolite). Projected
electronic density of states (PDOS) reveals that the
O-2p orbitals of Cr-MFI overlap the Cr-3d orbital
owing to the hybridization between Cr-3d and O-2p
states (Fig. 2i), which can facilitate the bonding
and coordination of guest reactants through ever-
adjusting the electronic states and angles of the Cr
centers. Therefore, the MFI skeleton structure and
microenvironment accommodating isolated Cr cen-
ters with special orientation and tunable electronic
state endows special properties to the Cr atom.
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PDH process on Cr-MFI

The obtained Cr-MFI zeolite with Cr active sites
orientated in the MFI microenvironment was used
in the PDH reaction, which exhibited performance
comparable to that of certain Pt-based catalysts and
significantly outperformed previously reported tran-
sition metal-based systems, underscoring the ex-
ceptional PDH activity of Cr-MFI (Fig. 3a and b,
Figs $10-S13, Tables S3-S6) [36-46]. Stability tests
display that the Cr-MFI possesses very good one-
way stability over 24 h time-on-stream and also ex-
cellent cycle stability (Fig. 3c and d, Figs S14 and
S§15). Characterization of the spent Cr-MFI cata-
lyst reveals structural and compositional similari-
ties to the fresh material, confirming its exceptional
thermal stability and robust anti-coking resistance
(Fig. S16). However, the Cr atoms on amorphous
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SiO, (Cr/SiO,) without zeolite surroundings and a
pseudo-tetrahedral structure are almost inactive in
the PDH reaction (Fig. 3e, Figs $16-S19), indicat-
ing that the Cr-MFI zeolite provides unique catal-
ysis by the zeolite microenvironment and Cr-site
orientation specific for PDH to propylene. Further-
more, the Cr-MFI catalyst was used for ethane de-
hydrogenation, exhibiting good activity and stability
(Fig. 3f). It is noteworthy to observe that alkene, be-
ing the product of alkane dehydrogenation, generally
exhibits high reactivity over acidic zeolites [47,48].
Nevertheless, within the Cr-MFI catalytic environ-
ment, subsequent side reactions such as cracking,
deep dehydrogenation, polymerization and coking
are significantly suppressed. This underscores that
the catalytic environment of Cr-MFI not only pro-
motes the primary reaction but also facilitates the
elimination of products, thereby preserving the cat-
alyst’s activity and stability. It is a meaningful en-
deavor to conduct an assessment based on modeling
the unique structure of Cr-MFI in order to present
its catalytic effects. However, the Cr atom loaded
onto amorphous SiO, possesses a complex struc-
ture, which is difficult to model.

Participation of the microenvironment
and Cr active center of Cr-MFl in PDH

The role of the Cr active center with a unique mi-
croenvironment and orientation in Cr-MFI is clar-
ified by evaluating their participation in PDH with
DFT calculations, and Cr-MFI with a Cr atom at
the T; site is selected as the representative for the
following discussion (Figs $20-S27). The highest
electronic states below the Fermi level (HESBF) of
C3Hg molecules shows the energies decrease by 0.46
and 1.24 eV for the C3Hg molecules in the Cr-MFI
with a partial and complete zeolite microenviron-
ment, respectively (Fig. 4a). Furthermore, the den-
sity of state of C3Hg in Cr-MFI shifts downwards
as compared with it being placed outside of zeolite
(Fig. 4b). These results reveal Cr-MFI zeolite mi-
croenvironment accommodates the C3Hg molecule
and offers stabilizing effects during the occurrence of
PDH reaction, which facilitates the interplay of Cr-
MEFI and propane to achieve the conversion.

To make clear the enhanced participations of
the Cr active center by the MFI microenviron-
ment, we compared each elementary step dur-
ing the PDH process on Cr-MFI with complete
and partial microenvironments (Fig. 4c, Table S7).
For Cr-MFI with a complete microenvironment,
the approaching process of the C;Hg molecule
to the Cr center is easier than that in a par-
tial microenvironment, which is proved by the de-
creased adsorption energies from 1.61 to 1.24 eV.
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This result is consistent with the above analysis
of the decreased HESBF. The adsorbed propane
molecule (C3Hg*) will undergo dissociation at the
active Cr center {(=Si0);Cr(=SiOH)} to form
{(=Si0),Cr(C3H;) (HOSi=),} with a reaction
free energy of 0.73 €V and a kinetic barrier of 1.65
eV (TS1 in Fig. 4c). Owing to the hybridization
between Cr-3d and O-2p orbitals, the polarized O
atoms surrounding the Cr atom can abstract and ac-
cept H* from C3;Hg* and the C;H;* moiety stays
with the Cr atom. After the first C-H bond dissocia-
tion, in the next step, the 8-H of C3H;* will dissoci-
ate and migrate to the Cr atom, forming Cr-H with a
barrier of 1.42 eV (AG=0.68 eV, IV in Fig. 4c). Sub-
sequently, C3Hs desorption on the Cr center pro-
duces {(=Si0),CrH(=SiOH), } that contains two
Cr--OH—Si with hydrogen bonds and one Cr-H
bond, which can pool the dissociated H atoms in the
Cr center. Noticeably, the H atom in the Cr--OH—Si
is positively charged, while the H atom on the Cr
atom is negatively charged. Therefore, the H’* and
H’~ can be coupled to H, with a low barrier of 0.73
eV (AG = —0.31 eV), and H, desorption recovers
the original {(=Si0);Cr(=SiOH)} active site. In
comparison, the whole C;Hg* conversion process in
the partial microenvironment is more difficult than
that in the complete microenvironment.

Cr-MFI participates in all the steps during the
PDH process. The continuous evolution in struc-
ture and orientation of the Cr center facilitates
the activation of propane, distorting and strain-
ing the reactant from its initial state to a transi-
tion state, and ultimately leading to the dissocia-
tion of the C-H bond and formation of an H-H
bond. The coordination and the electronic states
of the Cr center (Cr atom and the adjacent O
and H atoms) with distorted tetrahedral coordina-
tion are constantly evolved in alignment with C-H
bond dissociation and H-H bond formation in the
MFI zeolite microenvironment (Fig. 4d, Figs $28-
S31), which realize highly efficient PDH perfor-
mance. During the first C-H dissociation, the posi-
tive charge of the Cr atom decreases from +1.59 (I
and II) to +1.46 (III) and +0.99 (IV). The C3H,*
is then dissociated into C3Hg and H* on the Cr
center with the further charge decrease of the Cr
atom from +0.99 (IV) to +0.83 (V). It is notable
that a {(=SiO) CrH(=SiOH), } with two positively
charged H atoms and one negatively charged H atom
are formed after the B-H dissociation (Fig. 4d). Sub-
sequently, the positive charge of the Cr atom in-
creases from +0.83 (V) to +1.46 (VI) and +1.59 (1)
with {(=Si0);Cr(=SiOH)} active site restoration
to the original state, accompanied by H, formation
and departure (Fig. $27). Meanwhile, the electronic
states of the adjacent O atoms and the dissociated H*
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calculations.

atoms also continuously evolve along the catalytic
cycle (Figs S30 and S31), which helps to accelerate
the reaction process. The dynamic evolutions of the
electronic states of the Cr center correspond to each
step of the PDH process, thereby making the PDH
process more feasible. As for the Cr-MFI with the
Cr center positioning at the external surface with a
partial MFI environment, the kinetic barriers (TSI,
TS2, TS3 and TS4) for PDH are much higher than
those of a Cr site with a complete zeolite microen-
vironment (Fig. 4c, Fig. $32, Table S8), which con-
firms the important role of a zeolite microenviron-
ment in Cr-MFI for the alkane dehydrogenation re-
action.
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The DFT findings demonstrate the exceptional
significance of the microenvironment and active site
of Cr-MFI in facilitating PDH. Cr-MFI zeolite acts
as a catalyst, offering a tailored microenvironment
with active sites, which can accommodate and in-
teract with the reaction substrate to achieve its acti-
vation and conversion. Throughout the reaction se-
quence, Cr-MFI dynamically adjusts the orientation
and electronic state of its microenvironment and ac-
tive center to promote the efficient realization of the
PDH catalytic cycle.

X-ray absorption near-edge structure (XANES)
spectra provide evidence for the dynamic progres-
sion of the electronic states of the active Cr centers,
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highlighting the intricate and evolving nature of
the electronic configuration of Cr-MFI. The pre-
edge peak centered at $993.5 eV (a combination of
quadrupolar 1s — 3d and dipolar 1s — 4p transi-
tions) decreases in intensity and the white line shifts
to lower energy after H, and C;Hg pretreatment
(Fig. Sa), suggesting the decrease of the positive
electricity of the Cr atom in the reaction atmosphere
of H, or C3Hg [49,50]. This verifies the proposal in
the previous section (Fig. 4c): the Cr center accepts
the propyl species after the dissociation of propane,
and varies the electronic state of the Cr-MFI catalyst.
Also, in situ XANES experiments track the decline
of the electronic positivity of the Cr atom in the
PDH reaction (Fig. Sb and f). When the Cr-MFI is
treated in the flow of 5%H,/He at 580°C, the band
of Cr K-edge XANES spectra at 5993.2 eV decreases
until ~200 s time-on-stream (Fig. $33), then 5%
C;Hg/Ar is introduced into the reaction cell by
transient switching of the atmosphere, and the white
line shifts to lower energy (Fig. Sb), indicating the
further decease of the positive electronic states of the
Cr atom. Also, the bands at around 6008-6010 eV
owing to the electron transfer from ligand to metal
atom show a slight increase after introducing 5%
C;Hg/Ar, which is due to the C3H;* ligand attached
onto the Cr atom [51,52]. This outcome illustrates
the dynamic evolution and continuous adjustment
of the electronic state of the Cr-MFI throughout
the PDH process (Fig. Sc), which can effectively
synchronize with and expedite the progression of
the reaction.

Deuterium (D)-labeling experiments are per-
formed over the Cr-MFI, and the D-labelled Cr-
MFI is employed in the PDH reaction, which is
measured by in situ high-temperature FTIR spec-
troscopy equipped with an on-line mass spectrome-
ter (Fig. Sg, Fig. $34). Upon C3Hj introduction into
the Cr-MFI catalyst, the on-line mass spectrometry
detects the appearance of HD followed by the ap-
pearance of H, at the initial reaction stage (Fig. 5d
and e, Fig. $35). Also, the FTIR bands of the OD
groups (2340-2800 cm™') on the zeolite surface
progressively decrease in intensity with the recovery
of OH groups (3300-3760 cm™ !, Fig. Sh). All these
suggest the direct participation of Cr-MFI for trans-
formation. After the introduction and activation of
propane, the catalytic microenvironment of Cr-MFI
facilitates the dissociation of propane and positions
the dissociated intermediates (C3;H,* and H*) on
the Cr center. This aligns with the elementary steps
outlined from I to I1I (depicted in Fig. 4c), where the
distinctive Cr-MFI catalyst activates the C-H bond
of propane, achieves dissociation, and hosts the in-
termediates on the Cr center, ultimately resulting in
the formation of propylene and hydrogen. The deu-
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terium atoms pre-incorporated into Cr-MFI through
deuteration are detected in the product hydrogen, in-
dicating that during the PDH process catalyzed by
Cr-MFI (whether in its hydrogenated or deuterated
form), the Cr-MFI microenvironment not only acti-
vates and dissociates the C-H bonds but also func-
tions as a receptor for hydrogen species interme-
diates. This facilitates the formation and release of
H,, thereby enabling the completion of the dehydro-
genation process. In situ high-temperature Fourier
transform infrared (FTIR) spectroscopy clarifies the
participation way of Cr-MFI in the PDH process
(Fig. Si and j, Fig. S36). Treating the catalyst in
the flow of 10% H,/Ar at 580°C, the band at 3680
cm™! (silanol around Cr atom, Cr.-OH—Si) de-
creases progressively in intensity with the rise of
the band at 3647-3385 cm ! (hydrogen bonds net-
work) (Fig. 5i). These two bands are recovered in an
oxygen atmosphere and exhibit very good reversibil-
ity (Fig. S37), suggesting the dynamic and reversible
participation of Cr-MFI and quitting from the reac-
tion. When propane is fed onto the catalyst, the inter-
action between Cr-MFI and propane exhibits a con-
sistent evolution trend (Fig. Sj). This gives strong
evidence that the Cr-MFI catalyst not only dissoci-
ates the C—H bond to form propylene, but also pro-
vides the Cr center to pool the dissociated H species
(Fig. Sk). Subsequently, the combination of two H
species within the {(=SiO)CrH(=SiOH),} com-
plex results in the formation of H-H bonds, ulti-
mately leading to the release of H, gas.

Multiple in situ spectroscopic investigations have
evidenced the pivotal role of dynamic participation
of Cr-MFI during the PDH, echoing the previous
catalysis assessment of Cr-MFI throughout the PDH
process. Both theoretical simulations and experi-
mental evidence underscore the fact that Cr-MFI,
through the concerted interaction of its active cen-
ters and surrounding environments, executes all piv-
otal steps in the propane conversion, including sta-
bilization, capture and subsequent activation, C-H
bond dissociation, propylene and hydrogen forma-
tion, and finally their departure from the catalyst
bed. The proposal and subsequent validation of the
mechanism, that the dynamic evolution of the zeolite
environment and the orientation of the incorporated
metal center enhance the PDH catalytic effect, pro-
vide a more profound insight into the catalytic mech-
anism of metal-containing zeolite catalysts (Fig. SI).

Zeo-MOST deciphers metal-zeolite
catalysis in alkane dehydrogenation
Metal-zeolites, exemplified by Cr-MFI, possess a

zeolite microenvironment featuring a Cr center
({(=Si0);Cr(=SiOH)}) with unique orientation
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Figure 5. /n situ XAS and in situ high-temperature FTIR spectra identify the dynamic evolution of the electronic states and coordination structure of
Cr-MFI during PDH. (a) Cr K-edge XANES spectra of the Cr-MFI before and after H, and C3Hg treatment for 30 min (reaction conditions: 580°C, Ar
(10% H,/Ar or 5% C3Hg/Ar), 20 mL min~"). The data were collected at the BL14W1 beamline of the SSRF. (b) /n situ Cr K-edge XANES spectra of the
Cr-MFI during PDH. Reaction conditions: 580°C, 5% C3Hg/Ar, 20 mL min~". The data were collected at the BLO5U beamline of the SSRF. (c) Schematic
illustration of the dynamic evolution of the Cr electronic states in H, and C3Hg atmosphere at the reaction conditions of (a) and (b). (d) On-line mass
spectroscopy analysis of the generated HD (m/z = 3) and H, (m/z = 2) in the PDH process over D-labelled Cr-MFI. (e) Schematic illustration of
the evolution of D-labelled Cr-MFI for the PDH process. (f) Schematic diagram of the in situ time-resolved energy-dispersive XAS (ED-XAS) devices.
(g) Schematic diagram of the in situ high-temperature FTIR spectroscopy devices with on-line mass spectrometer. (h) /n situ FTIR spectroscopy study of
D-labeled Cr-MFI during PDH. Reaction conditions: 5% CsHg/Ar, 20 mL min—", 580°C. (i) /n situ high-temperature FTIR spectra of Cr-MFl in 10% H,/Ar
(top) and switching transients to 20% 0,/Ar (down). (j) /n situ high-temperature FTIR spectra of Cr-MFI in 20% 0,/Ar and switching transients to 5%
CsHg/Ar (top), 10% H,/Ar and switching transients to 5% CsHg/Ar (down). The reaction conditions in (i) and (j): 580°C and 20 mL min~". (k) Schematic
illustration of the evolution of the H network in different atmospheres. (I) Schematic illustration of the isolated Cr center in Cr-MFI for the PDH reaction.
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Figure 6. Zeo-MOST deciphers metal-zeolite catalysis for alkane dehydrogenation. Microenvironment (M) with active site
Orientation (0) leading to the C—H bond Straining (S) and propane Transformation (T).

(Fig. 6, left). Upon the guest alkane molecule con-
tacting the Cr-MFI zeolite, its zeolite microen-
vironment and Cr center provide a special elec-
tric field and facilitate reactant activation, thereby
enhancing the thermodynamic and kinetic feasi-
bility of alkane dehydrogenation. The active site
({(=Si0);Cr(=SiOH)}) then cooperates with the
microenvironment and offers an optimal and dy-
namic orientation and structure for alkane adsorp-
tion and activation through straining or compressing
the chemical bonds, ultimately enabling dissociation
of C-H bonds and formation of H-H bonds (Fig. 6,
middle). It should be noticed that the driving force
behind alkane dehydrogenation catalyzed by metal-
zeolite originates from the Cr center surrounded by
the confined electric field and the zeolite microen-
vironment. This combined catalytic system dynam-
ically evolves and participates in all the alkane dehy-
drogenation steps from start to end (Fig. 6, right).
Based on the aforementioned results, we herein
propose a Zeo-MOST concept to elucidate the
mechanism of metal-zeolite catalysis in alkane de-
hydrogenation (Fig. 6). In the PDH process cat-
alyzed by Cr-MF], the synergistic interplay between
the zeolite microenvironment (M) and the active
site orientation (O) achieves the straining (S) of
the C—H bonds in propane, ultimately leading to its
efficient transformation (T) to the target product.
The dynamic evolution of the Cr center in conjunc-
tion with the zeolite microenvironment orchestrates
every step of propane conversion. The continuous
implementation of the Zeo-MOST mechanism en-
ables highly efficient completion of the PDH reac-
tion. This implies that an efficient metal-zeolite cata-
lyst for alkane dehydrogenation performance should
possess three critical characteristics: (i) isolated
metal active atoms with flexible electronic states
and well-defined coordinated structures embedded
within a pure silica zeolite framework; (ii) a tailored
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microenvironment featuring a distinctive electric
field distribution that facilitates alkane adsorption,
activation and transformation; and (iii) synergistic
interplay involving continuous dynamic evolution
and cooperative functionality between metal active
sites and the zeolite microenvironment throughout
the entire catalytic alkane dehydrogenation cycle.

CONCLUSION

In this study, we have achieved the construction
of the metal-incorporated zeolite Cr-MFI, and its
application in the PDH reaction. Taking this as an
example, combined with theoretical simulations and
in situ tracking of the catalyst participation by in situ
XAS, in situ FTIR and an isotope labeling technique,
we reveal the unique catalysis of enhanced PDH
reaction on specifically oriented Cr centers within
the zeolite catalytic microenvironment. Cr-MFI has
been successfully constructed, where the Cr atom
occupies the T sites of MFI to form a local distorted
tetrahedral structure comprising one adjacent Si-
OH and three Si-O-Cr ({(=Si0);Cr(=SiOH)}).
The architecture of the Cr-MFI system elucidates
that the zeolite framework, in conjunction with
its intricate microenvironment, hosts Cr atoms to
generate isolated Cr centers possessing precise ori-
entations. This Cr center, along with their adjacent
O atoms, exhibits finely tunable electronic configu-
rations. These distinctive structural arrangements of
Cr-MFI zeolite impart remarkable and unparalleled
properties in the PDH reaction with extremely high
activity, selectivity and stability as compared with
previous reported Cr-based catalysts. Both theo-
retical and multiple in situ spectroscopic evidence
highlights the crucial role of the Cr-MFI microenvi-
ronment and active Cr center in all PDH steps. By
dynamically adjusting its microenvironment and ac-
tive center’s orientation and electronic state, Cr-MFI
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can accommodate and interact with the reaction
substrate to achieve its activation and conversion,
enabling C-H bond dissociation and H-H bond
formation, and promoting efficient PDH catalytic
cycles. Cr-MF], through its active centers and mi-
croenvironment, facilitates all key steps in propane
conversion, including accommodation, activation,
bond dissociation and product formation. These
provide deeper insights into the reinforced catalysis
from dynamical interplay between the metallic
center and its surrounding microenvironment in
metal-zeolite materials.

We introduce the Zeo-MOST concept to eluci-
date the powerful and targeted catalysis of metal-
zeolite catalysis in alkane dehydrogenation, espe-
cially in the PDH reaction. The zeolite microenvi-
ronment (M) and the metallic active site orientation
(O) play a pivotal role in achieving the straining (S)
of C-H bonds in propane, which ultimately leads to
its efficient transformation (T) into the target prod-
uct. The dynamic evolution of the Cr center, in con-
junction with the zeolite microenvironment, orches-
trates and fine-tunes each step of the propane conver-
sion process. Continuously implementing the Zeo-
MOST mechanism achieves highly efficient com-
pletion of the PDH reaction from its inception to its
conclusion. This concept not only provides a deeper
understanding of metal-zeolite catalysis but also of-
fers valuable insights for the rational design and opti-
mization of such catalysts for industrial applications.
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