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ARTICLE INFO ABSTRACT

Keywords: Implementing the Regional Comprehensive Economic Partnership (RCEP) has intensified maritime activities,
Maritime safety highlighting the need for effective risk assessment methodologies to ensure process safety and environmental
RCEP

protection. This study presents a Bayesian Network model as an innovative approach to evaluating and miti-
gating maritime accident risks in the RCEP region. By analyzing 549 maritime accidents recorded in the Global
Integrated Shipping Information System (GISIS) from 2016 to 2023, the research identifies and quantifies key
factors influencing accident severity, such as accident category, ship flag, vessel type, and environmental con-
ditions. The framework provides a systematic method for predicting accident severity and prioritizing safety
interventions, enabling maritime authorities and stakeholders to enhance safety management processes and
implement targeted risk reduction strategies. Key contributions include identifying critical risk factors unique to
the RCEP maritime environment, developing and validating the Bayesian Network model, strategically ranking
influencing factors, and exploring RCEP’s regional maritime safety management implications. This study offers
practical decision-making support for policymakers and ship operators, contributing to the maritime sector’s
broader discourse on process safety and environmental protection. The proposed framework is an adaptable tool
for ongoing monitoring and improvement of maritime safety processes, aligning with global standards and
regulatory requirements while addressing the unique challenges of the RCEP region to advance maritime process
safety and support sustainable economic integration.

Bayesian network
Ship accident analysis

New Zealand, and 10 ASEAN countries. The entry into force of the RCEP
marks the official establishment of the free trade area with the largest

1. Introduction

Maritime transportation is characterized by large volumes and low
prices, making it the mainstream mode of cargo transportation world-
wide. At the same time, developing the maritime transportation industry
is beneficial for improving the national industrial structure and inter-
national trade (Zhou et al., 2020). Therefore, maritime transportation
plays a vital role in international trade and the development of economic
globalization.

In order to promote regional economic and trade development,
countries in the Asia-Pacific region have been committed to promoting
multilateral trade cooperation for many years. The Regional Compre-
hensive Economic Partnership (RCEP) was initiated by the Association
of Southeast Asian Nations (ASEAN) in 2012. It took eight years to be
signed by 15 countries, including China, South Korea, Japan, Australia,

population, the most significant trade scale, and the most remarkable
development potential in the world. This fully reflects the confidence
and determination of all parties to safeguard multilateralism and pro-
mote regional economic integration jointly. RCEP will contribute to
global trade and investment growth, economic recovery, and prosperity
in the East Asian region. China is a major maritime trading country;
maritime transport accounts for more than 90 % of its international
trade (Zhou et al., 2020). Additionally, China trades frequently with
other RCEP member countries. According to China’s customs statistics in
2022, China’s imports and exports with other 14 RCEP member coun-
tries were valued at 12.95 trillion yuan (Ministry of Transport of Peo-
ple’s Republic of China, 2023), representing an increase of 7.3 % over
that seen in 2021 and accounting for approximately 30.8 % of China’s
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total foreign trade value. China’s trade with other RCEP member
countries has the following characteristics: Firstly, the proportion of
import and export trade within the first to fourth quarters of 2022
accounted for 30.4 %, 30.5 %, 30.7 %, and 31.4 %, respectively,
demonstrating a consistent upward trend. Secondly, the promotion of
RCEP effectively boosts trade between China and other member coun-
tries. In 2022, eight of China’s imports and exports to other RCEP
members grew by more than 10 percent, and those to Indonesia,
Singapore, Myanmar, Cambodia, and Laos grew by more than 20
percent on average compared with 2021. Thirdly, RCEP promotes in-
dustrial cooperation. In 2022, China imported and exported 8.7 trillion
yuan of intermediate products to other RCEP member countries, up 8.5
percent year-on-year, accounting for 67.2 percent of the total import and
export value in the same period. (From the perspective of the types of
commodities, China’s exports of electromechanical products and
labor-intensive products to other RCEP member countries have
increased substantially; China’s imports of electromechanical products,
mineral raw materials, and energy products from other RCEP member
countries have also seen substantial growth.) Fourthly, RCEP advance-
ment promotes private enterprise development. In 2022, China’s private
enterprises imported and exported 6.56 trillion yuan to other RCEP
member countries, up 17.4 % year-on-year, accounting for 50.6 % of
China’s private enterprises’ total import and export value in the same
period, a share that was 4.3 % higher than in 2021.

With RCEP being implemented on January 1st, 2022, the world’s
largest free trade area has officially set sail. RCEP will form an economic
alliance regarding trade flows, cargo supply, commodity prices, invest-
ment, and finance. It promotes complementarity and a virtuous circle
among the region’s countries, raising the volume of seaborne trade and
stimulating the demand for the port and shipping industry. In the bulk
and oil transport sector, the entry into the force of RCEP will support
maintaining the stability of the global commodity trade and supply
chain, mainly in iron ore and steel (Jin, 2021). At the same time, port
enterprises in the region are riding on the momentum of RCEP to usher
in historic development opportunities. In addition to world-class trunk
ports such as Shanghai, Ningbo, Qingdao, Tianjin, Busan, Tokyo, and
Singapore, regional hub ports such as Klang, Laem Chabang, Tanjung
Priok, and Jakarta are also stepping up their expansion and upgrading to
share the dividends brought by RCEP.

There are safety concerns behind the booming shipping industry. The
European Marine Safety Agency’s statistics indicate 23,814 global ma-
rine traffic accidents between 2014 and 2022, with an average of 2646
incidents annually. Of these, 2510 maritime casualties were reported in
2022 (European Maritime Safety Agency, 2023). Once a maritime traffic
accident occurs, most of them will produce the severe consequences
such as casualties, property loss, and environmental pollution. Hence,
the research on the causes and prevention of maritime accidents is a
traditional and important issue in shipping. According to the Interna-
tional Maritime Organization (IMO), a total of 381 "very serious" ship-
ping accidents occurred in the waters of RCEP countries and their vessels
from 2016 to 2023, of which collision of ships and human errors were
the most frequent causes of accidents (International Maritime
Organization-Global Integrated Shipping Information System, 2024).
Therefore, to ensure the safety of ship transportation, identifying and
analyzing the risk of shipping accidents with RCEP region as the
research object is of great significance.

The risk identification and analysis of shipping accidents are divided
into forward and reverse paths. The forward path is to deduce the
influencing factors based on the results of ship accidents. The reverse
path is to predict ship accidents based on the influencing factors (as
shown in Fig. 1). From a data modeling perspective, the two paths,
forward and reverse, are the training construction and testing applica-
tion process of the model, respectively. Currently, most studies on
shipping accidents are either macro studies on a global scale (Hanninen
et al., 2014; Galierikova, 2019; Li et al., 2023; Zhang et al., 2021) or
micro (Zhang et al., 2016) studies on a particular single country/region.
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Fig. 1. Forward and reverse research paths on factors influencing ship-
ping accidents.

At the same time, less work has been done on specific trade regions, such
as the RCEP, as the object of study. Therefore, establishing an accurate
identification model of risk factors for maritime ship accidents and
providing more targeted recommendations for ship risk prevention in
the RCEP are urgent issues in shipping. A large number of studies have
shown that the severity of shipping accidents is affected by a variety of
factors, including direct factors such as weather factors, geographic
location, and type of accidents; indirect factors such as vessel type, flag,
classification society, age, and vessel tonnage (Hanninen et al., 2014;
Galierikova, 2019; Li et al., 2023; Zhang et al., 2016). Among them,
different factors impact the severity of accidents differently. The data
sources used in the studies have been updated as the times have evolved.
In the 1960s, research on maritime accidents primarily relied on reports
from Lloyd’s Register and related research papers. In the 1970s, re-
searchers generally utilized the government data published by locally
owned coast guards, maritime commissions, and government agencies.
In the 1980s, Norwegian vessel-owning companies began releasing re-
ports on maritime accidents, and the UK also made accident-specific
data from the Marine Accident Investigation Branch (MAIB) available
as open data, which became the mainstream source of research infor-
mation. In the 1990s, computer database technology began to develop,
and numerous studies began to use Global Integrated Shipping Infor-
mation System (GISIS) and Automatic Identification System (AIS) da-
tabases. After the turn of the century, the data sources of maritime
accidents tend to be diversified, with GISIS data, Port State Control
(PSC) data, AIS data, International Comprehensive Ocean Atmosphere
Data Set (ICOADS), and the Clarkson Index have all become mainstream
sources of data for marine accident studies. Besides, maritime accident
reports released by China’s State Maritime Administration (SMAC) have
gradually become essential for researching maritime accidents.

A comprehensive international system has been established to pre-
vent maritime risks. In December 1980, the French Minister of the Sea
met with ministers from 13 European countries to discuss drafting the
PSC memorandum. The gradual improvement of the PSC regulations has
facilitated the establishment of eight regional PSC Memorandums of
Understanding (MOU) around the world, namely the Paris MOU, Tokyo
MOU, Regional agreements in Latin America, Caribbean MOU, Medi-
terranean MOU, Indian Ocean MOU, West and Central Africa MOU, and
Black Sea region MOU. The United States does not belong to any MOUs;
its Coast Guard (United States Coast Guard, USCG) performs indepen-
dent port inspections. For PSC, all ships passing through the ports must
be examined by the port authorities of their respective regions. When
there are safety hazards on the ships, the ports will detain the ships in
order to avoid accidents caused by high-risk ships going out to sea. All
RCEP members, except Myanmar and Cambodia, are members of the
Tokyo MOU. The inspection system of the Tokyo MOU is highly modeled
on the inspection system implemented in the Paris MOU jurisdictions,
which classifies ships into three categories according to their risk: low-
risk, standard-risk, and high-risk, based on a computerized database
that automatically evaluates and calculates the classification according
to the indicators of the ships over the past 36 months. Indicators for
ships include: type of the ship, age of the ship, status of the ship’s
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recognized organization, status of the shipping company responsible for
the ship’s safety by the International Safety Management Code, number
of hull defects, and number of times the ship has been detained.

According to previous studies, the standard methods for identifying
and analyzing the risk of shipping accidents are divided into qualitative
and quantitative methods. Qualitative methods include the Functional
Resonance Analysis Method (FRAM) (Lee et al., 2020), Root Cause
Analysis (RCA) (Li et al., 2023), Human Factors Analysis and Classifi-
cation System (HFACS) (Li et al., 2023), and Accident Analyze Mapping
(AcciMap) (Puisa et al., 2018). Quantitative methods include Evidential
Reasoning (ER) (Li et al., 2023), Event Tree Analysis (ETA) (Li et al.,
2023), Fault Tree Analysis (FTA) (Li et al., 2023), K-means clustering
algorithm (Zhang et al., 2021), and Bayesian Network (BN) (Hanninen,
2014; Chen et al., 2022) models. Although qualitative analysis methods
can provide an in-depth understanding and explanation of the problem
and help to discover new research questions and perspectives, with the
improvement of computational power, quantitative analysis methods
have demonstrated significant advantages in terms of data processing
capability, model complexity, and accuracy, and reproducibility and
validation of results. Therefore, this paper adopts quantitative analysis
methods to analyze the problem of analyzing the influencing factors of
shipping accidents. Among them, there are six significant advantages of
the BN model in the identification and analysis of shipping accident
risks:

(1) BN can reduce the complexity of analyzing the problem by
decomposing the joint probability distribution into relatively simple
modules. BN requires fewer data and can even reason under incomplete
information, which effectively couples with uncertainty factors.

(2) BN can synthesize prior knowledge, and real data mitigates the
individual bias brought about by subjective factors and weakens the
noise problem that arises from using data alone, making the results of
BN’s reasoning more convincing.

(3) BN combines a "static" presentation with a "dynamic" research
process, effectively combining historical data with newly generated
changes to make informed decisions about dynamic situations.

(4) BN can visually represent variable relationships through simple
graphical models, achieving a high level of problem generalization and
making reasoning easier to understand.

(5) BN has been extensively applied in various engineering fields,
such as accident causation and land transportation accident analysis,
and has already realized mature applications.

(6) BN can be analyzed in both forward and reverse directions in
accident analysis studies, considering both factor analysis and accident
prediction functions.

This paper constructs a BN model based on the GISIS dataset to
analyze the maritime accidents of 15 members in the RCEP. Recognizing
that reverse path research of ship accident prediction is heavily influ-
enced by uncertain factors, modeling research in this area is deemed to
have limited significance. Therefore, this paper mainly adopts the for-
ward analysis path to derive the significant influencing factors leading to
different severity levels of accidents by taking the severity level of
maritime accidents as a benchmark. We also analyze the importance
level of each influencing factor to provide a reasonable risk avoidance
reference basis for the risk management decision of shipping
organizations.

The structure of this paper is as follows: Section 2 reviews previous
studies on maritime accident risk, shipping accident risk factors, and BN
modeling in the field of risk factor identification; Section 3 describes the
dataset and data processing methodology used in this paper; Section 4
introduces the modeling of the risk in the RCEP region based on the BN
and the validation of the model’s rationality; Section 5 presents the
empirical analysis and results of the data in this paper; and finally,
Section 6 delivers the main conclusions drawn from this study along
with future outlooks.
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2. Literature review
2.1. Maritime transportation accident risk study

Scholars have long used mathematical modeling to quantify poten-
tial risks with limited data, including Hazard Identification and Ranking
(HIRA) (Khan and Abbasi, (1998), Quantitative Risk Assessment (QRA)
Kalantarnia et al. (2009), Data Envelopment Analysis (DEA), and BN
models. The typical research is summarized as follows: Schroder et al.
(2013) analyzed the documents with simple experts reviewing and score
method submitted to the Maritime Safety Committee (MSC) of the IMO
in order to assess the priority level of the MSC’s agenda on human fac-
tors in maritime accidents. The results confirmed that the IMO rarely
considered human factors in accidents in the 1990s but gradually
introduced them into maritime accident analysis after the 21st century.
Hanninen (2014) systematically analyzed BN’s research strengths and
weaknesses in maritime traffic accidents. The advantages are concluded
in the introduction section of this paper. The disadvantages are that
selecting and determining prior knowledge is challenging, and model
validation is complex (this paper employs the constant prior to including
the information of data to the greatest extent and conducts a compre-
hensive model validation before application). Wu et al. (2015) analyzed
the effectiveness of maritime safety control. They proposed an improved
Data Envelopment Analysis (DEA) model based on grey relational
analysis, particularly considering navigational environmental factors as
inputs and shipping accident data as outputs. The results show that the
improved model can effectively screen the key factors affecting mari-
time safety. Luo and Shin (2019) summarized the development history
of maritime risk research, found that BN models are widely employed in
maritime risk research, and explained that BN has an outstanding
advantage in maritime risk research due to its excellent data reasoning
ability. The above research has played a crucial foundation role in the
field of maritime traffic accident risk factors. BN is the most commonly
utilized one, but the prior choice and model validation need to be further
studied in the application.

With the enhancement of computer processing power in recent years,
standard maritime traffic accident risk factor sharing models primarily
rely on multi-dimension data analysis, such as FRAM, KDE, NLP,
Lempel-Ziv, and Dynamic Bayesian Network (DBN). Lim et al. (2018)
reviewed and summarized maritime risk analysis models and catego-
rized the models into three main categories: statistical, simulation, and
optimization. Puisa et al. (2018) attributed the causes of accidents at sea
to three areas, namely inadequate control and feedback mechanisms
between the ship management company and the ship, insufficient
feedback from the crew on the results of skills, and dysfunctionality in
the design and construction of ships. Kulkarni et al. (2020) took the
Baltic Sea as the object of research, reviewed the research history of
shipping accidents, and established risk prediction models to assess the
safety and reliability of maritime transportation in waterway regions.
The summary found that there are relatively few frameworks for
applying risk modeling, analysis, and assessment in maritime waterway
decision-making, and there is room for further research. Lee et al. (2020)
analyzed the level of human collaboration based on FRAM analysis by
classifying human collaborative relationships, including specified or
unspecified relationships. The article analyzes the human collaborative
relationships in two maritime accident cases and the system’s techno-
logical, human, and organizational state. Zhang et al. (2021) employed
the Kernel Density Estimation (KDE) and K-means algorithm methods to
statistically classify the data of shipping accidents in GISIS from 2013 to
2018 to summarize that part of the sea area around the UK and
Denmark, the sea area around Shanghai and Singapore are the highest
frequency areas of maritime accidents within the data. Zhang et al.
(2022) analyzed maritime traffic complexity from a micro perspective
and concluded that it is due to its irregularity and unpredictability. They
proposed a traffic safety management prediction method utilizing the
Lempel-Ziv algorithm and similarity ranking preference technique for



W. Wang et al.

optimizing inland waterway traffic flow scenarios. Li et al. (2022a)
proposed a risk performance inference strategy for LNG ships sailing in
Arctic waters through a dynamic BN model and revealed that the main
risks in Arctic summer waters were composed of difficult-to-detect ob-
stacles in the passage, such as icebergs and coral reefs. Gan et al. (2023)
used the Natural Language Processing (NLP) model to analyze a total of
241 accident reports issued by the SMAC from 2018 to 2022. They
constructed a knowledge graph to discover the internal relationship
between accidents. The related conclusions can be used to speed up the
judicial process and simplify investigating maritime accidents. Huang
et al. (2023) focused on the development of Maritime Transportation
Risk Analysis (MTRA) from 2000 to 2021 and analyzed the related
research methods. They found that maritime transportation risk
assessment methods are developing in the direction of systematization
and synthesis. They concluded that integration with artificial intelli-
gence methods will be the leading research direction in the future. Eli-
opoulou et al. (2023) conducted a statistical analysis of maritime
accidents of passenger ships operating worldwide and concluded that
the accident fatality rate of cruise and (pure) passenger ships has
increased in the last decade, while the accident fatality rate of Ro-Ro
ships has decreased significantly. Passenger ships’ safety level has
remained the same. Liu et al. (2023a) addressed the safety issues of
offshore platforms by integrating machine learning, deep learning, and
natural language processing techniques to develop an automated risk
identification method. A BN model is constructed for data-driven risk
assessment using the identified risk factors. Taking the Bohai Oilfield as
an example, the effectiveness of this method has been validated. The
results indicate that this approach enhances risk factor identification
and assessment automation.

As shown in Table 1, the current relevant research mainly studies the
risk of marine accidents from three perspectives: industry management
optimization, accident risk estimation, and accident influencing factor
analysis. This paper focuses on the research from the accident influ-
encing factor analysis perspective. Regarding the model choice, it has
been noted that the FRAM, KDE, and advanced machine learning models
have recently been very popular in identifying maritime accident risk
factors. However, the BN model is still typical because of its fast con-
struction and clear graphical interpretability in this "big data" era. Also,
based on the results of this paper, the accuracy of risk factor identifi-
cation of BN is not less than any other (95 % accuracy in the 20 sample
tests in Section 4.3), with the most simple model structure.

2.2. Forward-path research of risk factors for maritime accidents

Maritime accident risk factor studies are categorized into forward
and reverse. Forward research focuses on the derivation of influencing

Table 1
A review of water transportation risk research methods.
Literature Methodology Objective Perspective
Wu et al. DEA Yangzi River basin Risk estimation
(2015) navigation environment
Zhang et al. BN Predicting the
(2016) consequences of the
Tianjin Port accident
Lee et al. FRAM Manufactured Influencing factors
(2020) relationships with
maritime accidents
Zhang et al. KDE Characteristics of shipping
(2021) accidents
Liu et al. Machine Bohai Oilfield risk factor
(2023a) Learning identification
+BN
Gan et al. NLP Report on the Industry
(2023) investigation of a shipping ~ management
accident optimization
Zhang et al. Lempel-Ziv Inland waterway traffic

(2022) safety management
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factors based on the occurrence of accidents, where influencing factor
selection and mathematical model choice are the main aspects of the
research. Balmat et al. (2011) proposed a fuzzy approach to evaluate the
application of maritime risk assessment to maritime safety, especially
pollution prevention on the high seas. The system defines risk factors for
each vessel based on vessel characteristics and weather conditions.
Montewka et al. (2014) collected vessel collision accident data and
operated the BN model to identify variables in the Gulf of Finland waters
that significantly impact vessel collision accidents. Zhang et al. (2016)
studied predicting the consequences of accidents in Tianjin port based
on years of accident statistics and expert knowledge to construct a BN
model to predict the possible consequences. Galierikova (2019) included
human factors in the accident investigation plan, and utilized human
factors analysis to classify the factors affecting shipping accidents into
19 categories, and reclassified the factors for a comprehensive expla-
nation. Wan et al. (2019) proposed a new risk classification framework
to identify the main factors of significant safety issues from five per-
spectives: social, natural environment, management, infrastructure, and
technical operations, and quantitatively assess the identified risk factors
based on their likelihood of occurrence and severity of consequences. Li
et al. (2023) categorized the influencing factors of shipping accidents
into dynamic and fixed factors to construct a BN model. They found that
the most influential factors of shipping accidents are not the same in
different types of accidents and provided the ranking of the importance
of each influencing factor. Cao et al. (2023) conducted a bibliometric
analysis of maritime accident research and proposed that the crew’s
psychological state factor has a significant impact; for example, LNG and
LPG vessels have higher operational standards and more severe conse-
quences of accidents compared to other vessels, so the crew has more
psychological pressure. It is more likely to cause human error. In sum-
mary, the prediction of consequences of vessel collision accidents, the
analysis of factors affecting shipping accidents, and the safety of the
maritime supply chain are the main research contents of the forward
research on risk factors of shipping accidents, among which most
scholars choose the BN model due to its reasonable reasoning ability. Ma
et al. (2024) used 980 maritime incidents off the Liaoning coast between
2000 and 2023; the Tree Augmented Network (TAN) learning algorithm
and Expectation Maximization (EM) algorithm are used to construct the
data-driven BN model. A comprehensive BN analysis was conducted,
including impact intensity assessment, sensitivity analysis, scenario
simulation, and model validation. The results demonstrate that distinct
types of maritime accidents exhibit varying sensitivities to seasonal
variations and time of day. For example, fire and explosion accidents are
more common in bulk carriers.

2.3. Reverse-path research of risk factors for maritime accidents

In addition to analyzing the influencing factors of maritime accidents
based on accident data, prediction of accidents based on known influ-
encing factors is also gradually emerging. Pula et al. (2005) aimed at the
problem of marine fire accidents and carried out risk analysis on various
possible consequences to reasonably predict the losses caused by marine
fire accidents. Trucco et al. (2008) established the Marine Information
System (MIS) BN model to analyze the impact of changes in human
factors on shipping risk by taking the human organizational factors in
maritime accidents as the primary research object, in which the human
factors are subdivided into the shipping company, the maritime
department, the port management, and all kinds of rules and regula-
tions. Hanninen et al. (2014) used the expert consultation method, a
standard construction method for BN models, and applied PSC data to
propose a maritime safety management model for predicting and eval-
uating the safety management of vessels navigating in Finnish waters.
Sotiralis et al. (2016) focused on the impact of predicting the occurrence
of shipping accidents due to human factors to apply to the Dover Sea
area, incorporating it more into the quantitative analysis of operational
risk based on BN model. The study categorized crew status into normal
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conditions, abnormal conditions, and critical operations. Baksh et al.
(2018) propose a new risk model applicable to the Northern Sea Route
(NSR) to investigate the possibility of marine accidents such as collision,
foundering, and grounding. The model is developed using BN. The
proposed risk model has considered different operational and environ-
mental factors that affect shipping operations. The application of the
model is demonstrated through a case study of an oil tanker navigating
the NSR that has the highest collision, foundering, and grounding
probabilities in the East Siberian Sea. Cai et al. (2021) proposed a re-
sidual useful life (RUL) re-prediction method based on the Wiener pro-
cess, establishing a DBN model for system performance degradation.
Using the Subsea Christmas Tree system as an example, the effectiveness
of this method was validated. Khan et al. (2020) used a Dynamic BN
model to analyze the risk of ship-ice collision in Arctic waters. A tanker
sailing in the Barents Sea is taken as an example to explain the proposed
model. Cai et al. (2019) utilized DBNs to propose a hybrid structural
system RUL estimation method based on physical models and
data-driven approaches. This method considers the influence of multiple
factors and establishes an RUL estimation model, validated using subsea
pipelines in offshore oil and gas production systems as an example. Yu
et al. (2021) utilized the data from the new inspection system of the
Paris MOU on PSC to construct a dynamic risk prediction model for
vessels using both BN and ER models to collect the factors influencing
shipping risk based on the vessel’s inspection records. Li et al. (2022b)
proposed a new method for risk management and emergency
decision-making of offshore oil spill accidents based on BN and Influ-
ence Diagram (ID). This method combines pre-accident risk manage-
ment with post-accident emergency response, which can balance risk
and cost and make optimal decisions. The results show that this method
can effectively support decision-making in risk management and
emergency response to offshore oil spill accidents. Liu et al. (2023b)
proposed a dynamic assessment method for oil spill risk under extreme
wind conditions based on DBNs. They converted physical models such as
advection, diffusion, evaporation, and dispersion into DBNs and estab-
lished a vulnerability model based on coastline types and
socio-economic resources. Using Laizhou Bay as an example, the effec-
tiveness of this method was validated, and the risk probabilities of oil
leaks at potential locations were calculated to facilitate proactive risk
prevention efforts. Fan et al. (2023) used neuropsychological data to
analyze the psychological factors of seafarers and designed a vessel-
board piloting simulation experiment to obtain the conclusion that
pre-service training for crew members, which has a significant advan-
tage on mental health.

In summary, the prediction of shipping accident consequences is the
mainstream research direction in the reverse research of accident risk
factors, and the research on the prediction of accident consequences is
also gradually coming into practical application. The Paris MOU has
published an official shipping risk model in which vessel operators can

Table 2
A review of forward and reverse maritime accidents research.
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get the risk level by inputting the vessel parameter information to pre-
vent accidents. The main contents of shipping risk reverse research are
the influence of human factors on risk and the analysis of risk levels
based on PSC data. Table 2 summarizes the current research on maritime
accidents from both forward and reverse perspectives.

2.4. Literature summary

Compared with other risk factor studies, the research of maritime
accidents in terms of influencing factors started later. Ship risk research
has formed a relatively structured system in recent years, and screening
risk factors affecting the occurrence and development of accidents,
modeling risk prediction using specific methods, and putting forward
suggestions for improvement are its main contents. Numerous factors
influence the risk of ship accidents, and each influence is complex,
making it difficult to track and extract effectively. Based on the summary
of various literature, this paper selects the BN model to analyze and
research ship accident influencing factors. Although the BN model is a
"classic" one compared with machine learning methods, it is still
powerful enough for this work regarding identification accuracy. Also,
BN has excellent interpretability and a straightforward model structure,
suitable for management applications and further extension. The main
flow of our research is shown in Fig. 2.

3. Data collection and processing
3.1. Data collection on maritime accidents

3.1.1. Data source

This study is based on the GISIS database, which contains a total of
754 records during the period from January 1, 2016, to December 31,
2023. Among them, the accident information includes the time, loca-
tion, basic information of the vessel involved and accident casualties.
Meanwhile, the accident reports contain detailed descriptions of the
accident process, which can be used as supplementary information (e.g.
whether it was affected by extreme weather). In addition, the maritime
accident database is fused with other vessel information databases
through the vessel’s Maritime Mobile Service Identify (MMSI) number,
which is used to supplement other information needed for the study in
this paper (i.e., vessel age, size of the vessel, vessel company informa-
tion) to ensure the completeness, accuracy and validity of the collected
data.

3.1.2. Description of data

There were 379 and 375 records of accidents reported by RCEP
member countries and accidents occurring globally on ships belonging
to RCEP member countries, respectively, totaling 754 records. The data
were screened, including removing duplicate and accident records with

Forward research Literature

Reverse research Literature

Research on factors influencing pollution in the high seas
Research on accident prediction based on vessel collision records

Human factors on vessel risk

Research on maritime supply chain security guarantee based on
maritime accident prediction

Research on manufactured relationships with maritime accidents

Research on the analysis of influencing factors of vessel accidents
and accident prediction
Research on factors affecting offshore platform safety

Research on the impact of crew psychological factors on maritime
accidents

Balmat et al., 2011
Montewka et al., 2014
Zhang et al., 2016

Galierikova, 2019
Wan et al., 2019

Lee et al., 2020
Li et al., 2023
Ma et al., 2024

Liu et al., 2023a

Cao et al., 2023

Prediction of maritime fire losses

Prediction of the impact of human factors on maritime
accident consequences

Prediction of ship safety inspection results

Prediction of arctic shipping routes risk

Prediction of residual useful life of subsea christmas tree
systems

Prediction of residual useful life of subsea pipelines
Impact of vessel inspection records on vessel risk

Prediction of potential oil spill locations risk at sea

Influence of crew psychological factors on vessel risk

Pula et al., 2005
Trucco et al., 2008
Sotiralis et al., 2016
Hénninen et al., 2014
Baksh et al., 2018
Khan et al., 2020
Cai et al., 2021

Cai et al., 2019
Yu et al., 2021
Li et al., 2022b

Liu et al., 2023b

Fan et al., 2023
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Fig. 2. Development network diagram of literature research.

significantly missing information. 549 accident records were retained
after data cleaning.

IMO divides maritime accidents into "very serious", "serious" and
"less serious" according to the severity. "Very serious accident" refers to
an accident caused by total damage, casualties, or severe pollution on
the vessel; "serious" refers to an accident that does not belong to a "very
serious accident" caused by the vessel due to fire, explosion, collision,
stranding, contact, lousy weather damage, ice damage, hull rupture or
suspected hull defects; "less serious" refers to other accidents that are not
"very serious" and "serious". The number of accidents of various severity
is shown in Fig. 3.

The number of data for which specific geographic coordinates were
recorded was 436 out of 549, and the accidents’ distribution is shown in
Figs. 4 and 5. Among them, the red marking indicates the location of
accidents occurring in the sea area of RCEP reported by each member
country, and the blue indicates accidents involving ships from RCEP
member countries worldwide.

The maritime accidents of RCEP member countries are mainly
concentrated in the East and South seas of China, the Straits of Malacca,
the waters of Japan and Korea, and the east coast of Australia. Except for
the Asia-Pacific region, the accident locations of vessels of RCEP mem-
ber countries are relatively scattered. Common accidents are also on the
west coast of Europe, the Mediterranean region, and the east coast of the
United States.

3.2. Analysis of risk influencing factors (RIFs)

3.2.1. Selection of RIFs
Define factors affecting maritime transportation safety as RIFs. Based

50, 3%

W Very serious M Serious M Less serious M Undefined

Fig. 3. Distribution of accident severity categories.
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on the RCEP maritime accident database established in the previous
section, the following principles are combined to select the risk factors
for shipping accidents.

(1) Principle of independence: the selected RIFs should be indepen-
dent of each other, and there is no cross or containment relation between
different categories of RIFs.

(2) Principle of effectiveness: the collected accident data is the basis
of the BN model; if the selected RIF has no data or an extreme amount,
the RIF should not be set as a node. Therefore, when building the BN
model, it should be combined with the data that have been collected for
comprehensive consideration.

(3) Principle of timeliness: with the improvement of the scientific
level, the factors affecting shipping accidents will also change to a
certain extent, so the selected node should be in line with the back-
ground of the times so that the BN model can infer the present.

This paper finalized 19 RIFs:

(1) Flag: the flag is a symbol of the nationality of a vessel. Every year,
on July 1, the Paris MOU releases the latest version of the white list, grey
list, and black list to the public, evaluating the long-term performance of
the work done by the flag state authorities. To a certain extent, the flag’s
ranking can be utilized as a straightforward way to identify advantages
and disadvantages in a large amount of information. The white, grey,
and black lists can show the results of all its flag state evaluations,
derived based on the total number of PSC inspections and the total
number of stays of flag states that have undergone at least 30 PSC in-
spections during a rolling three-year period. This paper categorizes flag
states based on the rankings issued by the 2020 Paris MOU.

(2) SOLAS certification: the International Convention for Safety of
Life at Sea (SOLAS) is an international safety agreement published by
IMO. This parameter is classified according to whether the vessel holds
SOLAS certification.

(3) Place of vessel construction: classification is based on whether
the country where the vessel was built is developed.

(4) Vessel company: classification is based on vessel operating and
management companies.

(5) Classification society: this influencing factor refers to whether the
accident vessel belongs to the world’s top ten classification societies
(take 40.12 % in the dataset of this paper). The top ten classification
societies are DNV GL Group (6.32 %), ABS (American classification so-
ciety) (5.02 %), Class NK (Japan classification society) (9.85 %), Lloyd’s
Register (5.95 %), Rina (2.04 %), Bereau Veritas (5.02 %), China Clas-
sification Society (3.35 %), Russian Maritime Register of shipping (0 %),
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&

Fig. 5. Distribution of shipping accidents in the global area of RCEP member countries.

Korean Register of shipping (2.60 %), and Indian Register of shipping
(0 %).

(6) Extreme weather: extreme weather includes high winds, high
waves, and heavy fog. The accidents are categorized according to the
presence or absence of extreme weather.

(7) Accident location: classification is based on the location of the
accident in the accident report.

(8) Coastal administration: vessel accidents are reported and pro-
cessed by the country where the accidental sea area belongs, and
sometimes multiple countries report the same accident. In order to avoid
duplication of data, it is chosen to report the accident report first for
recording.

(9) Accident time: it categorizes the time of day into 0:00-7:59,
8:00-15:59, and 16:00-23:59.

(10) Accident season: classification based on the quarter when the
accident occurred, of which the first quarter is from March to May, the
second quarter is from June to August, the third quarter is from
September to November, and the fourth quarter is from December to
February next year.

(11) Accident month: categorized according to the accident’s
occurrence.

(12) Vessel type: the vessel type with the most accidents in the
selected data was dry bulk carriers, accounting for 66 % of the total
incidents.
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(13) Number of persons on board: classified according to the number
of persons on board at the time of the accident.

(14) Gross registered tonnage: it is a measurement of a ship’s overall
internal volume. It is calculated based on the total enclosed spaces
within the ship, including cargo holds, crew quarters, and machinery
spaces. Gross registered tonnage is expressed in "register tons," where
one register ton equals 100 cubic feet of space. This metric is used pri-
marily for regulatory and tax purposes, such as determining port fees,
docking charges, and safety regulations. Gross registered tonnage pro-
vides a standardized way to assess the size of a vessel, although it does
not directly indicate the ship’s weight or cargo-carrying capacity.

(15) Vessel’s main engine power: according to this parameter, it can
reflect the vessel’s carrying capacity.

(16) Vessel age: categorized according to the vessel’s age, the most
significant number of vessels involved in accidents in the selected data
were between 6 and 10 years old.

(17, 18) Vessel length and width: classified according to the size of
the vessel.

(19) Type of accident: categorized according to the accident type.
According to statistics, the most frequent types of accidents are colli-
sions, accounting for 27 %.

Finally, the labeling results of the RIFs used in this study are shown in
Table A1l.
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3.2.2. Classification of RIFs

This section further categorizes the 19 RIFs for BN modeling, i.e., the
secondary risk factor structure. These include four types: vessel infor-
mation, vessel management information, vessel environment, and ac-
cident categories, as shown in Table 3.

Vessel management information refers to the information on vessel
management and operation involved in the operation of a vessel.
Whether a vessel can navigate safely on the water depends on whether
the organization implements suitable management measures. Therefore,
the management factor is usually regarded as the leading RIF that can
cause marine traffic accidents and is thus included in the scope of
research. Management consists of two main aspects: First, relevant in-
ternational organizations and national maritime authorities externally
supervise shipping enterprises and their vessels. The local maritime
authorities, in particular, are more familiar with the local situation and
can formulate scientific and practical regulations on shipping safety
management according to local conditions. Second, the vessel com-
panies with their supervision. They will regard their situation to estab-
lish a sound and standardized management system. Vessel management
information and vessel information constitute the static factors of vessel
accident RIFs together, and the static factors are determined when the
vessel is in port, so the static factors are often used as the measure of
vessel risk during port inspection.

Vessel information is defined as the various factors inherent to the
vessel itself. Vessel factors are important causal factors of maritime
transportation accidents. Vessel factors are numerous, such as the
maneuvering equipment, life-saving and fire-fighting equipment, the
materials used in the construction of the hull and its quality, the struc-
tural design of the hull, the sealing and compartmentalization of the
hull, as well as the vessel’s buoyancy, the dry side, and the swaying
properties of the vessel, which can be reflected in the age of the vessel,
the performance of the equipment, and other factors. This paper mainly
categorizes vessel factors into vessel size, loading condition, vessel age,
vessel type, and power.

Vessel environmental factors are usually the main factors that induce
marine traffic accidents, including meteorological and hydrographic
conditions. Natural environmental factors include visibility, sea cur-
rents, wind, and waves. For example, when there is rain, fog, and other
particular weather, the driver’s lookout will be interfered with, and the
field of vision will not be precise, leading to the vessel in the process of
driving accidents. Wind and waves will destroy the vessel’s stability,
greatly enhancing the possibility of vessel accidents. Meanwhile, this
will cause great difficulty in the subsequent rescue work. Vessel envi-
ronmental factors are dynamic factors, which refer to the factors that
change dynamically during the vessel’s traveling process, such as

Table 3
Classification of factors influencing vessel accidents.
Classification of risk ~ RIFs Classification of risk ~ RIFs
influencing factors influencing factors
Vessel management  Flag Vessel information Vessel type
information SOLAS Number of
certification persons on
board
Place of vessel Gross
construction registered
tonnage

Vessel’s main
engine power
Vessel age

Vessel company

Classification
society

Extreme weather
Accident location
Coastal
administration
Accident time
Accident season
Accident month

Vessel width
Vessel length
Type of
accident

Vessel environment Accident category
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weather, time, season, and location.

The accident category is the most critical in RIFs, and different ac-
cident categories may lead to different consequences. This paper com-
bines the existing data to categorize the accident categories into six
cases: grounding, collision, fire and explosion, vessel wreck and capsize,
vessel damage and cargo damage, and other accidents. Among them,
grounding, collision, and fire/explosion incidents refer to accidents due
to crew operational errors or equipment failures, resulting in direct
damage to the vessel or delays in scheduled arrangements, leading to
losses. Shipwrecks, capsizing, and cargo and vessel damage refer to
losses caused to the cargo on board or the vessel due to weather or other
factors. Other incidents refer to accidents that do not fall into any of the
above categories but still result in casualties or property damage, such as
a crew member falling from the lookout tower due to inadequate
training and dying.

4. Maritime risk model by BN
4.1. BN model introduction

BN is also known as a confidence network and is one of the most
compelling theoretical models in uncertainty and reasoning. It is a
model for handling the uncertainty of causal relationships in simulating
human reasoning. In BN, variables are represented by nodes, and the
relationship between variables is represented by directed arcs, with the
cause node pointing to the result node. In summary, BN is a set of (DAG
and a collection of related parameters. Among them, the DAG represents
the model structure attributes, that is, the network structure; the rele-
vant parameters represent each variable’s Conditional Probability
Table (CPT), representing the dependencies between variables. In a BN,
the random variables involved in a particular research system are rep-
resented in a directed graph based on their conditional independence,
thus forming the BN. It is primarily used to describe the conditional
dependencies between random variables, with circles representing
random variables and arrows indicating conditional dependencies. For
example, if node E directly influences node H, represented as E—~H, a
directed arc (E, H) is established from E to H, and the weight (i.e.,
connection strength) is represented by the conditional probability P(H|
E), as shown in Fig. 6 below:

Denote each node by x;, v; denotes the set of parent nodes corre-
sponding to x;, i = 1,2...n. X denotes the set of n nodes, n denotes the
total number of nodes.The joint probability p(X) of the set of n node
variables in the model is denoted as:

pX)

p(X) is considered the strength between x; and v;. Prior proba-
bility refers to the probability derived from experience and analysis,
such as in the total probability theorem. It often appears as the proba-
bility of the ’cause’ in the ’cause and effect’ problem. Marginal proba-
bility refers to the probability of an event occurring among all possible
scenarios involving a summation or integration process. It reflects the
likelihood of an event occurring and is one of the fundamental concepts
in probability statistics. Marginal probability is obtained by merging the
unnecessary events in the joint probability into the total probability of
those events, a step known as marginalization. Specifically, a marginal
probability f can be derived from the joint probability of xi, xs, ..., X,
with the following formula:

@

:l:lp(xi|v,-)

P(HIE)

Fig. 6. Example of causal relationship.
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fk(xk): Z f(xl’---:xn) (2)

X1, Xn
except X

Posterior probability refers to the probability of an event occurring
after obtaining some observational information. The posterior proba-
bility of an event is commonly calculated using Bayes’ theorem, which is
as follows:

P(B|A)-P(A)

PAIB) = =5

3

4.2. BN structure determination

There are two main methods to determine the structure of BN. The
first is using prior knowledge to construct the network structure; this
approach is based on expert experience and knowledge or similar
structure of the previous literature for model construction, subject to the
influence of prior knowledge, under the premise of insufficient data
commonly used in this method. The second is to obtain the network
structure through structural learning by analyzing data, such as using
the scoring search method to train the data, and obtain the network
structure. This method needs a tremendous amount of data. Based on
data analysis, the causal relationship between various nodes is obtained,
and the execution of this method is complex. At the same time,
increasing nodes will lead to an exponential increase in data relationship
analysis, seriously affecting learning efficiency. This paper chooses the
first method after referring to a large amount of literature. The main
reason is that specific results have been achieved in identifying and
analyzing RIFs, which can be reliably referenced in classifying influ-
encing factors. The second method will limit the number of nodes
studied. Based on the existing data, a BN model is constructed, and the
detailed construction process is shown in Fig. 7.

The BN model structure is shown in Fig. 8.

19 RIFs are divided into primary factors and secondary factors.
Among them are 8 primary factors (green mark) and 11 secondary
factors (blue mark). The primary factors are the direct factors leading to
the accident’s severity, and the secondary factors are the sub-factor of
the primary factors, which are the indirect factors leading to the severity
of the shipping accidents. The primary factors cover all four types of
factors in Table 3. Among them, the vessel environment provides five
primary factors, and each of the other three categories provides one
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primary factor. That is, the direct impact of the vessel environment on
the severity of vessel accidents is the most remarkable.

4.3. Model rationality validation

The rationality of our proposed model is verified by forward infer-
ence, that is, whether the relationship between nodes in the established
BN model is reasonable with reality to prove the rationality of the
model.

This paper utilized 20 samples of maritime accident cases outside the
training sample to verify the rationality of the proposed model and
selected the identified influencing factors, that is, the set of risk sub-
factor nodes that have an impact on the accident, which are input as
evidence into the established BN model for forward reasoning in order to
validate the reasonableness of the shipping accident simulation model,
and the following is the validation process.

The collision between Greek-registered bulk carrier Spartan and
Australian rock lobster fishing vessel Hannah Lee

At 05:35 on April 17th, 2005, 17 nautical miles off Bouvard, off the
southwest coast of Western Australia, the Greek-registered bulk carrier
Sparta collided with the Australian rock lobster fishing vessel Hannah
Lee at 32°43'8'S, 115°16'9"E. The Sparta was on its way to the port of
Banbury to load alumina. Hannah Lee left the small port of Mandurah at
03:45 and went to work in the rock lobster pools located approximately
37 nautical miles southwest of the port.

The following risk sub-factors were extracted from the accident
description: vessel type, coastal administration, accident season, acci-
dent month, accident time, flag, extreme weather, and accident location.
They were entered into the BN model as evidence and forward reasoning
to obtain the following results, as shown in Figs. 9 and 10. The results of
the forward reasoning are shown in Table 4.

Substituting the RIFs extracted from the accident case descriptions
into the simulation model reveals that the probability of the severity
level being "serious" is significantly higher. In contrast, the results for
other types of accidents are significantly lower, and the accident’s
severity level in the accident record is also "serious", which is in line with
the facts.

Hong Kong cargo vessel "Huilong" sinks

On May 18th, 2005, the general cargo vessel "Huilong", registered in
Hong Kong, sailed from Indonesia to India. This vessel carried 11,245
tons of mixed general cargo, including 5185 tons of fluorite minerals in

Feature Analysis ‘

1. Vessel Management

Data Preparation Information

1. Data Collection 2. Vessel Information

2. Data Process

3. Vessel Environment

4. Accident Category

BN Model
Quantitavite
Management Vessel An a]ys 1S
Information Information
> 1. Predictive Analysis
2. Diagnostic Analysis
Enviromment ‘ Accident ‘ 3. Sensitivity Analysis
Category

]

f

Gﬁ\p\
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Fig. 7. Process of BN model constructions.
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Fig. 9. Setting the node state (Case 1).

bulk. At 15:35 local time (UTC-+5), the vessel was 173 nautical miles
from Shangri Lanka, located at 5°55'30'N, 84°20'42E; the vessel sud-
denly tilted 15 degrees to the port side. The situation continued to
deteriorate, and the captain abandoned the vessel at 16:02 after the port
deck was submerged in 40-degree water, and all 23 crew members were
rescued by the passing container freighter Nedlloyd Asia. The next day, a
salvage tug was called in an unsuccessful attempt to rescue the vessel,
which sank on May 20th, 2005.

1244

The exact reason for the sinking of "Huilong" could not be deter-
mined. After investigating the possible causes of the accident, it was
concluded that the liquefaction of the bottle stone in cargo holds No. 1
and No. 3 was the cause of the accident. The flow state of bottled stone
goods may cause the vessel to sink.

The following risk sub-factors were extracted from the accident
introduction: type of accident, vessel type, accident season, accident
time, accident month, accident location, extreme weather, flag and
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Fig. 10. Forward reasoning results (Case 1).

Table 4

Accident simulation forward reasoning results (Case 1).
Severity Before entering After entering Probability

evidence (%) evidence (%) variation (%)

Very 69 51 —26.09
serious
Serious 23 42 82.61
Less 6 4 —33.33
serious
Undefined 3 4 \

classification society. They are entered into the BN model as evidence,
and forward inference is performed to obtain the following results, as
shown in Figs. 11 and 12. The results of the forward reasoning are shown
in Table 5.

Analysis of forward reasoning results: The RIFs extracted from the
accident case descriptions were substituted into the simulation model. It
was found that the probability of the severity level of "very serious" is
significantly higher, while the results of the other severity are not sig-
nificant. The severity level of this accident in the accident record is "very
serious", which is in line with the facts. Twenty samples were tested
according to this process, and the results are shown in Table A2 and
Table A3.

We followed strict standards and processes when selecting 20 data
points to validate the mathematical model. The sample data comes from
maritime incidents in the RCEP region from 2011 to 2016 (out of the
analysis data range in Section 3.1.2), and the selection of sample data
adhered to three principles: randomness, representativeness, and non-
overlapping. First, the sample dataset was grouped by year, and then
it was further grouped by the severity of the incidents. A stratified
sampling method was employed to obtain 10 groups from each category.
In determining the sample size, this study initially tried groups of 10, 20,
and 30 data points. After 100 repeated sampling analyses, it was found
that when the sample data consisted of 20 groups, the test results could
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achieve the desired outcomes more quickly while ensuring stability.
Therefore, 20 data points were chosen as the sample test set, and ulti-
mately, one group was selected through simple random sampling as the
test group for validating the effectiveness of the model presented in this
paper. When determining the adequacy of a model’s predictive results
by assessing whether the "posterior probability change of the target type
corresponding to the tested cases" is highest and if the model aligns with
actual real-world situations, it has been verified that the overall quali-
fication rate of 20 cases is 95 %. This certification confirms that the
validated result of this model is reasonable.

5. Empirical results
5.1. Identification of key risk factors

To accurately identify the influence of each sub-factor in ship acci-
dents and put forward targeted suggestions on the prevention of ship-
ping accidents, this section uses the proposed model for reverse
reasoning and empirical research. When analyzing accidents of a certain
severity, the posterior probability of each risk subfactor can be deduced
by adjusting the state probability of the "severity" node in the BN.
Generally, the subfactor with a higher posterior probability is consid-
ered the critical subfactor at that severity.

(1) Identify critical sub-factors based on 549 RCEP regional maritime
accident data, taking "very serious" as an example.

(1.1)Record the posterior probability of each risk factor in the initial
state, as shown in Fig. 13;

(1.2)Set the probability of "very serious" to 100 %, as shown in
Fig. 14,

(1.3)Inference is performed to obtain the posterior probability under
the set state, as shown in Fig. 15.

Based on the severity of "very serious", it can be observed that among
the eight primary factors, "type of accident (D: vessel wreck and over-
turning)" and "type of accident (F: other accidents)" emerge as
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Fig. 12. Forward reasoning results (Case 2).

significant ones. According to the findings, when the accident is classi- probability for both "flag (B: grey)" and "flag (C: black)". This aligns with
fied as "very serious', there is a decrease in the posterior probability of common sense that ships displaying flags indicating more satisfactory
occurrence for "flag (A: white)", while there is an increase in posterior performance have lower risk levels. Regarding "extreme weather"
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Table 5
Accident simulation forward reasoning results (Case 2).
Severity Before entering After entering Probability
evidence (%) evidence (%) variation (%)
Very 69 92 33.33
serious
Serious 23 6 —73.91
Less 6 0 \
serious
Undefined 3 1 \

impact, there has been a decline in the posterior probability of occur-
rences categorized as "extreme weather (A: not affected by extreme
weather)", whereas occurrences classified as "extreme weather (B:
affected by extreme weather)" posterior probability have shown an in-
crease. These results suggest that ship accidents are more likely to be
labeled "very serious" under extreme weather conditions. The remaining
primary factors have exhibited minimal changes.

Among the secondary factors, "SOLAS certification (B: no SOLAS
certification)", "classification society (A: not part of the top ten classifi-
cation societies)", "vessel length (A: 0-100 m)" and "vessel age (F: more
than 25 years)" posterior probability all increased, indicating that in the
RCEP area, ships with the above factors are more likely to have "very
serious" accidents.

Repeat the same analyzing approach for the remaining two severity
levels.

(2) Fig. 16 shows the result of a "serious" accident. Based on the
severity of "serious", it can be seen that among the eight primary factors,
"type of accident (A: grounding)", "type of accident (B: collision)", "type
of accident (C: fire)" and "type of accident (E: damage to vessel and
cargo)" posterior probability are significantly increased. Accident time is
more concentrated in the "accident time (A: 0:00-7:59)" period; The
"flag (A: white)" posterior probabilities has risen, while the "flag (B:
grey)" and "flag (C: black)" posterior probability have fallen. The "vessel
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type (A: dry bulk carrier)" posterior probability has decreased, while the
"vessel type (B: container vessel)" posterior probability has increased. In
the secondary factors, the probability of "classification society (B: be-
longs to the top ten classification societies)", "vessel’s main engine
power (B: more than 3000 kW)", and "SOLAS certification (A: possesses
SOLAS certification)" posterior probability increased, while "vessel age",
"gross registered tonnage", "vessel length" and "vessel width" posterior
probability all have the trend of improvement.

(3) Fig. 17 shows the results of "less serious" accidents. Based on the
severity of "less serious', it can be seen that among the eight primary
factors, the posterior probability of "flag (A: white)" increases signifi-
cantly; "type of accident (A: grounding)", "type of accident (B: collision)",
and "type of accident (E: damage to vessel and cargo)" posterior prob-
ability all increased significantly. "extreme weather (A: not affected by
extreme weather)" and "accident location (B: sea area)" posterior prob-
ability have increased. In terms of vessel type, the posterior probability
of "vessel type (A: dry bulk carrier)" has increased, while "vessel type(G:
others)" posterior probability has decreased significantly. In terms of
coastal administration, the posterior probabilities of "coastal adminis-
tration (A: China)" and "coastal administration (G: non-RCEP countries)"
have decreased. Among the secondary factors, "vessel length", "vessel
width", "vessel’s main engine power" and "registered gross tonnage"
posterior probability have all increased. These show that with the
expansion of ship size, safety measures will be more ideal and less likely
to occur "very serious" ship accidents. In addition, the posterior proba-
bility of "classification society (B: belongs to the top ten classification
societies)" is increased.

To sum up, among the eight primary factors, in terms of accident
type, two sub-factors, "type of accident (D: vessel wreck and over-
turning)" and "type of accident (F: other accidents)", significantly lead to
"very serious" accidents; "type of accident (A: grounding)", "type of ac-
cident (B: collision)", and "type of accident (E: collision)" tend to make
the accident severity "serious" or "less serious". The posterior probability
of "type of accident (C: fire)" increases significantly only when the
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severity is "serious". In terms of the flag, ships characterized by a "white" extreme weather, "extreme weather (B: affected by extreme weather)"
flag were more likely to have "serious" and "less serious" accidents than can lead to more severe accidents. In the secondary factors, "vessel
ships characterized by a "grey" flag and a "black" flag. In terms of length", "vessel width", "vessel’s main engine power", "gross registered
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tonnage", "number of persons on board", and other factors that express precautions and lack of safety awareness. In terms of maritime safety
ship size reflect that smaller ships are more likely to have "very serious" certification, ships with "SOLAS certification (A: having SOLAS certifi-
accidents, which may be since small ships still have insufficient safety cation)" characteristics are less likely to have "very serious" accidents.
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The two sub-factors of "vessel company" and "place of vessel construc-
tion" have little influence on the severity of vessel accidents.

5.2. Ranking by RIFs

When different risk sub-factors are selected, the corresponding
probability of the severity of ship accidents will change. The statistical
change amplitude can reflect the influence of each factor on the severity
of accidents; that is, the ranking of the importance of influencing factors
can be obtained.

(1) Record the initial probabilities of each class severity when the
probability of no impact is set, as shown in Fig. 18.

(2) Set the probability of "A" in "vessel length" to 100 % and record
the probability of each class severity, as shown in Fig. 19.

(3) Repeat the above steps to complete the probability setting of all
RIFs and record the probability of various class severity in each state.

Based on the above analysis of the results of "very serious", "serious",
and "less serious", the top ten factors that have the most significant
impact on the severity of each level are shown in Tables 6, 7, and 8.

As can be seen from Table 6, "type of accident: D (vessel wreck and
overturning)" and "type of accident: F (other accidents)" are two primary
factors that significantly cause the accident severity level to be "very
serious". Two secondary factors, "flag: C (black)" and "flag: D (grey)", will
lead to a greater probability of the accident grade changing to "very
serious." Thus, it can be seen that the black, white, and grey of the flag
state has a practical effect on the prediction of maritime risks to a certain
extent. "Vessel type: G (others)", "vessel type: D (tug)", and "vessel type: F
(ro-ro passenger vessel)" also increase the risk of ship accidents. In
addition to the above factors, the vessel’s SOLAS certification and ac-
cident time factors will also lead to an increase in the severity level,
which requires the attention of the ship management personnel.

In Table 7, when the "type of accident: E (damage to vessel and
cargo)", "type of accident: A (grounding)", "type of accident: B (colli-
sion)", and "type of accident: C (fire)" occur, the high probability of ship

Process Safety and Environmental Protection 194 (2025) 1235-1256

accident is a "serious" accident, and the common feature of this kind of
accident is that it causes damage to the ship but does not have the impact
of ship scrapping and casualties. "Vessel type: E (engineering vessel)"
and "vessel type: C (liquefaction vessel)" are more likely to have "serious"
class accidents in the event of an accident. In addition, coastal admin-
istration, accident time, and flag will also increase the number of
"serious" ship accidents.

Table 8 shows that "coastal administration: E (New Zealand)" and
"coastal administration: D (Australia)" in maritime accidents are more
inclined to the "less serious" class. The probability of a ship accident
being "less serious" is increased for the "type of accident: E (damage to
vessel and cargo)", "type of accident: A (grounding)", and "type of acci-
dent: B (collision)". "Flag: A (white)" also tends to be the "less serious"
type of accident. In addition to the above factors, "flag: A (white)" and
the "accident location: A (coastwise)" also increase the posterior prob-
ability of the ship’s accident severity being "less serious".

In summary, in the category of marine accidents, "capsizing" and
"other accidents" are more likely to occur in "very serious" accidents,
while "damage to vessel and cargo", "grounding", and "collision" make
the severity of accidents more skewed towards the "serious" and '"less
serious" levels. In the ranking of the importance of influencing factors, it
can be seen that the key influencing factors of "serious" and "less serious"
accidents have a significant overlap degree, and some factors have
similar impacts on the two severity levels, which may be due to the
unclear classification criteria of "serious" and 'less serious" in the
severity of accidents, confusing the classification of accidents and room
for improvement. In addition, the result proves that the classification of
flag grades, that is, the classification of white, black, and grey flags, has a
particular significance, which can reflect the risk of the ship to a certain
extent. According to the SOLAS certification of the accident ship, it can
also be found that the ship without relevant certification is more likely to
have a "very serious" accident. From the perspective of vessel type, "tug",
"ro-ro passenger vessel', and "others" are more likely to have "very
serious" accidents. In contrast "engineering vessel", "liquefaction vessel",
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Table 6 Table 8
Top 10 factors in the "very serious" category. Top 10 factors in the "less serious" category.
Ranking  Influencing factor code Influencing factor Probability Ranking  Influencing factor Influencing factor Probability
change/% code change/%
1 Type of accident: D Vessel wreck and 35.41 1 Coastal New Zealand 252.34
overturning administration: E
2 Type of accident: F Other accidents 32.47 2 Type of accident: E Damage to vessel and 143.78
3 Flag: C Black 23.92 cargo
4 Flag: B Grey 20.34 3 Vessel type: C Liquefaction vessel 115.20
5 Vessel type: G Others 13.33 4 Type of accident: A Grounding 111.15
6 Vessel type: D Tug 12.17 5 Accident season: C Third quarter 82.48
7 Vessel type: F Ro-ro passenger vessel 9.97 6 Type of accident: B Collision 56.33
8 SOLAS certification: B No SOLAS certification 7.32 7 Accident location: A Coastwise 50.97
9 Accident time: C 16:00-23:59 6.78 8 Flag: A White 35.59
10 Number of persons on 0-10 5.93 9 Coastal Australia 35.50
board: A administration: D
10 Accident time: C 16:00-23:59 28.35
Table 7 and "container vessel" tend to have "serious" and "less serious" accidents,
Top 10 factors in the "serious” category. which may be due to the lack of adequate safety measures and standard
Ranking  Influencing factor Influencing factor Probability safety precautions for ships such as "tug", more likely to occur crew
code change/% casualties and ship damage.
1 Type of accident: E Damage to vessel and 127.34
) cargo 5.3. Model evaluation
2 Type of accident: A Grounding 97.52
3 Vessel type: E Engineering vessel 60.69 . o .
4 Type of accident: B Collision 49.56 The BN model has undergone substantial development in influencing
5 Vessel type: B Container vessel 45.59 factor analysis. The motivation of this work to choose the BN model as
6 Cé’aml c South Korea 45.12 the analysis method is because it can provide probability values for
administration: . . .
. Vessel type: C Liquefaction vessel 42.56 potential I'lSk.S asa reference and offer graphical models that make the
8 Type of accident: C Fire 33.84 results more intuitive.
9 Accident time: A 0:00-7:59 29.20 The BN model has significant advantages compared to other popular
10 Flag:A White 19.40

influencing factor analysis models. Probability Risk Assessment (PRA)

models rely on historical data and fault tree analysis, often neglecting
uncertainty and dynamic updates, while BNs can update risk assess-
ments in real time and handle uncertainty. Multi-criteria decision-
making (MCDM) models, such as the Analytic Hierarchy Process (AHP),
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mainly depend on expert judgment, which may introduce subjective
bias. In contrast, BNs quantify uncertainty, providing data-driven deci-
sion support that reduces the impact of subjective factors. System Dy-
namics models focus more on the dynamic changes within systems but
usually require complex model structures and numerous parameters.
BNs, on the other hand, have a simple structure that is easy to construct
and understand, making them more adaptable to different contexts, with
minimal differences in final results. Machine learning models, such as
random forests and neural networks, are often black-box models that are
difficult to interpret regarding causal relationships. BNs provide trans-
parent causal relationships and influence pathways, facilitating under-
standing and communication. BN models demonstrate more robust
advantages over traditional models in handling uncertainty relation-
ships, dynamic updating capabilities, integrating diverse information,
and displaying causal relationships. BN is the most suitable model
choice for this work, considering its accuracy (the accuracy is 95 % in
the 20 samples test), efficiency (easy understanding of the model
structure and fast construction with the software), and interpretability
(clear graphic illustration). The comparison of BN and other typical
models is listed in Table 9.

6. Conclusions and outlook
6.1. Conclusions

Under the background of the formal implementation of RCEP, this
paper makes an in-depth discussion of the maritime risk assessment of
RCEP member states. By constructing a simulation model based on BN,
the key factors affecting the severity of ship incidents are successfully
identified and quantified. It was found that factors such as accident
category, ship nationality, ship flag, and extreme weather significantly
impact predicting and inferring the severity of ship accidents. In addi-
tion, through specific case analysis, this paper verifies the effectiveness
and practicability of the proposed model, provides valuable risk man-
agement suggestions for ship administration departments, and supports
improved maritime safety in the RCEP region.

(1) Summary of influencing factors based on accident severity (for-
ward analysis summary)

The categories of influencing factors that appear among the top 10
influencing factors with the most significant impact under each severity
level of maritime incidents are defined as the key influencing factors for
that severity level. The factors affecting the severity of accidents in
Section 5 are sorted out, and the results are shown in Table 10. The
primary factors impacting the severity of ship accidents are type of ac-
cident, flag, vessel type, and extreme weather. Among the secondary
factors, vessel length, vessel age, vessel’s main engine power, and
SOLAS certification significantly affect the severity of ship accidents. In
summary, two primary factors, type of accident and flag, and two sec-
ondary factors, vessel length and classification society, especially in-
fluence the severity of the three kinds of accidents (bold in Table 10).
Therefore, shipowners and ship administration departments can priori-
tize the management and optimization of the above four factors to
ensure ship safety.

Table 9
Modle comparasion with the 20 samples.

Model Accuracy rate
BN 95 %
MCDM 90 %
FRAM 85 %
KDE 90 %
Lempel-Ziv 80 %
Decision tree 95 %
Convolutional Neural Network 95 %
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Table 10
Influencing factors summary of forward analysis.

Severity Primary factors Secondary factors

Very Type of accident, Flag, Classification society, Vessel

serious Extreme weather length, Vessel age, SOLAS
certification

Serious Type of accident. Flag, Classification society, Vessel's

Vessel type main engine power, SOLAS

certification, Vessel length,
Vessel width

Less Type of accident, Flag, Vessel length, Vessel width,

Extreme weather, Accident
location, Coastal
administration. Vessel type

serious Vessel’s main engine power, Gross
registered tonnage, Classification

society

(2) Summary of accident severity based on influencing factors
(reverse analysis summary)

The conclusions of accident severity caused by the ten factors with
the most significant impact in Section 5 are concluded, and the results
are shown in Tables 11 and 12, where "v" indicates that the factor has a
significant impact on accident severity. The influence of primary factors
on the severity of ship accidents is significantly more influential than
that of secondary factors, and the influence factors of "very serious" and
"serious" are almost the same (except for the "coastal administration"
factor). In contrast, the factors that influence "less serious" accidents are
almost every primary factor (except the "extreme weather" factor).

To sum up, vessel type, type of accident, and flag are more likely to
affect the severity of ship accidents. At the same time, the ship owners
should also pay attention to updating the ship’s SOLAS safety certifi-
cation in time to meet the relevant requirements, significantly reducing
the risk of ship accidents. Through an in-depth analysis of maritime ship
incidents in the RCEP area, this paper not only improves the under-
standing of maritime traffic safety but also provides a scientific basis for
further optimizing ship management and improving the quality of
maritime safety research. The BN model in this study provides an
effective analytical tool for future research, which enables more accu-
rate assessment and prediction of the risk of ship accidents.

The usability of this study is multifaceted and significant for various
stakeholders in the maritime industry within the RCEP region. The
identified key risk factors for policymakers and regulatory bodies pro-
vide a data-driven basis for developing targeted safety regulations and
inspection protocols. Shipping companies can use these findings to
enhance their risk management strategies, prioritizing resources for the
most impactful safety measures. Maritime insurance providers may find
the risk factor rankings valuable for refining risk assessment models and
pricing policies. Additionally, the BN model developed in this study

Table 11
Reverse analysis of primary RIFs.

Primary factors Very serious Serious Less serious
Vessel type v v v

Type of accident v v v
Accident season v
Accident time v v v
Accident location v

Coastal administration v v
Extreme weather

Flag v v v
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Table 12
Reverse analysis of secondary RIFs.

Secondary factors Very serious Serious Less serious

Vessel length

Vessel width

Vessel age

Vessel’s main engine power
Gross registered tonnage
Number of persons on board

v

SOLAS certification v

Place of vessel construction
Vessel company
Classification society
Accident month

offers a practical tool for real-time risk assessment, which can be inte-
grated into vessel management systems to support decision-making
during operations. The methodology presented here is also adaptable,
allowing for its application in other geographical regions or specific
maritime sectors, thus extending its usability beyond the RCEP context.
Overall, this study bridges the gap between academic research and
practical application in maritime safety, offering actionable insights for
improving process safety in the shipping industry.

6.2. Outlook

There is still room for further deepening and expansion of this
research in the future:

(1) Build a dynamic BN model to achieve real-time data tracking and
updating

The data employed in this paper is historical data, which is
preprocessed and imported into the model for analysis, where
naive BN is most suitable regarding the model efficiency and
simplicity. In the follow-up study, the data can be tracked in real-
time. With the continuous growth of economic and trade activ-
ities in the RCEP region, maritime ship activities will also become
more frequent. Therefore, continuous tracking and analysis of
new data and real-time updating of risk assessment models will
be a critical direction of future research. With the continuous
influx of new data, the model can dynamically adjust internal
parameters to optimize its decision-making process so that the
model can continuously optimize its performance over the long
run.
Integration of large language model, directly put forward man-
agement suggestions

The large language model of continuous development can also
be integrated into the future research of this paper. The data in
this paper are based on accident information directly available in
marine accident investigation results. After integrating the large
language model, more abundant data support can be obtained

(2

—
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through multiple channels such as marine accident investigation
reports, articles, magazines, and Internet forums. The model has a
robust self-updating ability and high data information coverage.
In addition, the intelligence of the large language model can
couple the professional knowledge information of shipping
management and update it automatically. The model can directly
give corresponding management suggestions while analyzing the
factors of marine accidents.

Increase the number of risk factors, enhance international coop-
eration and standardization

3

In terms of data, future studies can consider incorporating more
types of risk factors into the model, such as crew quality and route
channel conditions, to further improve the accuracy and applicability of
the model. The results of this paper provide technical reference for ship
administration departments in the RCEP region, and relevant divisions
can focus on preventing high-risk factors in ship accidents according to
the operation results of the proposed model to ensure the safety and
stability of RCEP maritime trade. Therefore, according to the results of
this paper, strengthening cooperation among RCEP member states and
promoting the formulation of uniform maritime safety standards can
jointly improve maritime traffic safety in the region.
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Appendix I. : RIFs and Accident Severity

Table Al
Vessel accident influencing factors and labeling

Process Safety and Environmental Protection 194 (2025) 1235-1256

RIFs Label RIFs Label

Flag White—A Accident month From January to December—A to L
Grey—B
Black—C
Unlogged—D

SOLAS certification Possesses SOLAS certification—A Vessel type Dry bulk carrier—A

No SOLAS certification—B

Place of vessel construction ~ Developed country—A
Developing country—B
Indeterminacy—C

Vessel company Vessel operating companies and vessel management companies are the
same—A
Vessel operating companies and vessel management companies are
different—B

Classification society Not part of the top ten classification societies—A
Belongs to the top ten classification societies—B
Extreme weather Not affected by extreme weather—A

Affected by extreme weather—B

Accident location Coastwise—A
Sea area—B

Coastal administration China—A
Japan—B

South Korea—C

Australia—D

New Zealand—E

Other RCEP countries—F

Non-RCEP countries—G
Accident time 0:00-7:59—A

8:00-15:59—B

16:00-23:59—C

Accident season First quarter—A
Second quarter—B
Third quarter—C
Fourth quarter—D

Container vessel—B

Liquefaction vessel—C

Tug—D

Engineering vessel—E

Ro-ro passenger vessel—F

Others—G
Number of persons on board ~ 0-10—A

11-20—B

21-30—C

More than 30—D
Gross registered tonnage (0, 1000]—A

(1000, 3000]—B

(3000, 5000]—C

(5000, 10000]—D

(10001, 20000]1—E

(20000, c0)—F
Vessel’s main engine power  Less than or equal to 3000 kW—A

More than 3000 kW—B
Vessel age (0, 6) years—A

[6, 11) years—B

[11, 16)years—C

[16, 21) years—D

[21, 26) years—E

[26,00 ) years—F
Vessel width (0, 20] meters—A

(20, 30] meters—B

(30, 40] meters—C

(40, o) meters—D
Vessel length (0, 100] meters—A

(100, 200] meters—B

(200, o) meters—C

Type of accident Grounding—A
Collision—B
Fire—C
Vessel wreck and overturning—D
Damage to vessel and cargo—E
Other accidents—F
Severity Very serious—A
Serious—B
Less serious—C
Unspecified—D

Table A2
Summary of accident characteristics

Case serial Accident characteristics Severity
number
1 Flag A, Accident time A, Accident location B, Accident season D, Accident month K, Vessel type A, Registered total tonnage C, Type of accident D,  Very
Coastal administration A serious
2 Type of accident D, Accident time B, Accident location B, Flag B, Number of persons on board D, Coastal administration C Very
serious
3 Vessel type A, Flag A, Accident location B, Accident time B, Type of accident C Serious
4 Vessel type A, Flag A, Classification society A, Extreme weather B, Coastal administration D, Accident location B, Accident time B, Type of accident ~ Very
D serious
5 Type of accident F, Accident time B, Coastal administration B, Vessel type A, Extreme weather A, Accident location B, Accident month I, Flag A Very
serious
6 Vessel type A, Flag D, Extreme weather A, Coastal administration D, Accident location B, Accident time A, Accident month D, Type of accident B, Serious
Accident month E
7 Vessel type A, Flag B, Extreme weather A, Coastal administration C, Accident location A, Accident time A, Accident month B, Type of accident A Serious
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Table A2 (continued)
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Case serial Accident characteristics Severity
number
8 Flag B, Extreme weather A, Coastal administration E, Accident location B, Accident time A, Accident month L, Type of accident D, Vessel type G~ Very
serious
9 Vessel type A, Flag B, Extreme weather A, Coastal administration C, Accident location A, Accident time B, Accident month A, Type of accident A Serious
10 Accident month F, Flag A, Accident location A, Accident season B, Vessel type B, Type of accident F, Coastal administration A Very
serious
11 Flag B, Extreme weather A, Coastal administration C, Accident location B, Accident time B, Accident month I, Type of accident D, Vessel type C Very
serious
12 Flag A,Extreme weather A, Coastal administration A, Accident location B, Accident time C, Accident month L, Type of accident D, Vessel type A~ Very
serious
13 Vessel type B, Extreme weather A, Accident time B, Accident month L, Type of accident C Serious
14 Flag A, Vessel type B, Extreme weather A, Accident location A, Accident time C, Accident month L, Type of accident F Very
serious
15 Flag B, Extreme weather B, Coastal administration C, Accident location B, Accident time B, Accident month I, Type of accident B, Vessel type D Very
serious
16 Flag A, Extreme weather A, Coastal administration A, Accident location B, Accident time C, Accident month L, Type of accident D, Vessel type C Very
serious
17 Flag B, Extreme weather A, Coastal administration C, Accident location B, Accident time B, Accident month I, Type of accident D, Vessel type D Very
serious
18 Flag A, Vessel type D, Accident location B, Accident month B, Type of accident B, Extreme weather A Very
serious
19 Accident month K, Flag A, Accident location A, Accident season D, Vessel type F, Type of accident B, Number of persons on board D, Coastal Serious
administration F
20 Type of accident B, Accident time B, Vessel type B, Accident month G, Extreme weather A, Accident location A Less serious
Table A3

Reasonability verification of proposed model

Case serial Type of Posterior probability of target Posterior probability change of target Whether the target type has the greatest posterior
number accident type /% type /% probability change
1 Very serious 91 31.88 Yes

2 Very serious 96 39.13 Yes

3 Serious 31 34.78 Yes

4 Very serious 92 33.33 Yes

5 Very serious 89 28.99 Yes

6 Serious 42 82.61 Yes

7 Serious 47 104.35 Yes

8 Very serious 97 40.58 Yes

9 Serious 35 52.17 Yes

10 Very serious 84 21.74 Yes

11 Very serious 94 36.23 Yes

12 Very serious 94 36.23 Yes

13 Serious 39 69.57 Yes

14 Very serious 86 24.64 Yes

15 Very serious 83 20.29 Yes

16 Very serious 90 30.43 Yes

17 Very serious 98 42.03 Yes

18 Very serious 95 37.68 Yes

19 Serious 20 —15.00 No

20 Less serious 29 383.33 Yes
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