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A B S T R A C T

Implementing the Regional Comprehensive Economic Partnership (RCEP) has intensified maritime activities, 
highlighting the need for effective risk assessment methodologies to ensure process safety and environmental 
protection. This study presents a Bayesian Network model as an innovative approach to evaluating and miti
gating maritime accident risks in the RCEP region. By analyzing 549 maritime accidents recorded in the Global 
Integrated Shipping Information System (GISIS) from 2016 to 2023, the research identifies and quantifies key 
factors influencing accident severity, such as accident category, ship flag, vessel type, and environmental con
ditions. The framework provides a systematic method for predicting accident severity and prioritizing safety 
interventions, enabling maritime authorities and stakeholders to enhance safety management processes and 
implement targeted risk reduction strategies. Key contributions include identifying critical risk factors unique to 
the RCEP maritime environment, developing and validating the Bayesian Network model, strategically ranking 
influencing factors, and exploring RCEP’s regional maritime safety management implications. This study offers 
practical decision-making support for policymakers and ship operators, contributing to the maritime sector’s 
broader discourse on process safety and environmental protection. The proposed framework is an adaptable tool 
for ongoing monitoring and improvement of maritime safety processes, aligning with global standards and 
regulatory requirements while addressing the unique challenges of the RCEP region to advance maritime process 
safety and support sustainable economic integration.

1. Introduction

Maritime transportation is characterized by large volumes and low 
prices, making it the mainstream mode of cargo transportation world
wide. At the same time, developing the maritime transportation industry 
is beneficial for improving the national industrial structure and inter
national trade (Zhou et al., 2020). Therefore, maritime transportation 
plays a vital role in international trade and the development of economic 
globalization.

In order to promote regional economic and trade development, 
countries in the Asia-Pacific region have been committed to promoting 
multilateral trade cooperation for many years. The Regional Compre
hensive Economic Partnership (RCEP) was initiated by the Association 
of Southeast Asian Nations (ASEAN) in 2012. It took eight years to be 
signed by 15 countries, including China, South Korea, Japan, Australia, 

New Zealand, and 10 ASEAN countries. The entry into force of the RCEP 
marks the official establishment of the free trade area with the largest 
population, the most significant trade scale, and the most remarkable 
development potential in the world. This fully reflects the confidence 
and determination of all parties to safeguard multilateralism and pro
mote regional economic integration jointly. RCEP will contribute to 
global trade and investment growth, economic recovery, and prosperity 
in the East Asian region. China is a major maritime trading country; 
maritime transport accounts for more than 90 % of its international 
trade (Zhou et al., 2020). Additionally, China trades frequently with 
other RCEP member countries. According to China’s customs statistics in 
2022, China’s imports and exports with other 14 RCEP member coun
tries were valued at 12.95 trillion yuan (Ministry of Transport of Peo
ple’s Republic of China, 2023), representing an increase of 7.3 % over 
that seen in 2021 and accounting for approximately 30.8 % of China’s 
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total foreign trade value. China’s trade with other RCEP member 
countries has the following characteristics: Firstly, the proportion of 
import and export trade within the first to fourth quarters of 2022 
accounted for 30.4 %, 30.5 %, 30.7 %, and 31.4 %, respectively, 
demonstrating a consistent upward trend. Secondly, the promotion of 
RCEP effectively boosts trade between China and other member coun
tries. In 2022, eight of China’s imports and exports to other RCEP 
members grew by more than 10 percent, and those to Indonesia, 
Singapore, Myanmar, Cambodia, and Laos grew by more than 20 
percent on average compared with 2021. Thirdly, RCEP promotes in
dustrial cooperation. In 2022, China imported and exported 8.7 trillion 
yuan of intermediate products to other RCEP member countries, up 8.5 
percent year-on-year, accounting for 67.2 percent of the total import and 
export value in the same period. (From the perspective of the types of 
commodities, China’s exports of electromechanical products and 
labor-intensive products to other RCEP member countries have 
increased substantially; China’s imports of electromechanical products, 
mineral raw materials, and energy products from other RCEP member 
countries have also seen substantial growth.) Fourthly, RCEP advance
ment promotes private enterprise development. In 2022, China’s private 
enterprises imported and exported 6.56 trillion yuan to other RCEP 
member countries, up 17.4 % year-on-year, accounting for 50.6 % of 
China’s private enterprises’ total import and export value in the same 
period, a share that was 4.3 % higher than in 2021.

With RCEP being implemented on January 1st, 2022, the world’s 
largest free trade area has officially set sail. RCEP will form an economic 
alliance regarding trade flows, cargo supply, commodity prices, invest
ment, and finance. It promotes complementarity and a virtuous circle 
among the region’s countries, raising the volume of seaborne trade and 
stimulating the demand for the port and shipping industry. In the bulk 
and oil transport sector, the entry into the force of RCEP will support 
maintaining the stability of the global commodity trade and supply 
chain, mainly in iron ore and steel (Jin, 2021). At the same time, port 
enterprises in the region are riding on the momentum of RCEP to usher 
in historic development opportunities. In addition to world-class trunk 
ports such as Shanghai, Ningbo, Qingdao, Tianjin, Busan, Tokyo, and 
Singapore, regional hub ports such as Klang, Laem Chabang, Tanjung 
Priok, and Jakarta are also stepping up their expansion and upgrading to 
share the dividends brought by RCEP.

There are safety concerns behind the booming shipping industry. The 
European Marine Safety Agency’s statistics indicate 23,814 global ma
rine traffic accidents between 2014 and 2022, with an average of 2646 
incidents annually. Of these, 2510 maritime casualties were reported in 
2022 (European Maritime Safety Agency, 2023). Once a maritime traffic 
accident occurs, most of them will produce the severe consequences 
such as casualties, property loss, and environmental pollution. Hence, 
the research on the causes and prevention of maritime accidents is a 
traditional and important issue in shipping. According to the Interna
tional Maritime Organization (IMO), a total of 381 "very serious" ship
ping accidents occurred in the waters of RCEP countries and their vessels 
from 2016 to 2023, of which collision of ships and human errors were 
the most frequent causes of accidents (International Maritime 
Organization-Global Integrated Shipping Information System, 2024). 
Therefore, to ensure the safety of ship transportation, identifying and 
analyzing the risk of shipping accidents with RCEP region as the 
research object is of great significance.

The risk identification and analysis of shipping accidents are divided 
into forward and reverse paths. The forward path is to deduce the 
influencing factors based on the results of ship accidents. The reverse 
path is to predict ship accidents based on the influencing factors (as 
shown in Fig. 1). From a data modeling perspective, the two paths, 
forward and reverse, are the training construction and testing applica
tion process of the model, respectively. Currently, most studies on 
shipping accidents are either macro studies on a global scale (Hänninen 
et al., 2014; Galieriková, 2019; Li et al., 2023; Zhang et al., 2021) or 
micro (Zhang et al., 2016) studies on a particular single country/region. 

At the same time, less work has been done on specific trade regions, such 
as the RCEP, as the object of study. Therefore, establishing an accurate 
identification model of risk factors for maritime ship accidents and 
providing more targeted recommendations for ship risk prevention in 
the RCEP are urgent issues in shipping. A large number of studies have 
shown that the severity of shipping accidents is affected by a variety of 
factors, including direct factors such as weather factors, geographic 
location, and type of accidents; indirect factors such as vessel type, flag, 
classification society, age, and vessel tonnage (Hänninen et al., 2014; 
Galieriková, 2019; Li et al., 2023; Zhang et al., 2016). Among them, 
different factors impact the severity of accidents differently. The data 
sources used in the studies have been updated as the times have evolved. 
In the 1960s, research on maritime accidents primarily relied on reports 
from Lloyd’s Register and related research papers. In the 1970s, re
searchers generally utilized the government data published by locally 
owned coast guards, maritime commissions, and government agencies. 
In the 1980s, Norwegian vessel-owning companies began releasing re
ports on maritime accidents, and the UK also made accident-specific 
data from the Marine Accident Investigation Branch (MAIB) available 
as open data, which became the mainstream source of research infor
mation. In the 1990s, computer database technology began to develop, 
and numerous studies began to use Global Integrated Shipping Infor
mation System (GISIS) and Automatic Identification System (AIS) da
tabases. After the turn of the century, the data sources of maritime 
accidents tend to be diversified, with GISIS data, Port State Control 
(PSC) data, AIS data, International Comprehensive Ocean Atmosphere 
Data Set (ICOADS), and the Clarkson Index have all become mainstream 
sources of data for marine accident studies. Besides, maritime accident 
reports released by China’s State Maritime Administration (SMAC) have 
gradually become essential for researching maritime accidents.

A comprehensive international system has been established to pre
vent maritime risks. In December 1980, the French Minister of the Sea 
met with ministers from 13 European countries to discuss drafting the 
PSC memorandum. The gradual improvement of the PSC regulations has 
facilitated the establishment of eight regional PSC Memorandums of 
Understanding (MOU) around the world, namely the Paris MOU, Tokyo 
MOU, Regional agreements in Latin America, Caribbean MOU, Medi
terranean MOU, Indian Ocean MOU, West and Central Africa MOU, and 
Black Sea region MOU. The United States does not belong to any MOUs; 
its Coast Guard (United States Coast Guard, USCG) performs indepen
dent port inspections. For PSC, all ships passing through the ports must 
be examined by the port authorities of their respective regions. When 
there are safety hazards on the ships, the ports will detain the ships in 
order to avoid accidents caused by high-risk ships going out to sea. All 
RCEP members, except Myanmar and Cambodia, are members of the 
Tokyo MOU. The inspection system of the Tokyo MOU is highly modeled 
on the inspection system implemented in the Paris MOU jurisdictions, 
which classifies ships into three categories according to their risk: low- 
risk, standard-risk, and high-risk, based on a computerized database 
that automatically evaluates and calculates the classification according 
to the indicators of the ships over the past 36 months. Indicators for 
ships include: type of the ship, age of the ship, status of the ship’s 

Fig. 1. Forward and reverse research paths on factors influencing ship
ping accidents.
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recognized organization, status of the shipping company responsible for 
the ship’s safety by the International Safety Management Code, number 
of hull defects, and number of times the ship has been detained.

According to previous studies, the standard methods for identifying 
and analyzing the risk of shipping accidents are divided into qualitative 
and quantitative methods. Qualitative methods include the Functional 
Resonance Analysis Method (FRAM) (Lee et al., 2020), Root Cause 
Analysis (RCA) (Li et al., 2023), Human Factors Analysis and Classifi
cation System (HFACS) (Li et al., 2023), and Accident Analyze Mapping 
(AcciMap) (Puisa et al., 2018). Quantitative methods include Evidential 
Reasoning (ER) (Li et al., 2023), Event Tree Analysis (ETA) (Li et al., 
2023), Fault Tree Analysis (FTA) (Li et al., 2023), K-means clustering 
algorithm (Zhang et al., 2021), and Bayesian Network (BN) (Hänninen, 
2014; Chen et al., 2022) models. Although qualitative analysis methods 
can provide an in-depth understanding and explanation of the problem 
and help to discover new research questions and perspectives, with the 
improvement of computational power, quantitative analysis methods 
have demonstrated significant advantages in terms of data processing 
capability, model complexity, and accuracy, and reproducibility and 
validation of results. Therefore, this paper adopts quantitative analysis 
methods to analyze the problem of analyzing the influencing factors of 
shipping accidents. Among them, there are six significant advantages of 
the BN model in the identification and analysis of shipping accident 
risks:

(1) BN can reduce the complexity of analyzing the problem by 
decomposing the joint probability distribution into relatively simple 
modules. BN requires fewer data and can even reason under incomplete 
information, which effectively couples with uncertainty factors.

(2) BN can synthesize prior knowledge, and real data mitigates the 
individual bias brought about by subjective factors and weakens the 
noise problem that arises from using data alone, making the results of 
BN’s reasoning more convincing.

(3) BN combines a "static" presentation with a "dynamic" research 
process, effectively combining historical data with newly generated 
changes to make informed decisions about dynamic situations.

(4) BN can visually represent variable relationships through simple 
graphical models, achieving a high level of problem generalization and 
making reasoning easier to understand.

(5) BN has been extensively applied in various engineering fields, 
such as accident causation and land transportation accident analysis, 
and has already realized mature applications.

(6) BN can be analyzed in both forward and reverse directions in 
accident analysis studies, considering both factor analysis and accident 
prediction functions.

This paper constructs a BN model based on the GISIS dataset to 
analyze the maritime accidents of 15 members in the RCEP. Recognizing 
that reverse path research of ship accident prediction is heavily influ
enced by uncertain factors, modeling research in this area is deemed to 
have limited significance. Therefore, this paper mainly adopts the for
ward analysis path to derive the significant influencing factors leading to 
different severity levels of accidents by taking the severity level of 
maritime accidents as a benchmark. We also analyze the importance 
level of each influencing factor to provide a reasonable risk avoidance 
reference basis for the risk management decision of shipping 
organizations.

The structure of this paper is as follows: Section 2 reviews previous 
studies on maritime accident risk, shipping accident risk factors, and BN 
modeling in the field of risk factor identification; Section 3 describes the 
dataset and data processing methodology used in this paper; Section 4
introduces the modeling of the risk in the RCEP region based on the BN 
and the validation of the model’s rationality; Section 5 presents the 
empirical analysis and results of the data in this paper; and finally, 
Section 6 delivers the main conclusions drawn from this study along 
with future outlooks.

2. Literature review

2.1. Maritime transportation accident risk study

Scholars have long used mathematical modeling to quantify poten
tial risks with limited data, including Hazard Identification and Ranking 
(HIRA) (Khan and Abbasi, (1998), Quantitative Risk Assessment (QRA) 
Kalantarnia et al. (2009), Data Envelopment Analysis (DEA), and BN 
models. The typical research is summarized as follows: Schröder et al. 
(2013) analyzed the documents with simple experts reviewing and score 
method submitted to the Maritime Safety Committee (MSC) of the IMO 
in order to assess the priority level of the MSC’s agenda on human fac
tors in maritime accidents. The results confirmed that the IMO rarely 
considered human factors in accidents in the 1990s but gradually 
introduced them into maritime accident analysis after the 21st century. 
Hänninen (2014) systematically analyzed BN’s research strengths and 
weaknesses in maritime traffic accidents. The advantages are concluded 
in the introduction section of this paper. The disadvantages are that 
selecting and determining prior knowledge is challenging, and model 
validation is complex (this paper employs the constant prior to including 
the information of data to the greatest extent and conducts a compre
hensive model validation before application). Wu et al. (2015) analyzed 
the effectiveness of maritime safety control. They proposed an improved 
Data Envelopment Analysis (DEA) model based on grey relational 
analysis, particularly considering navigational environmental factors as 
inputs and shipping accident data as outputs. The results show that the 
improved model can effectively screen the key factors affecting mari
time safety. Luo and Shin (2019) summarized the development history 
of maritime risk research, found that BN models are widely employed in 
maritime risk research, and explained that BN has an outstanding 
advantage in maritime risk research due to its excellent data reasoning 
ability. The above research has played a crucial foundation role in the 
field of maritime traffic accident risk factors. BN is the most commonly 
utilized one, but the prior choice and model validation need to be further 
studied in the application.

With the enhancement of computer processing power in recent years, 
standard maritime traffic accident risk factor sharing models primarily 
rely on multi-dimension data analysis, such as FRAM, KDE, NLP, 
Lempel-Ziv, and Dynamic Bayesian Network (DBN). Lim et al. (2018)
reviewed and summarized maritime risk analysis models and catego
rized the models into three main categories: statistical, simulation, and 
optimization. Puisa et al. (2018) attributed the causes of accidents at sea 
to three areas, namely inadequate control and feedback mechanisms 
between the ship management company and the ship, insufficient 
feedback from the crew on the results of skills, and dysfunctionality in 
the design and construction of ships. Kulkarni et al. (2020) took the 
Baltic Sea as the object of research, reviewed the research history of 
shipping accidents, and established risk prediction models to assess the 
safety and reliability of maritime transportation in waterway regions. 
The summary found that there are relatively few frameworks for 
applying risk modeling, analysis, and assessment in maritime waterway 
decision-making, and there is room for further research. Lee et al. (2020)
analyzed the level of human collaboration based on FRAM analysis by 
classifying human collaborative relationships, including specified or 
unspecified relationships. The article analyzes the human collaborative 
relationships in two maritime accident cases and the system’s techno
logical, human, and organizational state. Zhang et al. (2021) employed 
the Kernel Density Estimation (KDE) and K-means algorithm methods to 
statistically classify the data of shipping accidents in GISIS from 2013 to 
2018 to summarize that part of the sea area around the UK and 
Denmark, the sea area around Shanghai and Singapore are the highest 
frequency areas of maritime accidents within the data. Zhang et al. 
(2022) analyzed maritime traffic complexity from a micro perspective 
and concluded that it is due to its irregularity and unpredictability. They 
proposed a traffic safety management prediction method utilizing the 
Lempel-Ziv algorithm and similarity ranking preference technique for 
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optimizing inland waterway traffic flow scenarios. Li et al. (2022a)
proposed a risk performance inference strategy for LNG ships sailing in 
Arctic waters through a dynamic BN model and revealed that the main 
risks in Arctic summer waters were composed of difficult-to-detect ob
stacles in the passage, such as icebergs and coral reefs. Gan et al. (2023)
used the Natural Language Processing (NLP) model to analyze a total of 
241 accident reports issued by the SMAC from 2018 to 2022. They 
constructed a knowledge graph to discover the internal relationship 
between accidents. The related conclusions can be used to speed up the 
judicial process and simplify investigating maritime accidents. Huang 
et al. (2023) focused on the development of Maritime Transportation 
Risk Analysis (MTRA) from 2000 to 2021 and analyzed the related 
research methods. They found that maritime transportation risk 
assessment methods are developing in the direction of systematization 
and synthesis. They concluded that integration with artificial intelli
gence methods will be the leading research direction in the future. Eli
opoulou et al. (2023) conducted a statistical analysis of maritime 
accidents of passenger ships operating worldwide and concluded that 
the accident fatality rate of cruise and (pure) passenger ships has 
increased in the last decade, while the accident fatality rate of Ro-Ro 
ships has decreased significantly. Passenger ships’ safety level has 
remained the same. Liu et al. (2023a) addressed the safety issues of 
offshore platforms by integrating machine learning, deep learning, and 
natural language processing techniques to develop an automated risk 
identification method. A BN model is constructed for data-driven risk 
assessment using the identified risk factors. Taking the Bohai Oilfield as 
an example, the effectiveness of this method has been validated. The 
results indicate that this approach enhances risk factor identification 
and assessment automation.

As shown in Table 1, the current relevant research mainly studies the 
risk of marine accidents from three perspectives: industry management 
optimization, accident risk estimation, and accident influencing factor 
analysis. This paper focuses on the research from the accident influ
encing factor analysis perspective. Regarding the model choice, it has 
been noted that the FRAM, KDE, and advanced machine learning models 
have recently been very popular in identifying maritime accident risk 
factors. However, the BN model is still typical because of its fast con
struction and clear graphical interpretability in this "big data" era. Also, 
based on the results of this paper, the accuracy of risk factor identifi
cation of BN is not less than any other (95 % accuracy in the 20 sample 
tests in Section 4.3), with the most simple model structure.

2.2. Forward-path research of risk factors for maritime accidents

Maritime accident risk factor studies are categorized into forward 
and reverse. Forward research focuses on the derivation of influencing 

factors based on the occurrence of accidents, where influencing factor 
selection and mathematical model choice are the main aspects of the 
research. Balmat et al. (2011) proposed a fuzzy approach to evaluate the 
application of maritime risk assessment to maritime safety, especially 
pollution prevention on the high seas. The system defines risk factors for 
each vessel based on vessel characteristics and weather conditions. 
Montewka et al. (2014) collected vessel collision accident data and 
operated the BN model to identify variables in the Gulf of Finland waters 
that significantly impact vessel collision accidents. Zhang et al. (2016)
studied predicting the consequences of accidents in Tianjin port based 
on years of accident statistics and expert knowledge to construct a BN 
model to predict the possible consequences. Galieriková (2019) included 
human factors in the accident investigation plan, and utilized human 
factors analysis to classify the factors affecting shipping accidents into 
19 categories, and reclassified the factors for a comprehensive expla
nation. Wan et al. (2019) proposed a new risk classification framework 
to identify the main factors of significant safety issues from five per
spectives: social, natural environment, management, infrastructure, and 
technical operations, and quantitatively assess the identified risk factors 
based on their likelihood of occurrence and severity of consequences. Li 
et al. (2023) categorized the influencing factors of shipping accidents 
into dynamic and fixed factors to construct a BN model. They found that 
the most influential factors of shipping accidents are not the same in 
different types of accidents and provided the ranking of the importance 
of each influencing factor. Cao et al. (2023) conducted a bibliometric 
analysis of maritime accident research and proposed that the crew’s 
psychological state factor has a significant impact; for example, LNG and 
LPG vessels have higher operational standards and more severe conse
quences of accidents compared to other vessels, so the crew has more 
psychological pressure. It is more likely to cause human error. In sum
mary, the prediction of consequences of vessel collision accidents, the 
analysis of factors affecting shipping accidents, and the safety of the 
maritime supply chain are the main research contents of the forward 
research on risk factors of shipping accidents, among which most 
scholars choose the BN model due to its reasonable reasoning ability. Ma 
et al. (2024) used 980 maritime incidents off the Liaoning coast between 
2000 and 2023; the Tree Augmented Network (TAN) learning algorithm 
and Expectation Maximization (EM) algorithm are used to construct the 
data-driven BN model. A comprehensive BN analysis was conducted, 
including impact intensity assessment, sensitivity analysis, scenario 
simulation, and model validation. The results demonstrate that distinct 
types of maritime accidents exhibit varying sensitivities to seasonal 
variations and time of day. For example, fire and explosion accidents are 
more common in bulk carriers.

2.3. Reverse-path research of risk factors for maritime accidents

In addition to analyzing the influencing factors of maritime accidents 
based on accident data, prediction of accidents based on known influ
encing factors is also gradually emerging. Pula et al. (2005) aimed at the 
problem of marine fire accidents and carried out risk analysis on various 
possible consequences to reasonably predict the losses caused by marine 
fire accidents. Trucco et al. (2008) established the Marine Information 
System (MIS) BN model to analyze the impact of changes in human 
factors on shipping risk by taking the human organizational factors in 
maritime accidents as the primary research object, in which the human 
factors are subdivided into the shipping company, the maritime 
department, the port management, and all kinds of rules and regula
tions. Hänninen et al. (2014) used the expert consultation method, a 
standard construction method for BN models, and applied PSC data to 
propose a maritime safety management model for predicting and eval
uating the safety management of vessels navigating in Finnish waters. 
Sotiralis et al. (2016) focused on the impact of predicting the occurrence 
of shipping accidents due to human factors to apply to the Dover Sea 
area, incorporating it more into the quantitative analysis of operational 
risk based on BN model. The study categorized crew status into normal 

Table 1 
A review of water transportation risk research methods.

Literature Methodology Objective Perspective

Wu et al. 
(2015)

DEA Yangzi River basin 
navigation environment

Risk estimation

Zhang et al. 
(2016)

BN Predicting the 
consequences of the 
Tianjin Port accident

Lee et al. 
(2020)

FRAM Manufactured 
relationships with 
maritime accidents

Influencing factors

Zhang et al. 
(2021)

KDE Characteristics of shipping 
accidents

Liu et al. 
(2023a)

Machine 
Learning 
+BN

Bohai Oilfield risk factor 
identification

Gan et al. 
(2023)

NLP Report on the 
investigation of a shipping 
accident

Industry 
management 
optimization

Zhang et al. 
(2022)

Lempel-Ziv Inland waterway traffic 
safety management
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conditions, abnormal conditions, and critical operations. Baksh et al. 
(2018) propose a new risk model applicable to the Northern Sea Route 
(NSR) to investigate the possibility of marine accidents such as collision, 
foundering, and grounding. The model is developed using BN. The 
proposed risk model has considered different operational and environ
mental factors that affect shipping operations. The application of the 
model is demonstrated through a case study of an oil tanker navigating 
the NSR that has the highest collision, foundering, and grounding 
probabilities in the East Siberian Sea. Cai et al. (2021) proposed a re
sidual useful life (RUL) re-prediction method based on the Wiener pro
cess, establishing a DBN model for system performance degradation. 
Using the Subsea Christmas Tree system as an example, the effectiveness 
of this method was validated. Khan et al. (2020) used a Dynamic BN 
model to analyze the risk of ship-ice collision in Arctic waters. A tanker 
sailing in the Barents Sea is taken as an example to explain the proposed 
model. Cai et al. (2019) utilized DBNs to propose a hybrid structural 
system RUL estimation method based on physical models and 
data-driven approaches. This method considers the influence of multiple 
factors and establishes an RUL estimation model, validated using subsea 
pipelines in offshore oil and gas production systems as an example. Yu 
et al. (2021) utilized the data from the new inspection system of the 
Paris MOU on PSC to construct a dynamic risk prediction model for 
vessels using both BN and ER models to collect the factors influencing 
shipping risk based on the vessel’s inspection records. Li et al. (2022b)
proposed a new method for risk management and emergency 
decision-making of offshore oil spill accidents based on BN and Influ
ence Diagram (ID). This method combines pre-accident risk manage
ment with post-accident emergency response, which can balance risk 
and cost and make optimal decisions. The results show that this method 
can effectively support decision-making in risk management and 
emergency response to offshore oil spill accidents. Liu et al. (2023b)
proposed a dynamic assessment method for oil spill risk under extreme 
wind conditions based on DBNs. They converted physical models such as 
advection, diffusion, evaporation, and dispersion into DBNs and estab
lished a vulnerability model based on coastline types and 
socio-economic resources. Using Laizhou Bay as an example, the effec
tiveness of this method was validated, and the risk probabilities of oil 
leaks at potential locations were calculated to facilitate proactive risk 
prevention efforts. Fan et al. (2023) used neuropsychological data to 
analyze the psychological factors of seafarers and designed a vessel
board piloting simulation experiment to obtain the conclusion that 
pre-service training for crew members, which has a significant advan
tage on mental health.

In summary, the prediction of shipping accident consequences is the 
mainstream research direction in the reverse research of accident risk 
factors, and the research on the prediction of accident consequences is 
also gradually coming into practical application. The Paris MOU has 
published an official shipping risk model in which vessel operators can 

get the risk level by inputting the vessel parameter information to pre
vent accidents. The main contents of shipping risk reverse research are 
the influence of human factors on risk and the analysis of risk levels 
based on PSC data. Table 2 summarizes the current research on maritime 
accidents from both forward and reverse perspectives.

2.4. Literature summary

Compared with other risk factor studies, the research of maritime 
accidents in terms of influencing factors started later. Ship risk research 
has formed a relatively structured system in recent years, and screening 
risk factors affecting the occurrence and development of accidents, 
modeling risk prediction using specific methods, and putting forward 
suggestions for improvement are its main contents. Numerous factors 
influence the risk of ship accidents, and each influence is complex, 
making it difficult to track and extract effectively. Based on the summary 
of various literature, this paper selects the BN model to analyze and 
research ship accident influencing factors. Although the BN model is a 
"classic" one compared with machine learning methods, it is still 
powerful enough for this work regarding identification accuracy. Also, 
BN has excellent interpretability and a straightforward model structure, 
suitable for management applications and further extension. The main 
flow of our research is shown in Fig. 2.

3. Data collection and processing

3.1. Data collection on maritime accidents

3.1.1. Data source
This study is based on the GISIS database, which contains a total of 

754 records during the period from January 1, 2016, to December 31, 
2023. Among them, the accident information includes the time, loca
tion, basic information of the vessel involved and accident casualties. 
Meanwhile, the accident reports contain detailed descriptions of the 
accident process, which can be used as supplementary information (e.g. 
whether it was affected by extreme weather). In addition, the maritime 
accident database is fused with other vessel information databases 
through the vessel’s Maritime Mobile Service Identify (MMSI) number, 
which is used to supplement other information needed for the study in 
this paper (i.e., vessel age, size of the vessel, vessel company informa
tion) to ensure the completeness, accuracy and validity of the collected 
data.

3.1.2. Description of data
There were 379 and 375 records of accidents reported by RCEP 

member countries and accidents occurring globally on ships belonging 
to RCEP member countries, respectively, totaling 754 records. The data 
were screened, including removing duplicate and accident records with 

Table 2 
A review of forward and reverse maritime accidents research.

Forward research Literature Reverse research Literature

Research on factors influencing pollution in the high seas Balmat et al., 2011 Prediction of maritime fire losses Pula et al., 2005
Research on accident prediction based on vessel collision records Montewka et al., 2014

Zhang et al., 2016
Prediction of the impact of human factors on maritime 
accident consequences

Trucco et al., 2008
Sotiralis et al., 2016

Human factors on vessel risk Galieriková, 2019 Prediction of ship safety inspection results Hänninen et al., 2014
Research on maritime supply chain security guarantee based on 
maritime accident prediction

Wan et al., 2019 Prediction of arctic shipping routes risk Baksh et al., 2018
Khan et al., 2020

Research on manufactured relationships with maritime accidents Lee et al., 2020 Prediction of residual useful life of subsea christmas tree 
systems

Cai et al., 2021

Research on the analysis of influencing factors of vessel accidents 
and accident prediction

Li et al., 2023
Ma et al., 2024

Prediction of residual useful life of subsea pipelines Cai et al., 2019

Research on factors affecting offshore platform safety Liu et al., 2023a Impact of vessel inspection records on vessel risk Yu et al., 2021
Li et al., 2022b

Research on the impact of crew psychological factors on maritime 
accidents

Cao et al., 2023 Prediction of potential oil spill locations risk at sea Liu et al., 2023b

​ Influence of crew psychological factors on vessel risk Fan et al., 2023

W. Wang et al.                                                                                                                                                                                                                                  Process Safety and Environmental Protection 194 (2025) 1235–1256 

1239 



significantly missing information. 549 accident records were retained 
after data cleaning.

IMO divides maritime accidents into "very serious", "serious" and 
"less serious" according to the severity. "Very serious accident" refers to 
an accident caused by total damage, casualties, or severe pollution on 
the vessel; "serious" refers to an accident that does not belong to a "very 
serious accident" caused by the vessel due to fire, explosion, collision, 
stranding, contact, lousy weather damage, ice damage, hull rupture or 
suspected hull defects; "less serious" refers to other accidents that are not 
"very serious" and "serious". The number of accidents of various severity 
is shown in Fig. 3.

The number of data for which specific geographic coordinates were 
recorded was 436 out of 549, and the accidents’ distribution is shown in 
Figs. 4 and 5. Among them, the red marking indicates the location of 
accidents occurring in the sea area of RCEP reported by each member 
country, and the blue indicates accidents involving ships from RCEP 
member countries worldwide.

The maritime accidents of RCEP member countries are mainly 
concentrated in the East and South seas of China, the Straits of Malacca, 
the waters of Japan and Korea, and the east coast of Australia. Except for 
the Asia-Pacific region, the accident locations of vessels of RCEP mem
ber countries are relatively scattered. Common accidents are also on the 
west coast of Europe, the Mediterranean region, and the east coast of the 
United States.

3.2. Analysis of risk influencing factors (RIFs)

3.2.1. Selection of RIFs
Define factors affecting maritime transportation safety as RIFs. Based 

on the RCEP maritime accident database established in the previous 
section, the following principles are combined to select the risk factors 
for shipping accidents.

(1) Principle of independence: the selected RIFs should be indepen
dent of each other, and there is no cross or containment relation between 
different categories of RIFs.

(2) Principle of effectiveness: the collected accident data is the basis 
of the BN model; if the selected RIF has no data or an extreme amount, 
the RIF should not be set as a node. Therefore, when building the BN 
model, it should be combined with the data that have been collected for 
comprehensive consideration.

(3) Principle of timeliness: with the improvement of the scientific 
level, the factors affecting shipping accidents will also change to a 
certain extent, so the selected node should be in line with the back
ground of the times so that the BN model can infer the present.

This paper finalized 19 RIFs:
(1) Flag: the flag is a symbol of the nationality of a vessel. Every year, 

on July 1, the Paris MOU releases the latest version of the white list, grey 
list, and black list to the public, evaluating the long-term performance of 
the work done by the flag state authorities. To a certain extent, the flag’s 
ranking can be utilized as a straightforward way to identify advantages 
and disadvantages in a large amount of information. The white, grey, 
and black lists can show the results of all its flag state evaluations, 
derived based on the total number of PSC inspections and the total 
number of stays of flag states that have undergone at least 30 PSC in
spections during a rolling three-year period. This paper categorizes flag 
states based on the rankings issued by the 2020 Paris MOU.

(2) SOLAS certification: the International Convention for Safety of 
Life at Sea (SOLAS) is an international safety agreement published by 
IMO. This parameter is classified according to whether the vessel holds 
SOLAS certification.

(3) Place of vessel construction: classification is based on whether 
the country where the vessel was built is developed.

(4) Vessel company: classification is based on vessel operating and 
management companies.

(5) Classification society: this influencing factor refers to whether the 
accident vessel belongs to the world’s top ten classification societies 
(take 40.12 % in the dataset of this paper). The top ten classification 
societies are DNV GL Group (6.32 %), ABS (American classification so
ciety) (5.02 %), Class NK (Japan classification society) (9.85 %), Lloyd’s 
Register (5.95 %), Rina (2.04 %), Bereau Veritas (5.02 %), China Clas
sification Society (3.35 %), Russian Maritime Register of shipping (0 %), 

Fig. 2. Development network diagram of literature research.

Fig. 3. Distribution of accident severity categories.
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Korean Register of shipping (2.60 %), and Indian Register of shipping 
(0 %).

(6) Extreme weather: extreme weather includes high winds, high 
waves, and heavy fog. The accidents are categorized according to the 
presence or absence of extreme weather.

(7) Accident location: classification is based on the location of the 
accident in the accident report.

(8) Coastal administration: vessel accidents are reported and pro
cessed by the country where the accidental sea area belongs, and 
sometimes multiple countries report the same accident. In order to avoid 
duplication of data, it is chosen to report the accident report first for 
recording.

(9) Accident time: it categorizes the time of day into 0:00–7:59, 
8:00–15:59, and 16:00–23:59.

(10) Accident season: classification based on the quarter when the 
accident occurred, of which the first quarter is from March to May, the 
second quarter is from June to August, the third quarter is from 
September to November, and the fourth quarter is from December to 
February next year.

(11) Accident month: categorized according to the accident’s 
occurrence.

(12) Vessel type: the vessel type with the most accidents in the 
selected data was dry bulk carriers, accounting for 66 % of the total 
incidents.

(13) Number of persons on board: classified according to the number 
of persons on board at the time of the accident.

(14) Gross registered tonnage: it is a measurement of a ship’s overall 
internal volume. It is calculated based on the total enclosed spaces 
within the ship, including cargo holds, crew quarters, and machinery 
spaces. Gross registered tonnage is expressed in "register tons," where 
one register ton equals 100 cubic feet of space. This metric is used pri
marily for regulatory and tax purposes, such as determining port fees, 
docking charges, and safety regulations. Gross registered tonnage pro
vides a standardized way to assess the size of a vessel, although it does 
not directly indicate the ship’s weight or cargo-carrying capacity.

(15) Vessel’s main engine power: according to this parameter, it can 
reflect the vessel’s carrying capacity.

(16) Vessel age: categorized according to the vessel’s age, the most 
significant number of vessels involved in accidents in the selected data 
were between 6 and 10 years old.

(17, 18) Vessel length and width: classified according to the size of 
the vessel.

(19) Type of accident: categorized according to the accident type. 
According to statistics, the most frequent types of accidents are colli
sions, accounting for 27 %.

Finally, the labeling results of the RIFs used in this study are shown in 
Table A1.

Fig. 4. Distribution of shipping accidents in the areas of RCEP.

Fig. 5. Distribution of shipping accidents in the global area of RCEP member countries.
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3.2.2. Classification of RIFs
This section further categorizes the 19 RIFs for BN modeling, i.e., the 

secondary risk factor structure. These include four types: vessel infor
mation, vessel management information, vessel environment, and ac
cident categories, as shown in Table 3.

Vessel management information refers to the information on vessel 
management and operation involved in the operation of a vessel. 
Whether a vessel can navigate safely on the water depends on whether 
the organization implements suitable management measures. Therefore, 
the management factor is usually regarded as the leading RIF that can 
cause marine traffic accidents and is thus included in the scope of 
research. Management consists of two main aspects: First, relevant in
ternational organizations and national maritime authorities externally 
supervise shipping enterprises and their vessels. The local maritime 
authorities, in particular, are more familiar with the local situation and 
can formulate scientific and practical regulations on shipping safety 
management according to local conditions. Second, the vessel com
panies with their supervision. They will regard their situation to estab
lish a sound and standardized management system. Vessel management 
information and vessel information constitute the static factors of vessel 
accident RIFs together, and the static factors are determined when the 
vessel is in port, so the static factors are often used as the measure of 
vessel risk during port inspection.

Vessel information is defined as the various factors inherent to the 
vessel itself. Vessel factors are important causal factors of maritime 
transportation accidents. Vessel factors are numerous, such as the 
maneuvering equipment, life-saving and fire-fighting equipment, the 
materials used in the construction of the hull and its quality, the struc
tural design of the hull, the sealing and compartmentalization of the 
hull, as well as the vessel’s buoyancy, the dry side, and the swaying 
properties of the vessel, which can be reflected in the age of the vessel, 
the performance of the equipment, and other factors. This paper mainly 
categorizes vessel factors into vessel size, loading condition, vessel age, 
vessel type, and power.

Vessel environmental factors are usually the main factors that induce 
marine traffic accidents, including meteorological and hydrographic 
conditions. Natural environmental factors include visibility, sea cur
rents, wind, and waves. For example, when there is rain, fog, and other 
particular weather, the driver’s lookout will be interfered with, and the 
field of vision will not be precise, leading to the vessel in the process of 
driving accidents. Wind and waves will destroy the vessel’s stability, 
greatly enhancing the possibility of vessel accidents. Meanwhile, this 
will cause great difficulty in the subsequent rescue work. Vessel envi
ronmental factors are dynamic factors, which refer to the factors that 
change dynamically during the vessel’s traveling process, such as 

weather, time, season, and location.
The accident category is the most critical in RIFs, and different ac

cident categories may lead to different consequences. This paper com
bines the existing data to categorize the accident categories into six 
cases: grounding, collision, fire and explosion, vessel wreck and capsize, 
vessel damage and cargo damage, and other accidents. Among them, 
grounding, collision, and fire/explosion incidents refer to accidents due 
to crew operational errors or equipment failures, resulting in direct 
damage to the vessel or delays in scheduled arrangements, leading to 
losses. Shipwrecks, capsizing, and cargo and vessel damage refer to 
losses caused to the cargo on board or the vessel due to weather or other 
factors. Other incidents refer to accidents that do not fall into any of the 
above categories but still result in casualties or property damage, such as 
a crew member falling from the lookout tower due to inadequate 
training and dying.

4. Maritime risk model by BN

4.1. BN model introduction

BN is also known as a confidence network and is one of the most 
compelling theoretical models in uncertainty and reasoning. It is a 
model for handling the uncertainty of causal relationships in simulating 
human reasoning. In BN, variables are represented by nodes, and the 
relationship between variables is represented by directed arcs, with the 
cause node pointing to the result node. In summary, BN is a set of (DAG 
and a collection of related parameters. Among them, the DAG represents 
the model structure attributes, that is, the network structure; the rele
vant parameters represent each variable’s Conditional Probability 
Table (CPT), representing the dependencies between variables. In a BN, 
the random variables involved in a particular research system are rep
resented in a directed graph based on their conditional independence, 
thus forming the BN. It is primarily used to describe the conditional 
dependencies between random variables, with circles representing 
random variables and arrows indicating conditional dependencies. For 
example, if node E directly influences node H, represented as E→H, a 
directed arc (E, H) is established from E to H, and the weight (i.e., 
connection strength) is represented by the conditional probability P(H| 
E), as shown in Fig. 6 below:

Denote each node by xi, vi denotes the set of parent nodes corre
sponding to xi, i = 1,2…n. X denotes the set of n nodes, n denotes the 
total number of nodes.The joint probability p(X) of the set of n node 
variables in the model is denoted as: 

p(X) =
∏n

i=1
p(xi|vi) (1) 

p(X) is considered the strength between xi and vi. Prior proba
bility refers to the probability derived from experience and analysis, 
such as in the total probability theorem. It often appears as the proba
bility of the ’cause’ in the ’cause and effect’ problem. Marginal proba
bility refers to the probability of an event occurring among all possible 
scenarios involving a summation or integration process. It reflects the 
likelihood of an event occurring and is one of the fundamental concepts 
in probability statistics. Marginal probability is obtained by merging the 
unnecessary events in the joint probability into the total probability of 
those events, a step known as marginalization. Specifically, a marginal 
probability fk can be derived from the joint probability of x1, x2, ..., xn, 
with the following formula: 

Table 3 
Classification of factors influencing vessel accidents.

Classification of risk 
influencing factors

RIFs Classification of risk 
influencing factors

RIFs

Vessel management 
information

Flag Vessel information Vessel type
SOLAS 
certification

Number of 
persons on 
board

Place of vessel 
construction

Gross 
registered 
tonnage

Vessel company Vessel’s main 
engine power

Classification 
society

Vessel age

Extreme weather Vessel width
Accident location Vessel length

Vessel environment Coastal 
administration

Accident category Type of 
accident

Accident time
Accident season
Accident month Fig. 6. Example of causal relationship.
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fk(xk) =
∑

x1 ,…,xn
except xk

f(x1,…, xn) (2) 

Posterior probability refers to the probability of an event occurring 
after obtaining some observational information. The posterior proba
bility of an event is commonly calculated using Bayes’ theorem, which is 
as follows: 

P(A|B) =
P(B|A)⋅P(A)

P(B)
(3) 

4.2. BN structure determination

There are two main methods to determine the structure of BN. The 
first is using prior knowledge to construct the network structure; this 
approach is based on expert experience and knowledge or similar 
structure of the previous literature for model construction, subject to the 
influence of prior knowledge, under the premise of insufficient data 
commonly used in this method. The second is to obtain the network 
structure through structural learning by analyzing data, such as using 
the scoring search method to train the data, and obtain the network 
structure. This method needs a tremendous amount of data. Based on 
data analysis, the causal relationship between various nodes is obtained, 
and the execution of this method is complex. At the same time, 
increasing nodes will lead to an exponential increase in data relationship 
analysis, seriously affecting learning efficiency. This paper chooses the 
first method after referring to a large amount of literature. The main 
reason is that specific results have been achieved in identifying and 
analyzing RIFs, which can be reliably referenced in classifying influ
encing factors. The second method will limit the number of nodes 
studied. Based on the existing data, a BN model is constructed, and the 
detailed construction process is shown in Fig. 7.

The BN model structure is shown in Fig. 8.
19 RIFs are divided into primary factors and secondary factors. 

Among them are 8 primary factors (green mark) and 11 secondary 
factors (blue mark). The primary factors are the direct factors leading to 
the accident’s severity, and the secondary factors are the sub-factor of 
the primary factors, which are the indirect factors leading to the severity 
of the shipping accidents. The primary factors cover all four types of 
factors in Table 3. Among them, the vessel environment provides five 
primary factors, and each of the other three categories provides one 

primary factor. That is, the direct impact of the vessel environment on 
the severity of vessel accidents is the most remarkable.

4.3. Model rationality validation

The rationality of our proposed model is verified by forward infer
ence, that is, whether the relationship between nodes in the established 
BN model is reasonable with reality to prove the rationality of the 
model.

This paper utilized 20 samples of maritime accident cases outside the 
training sample to verify the rationality of the proposed model and 
selected the identified influencing factors, that is, the set of risk sub- 
factor nodes that have an impact on the accident, which are input as 
evidence into the established BN model for forward reasoning in order to 
validate the reasonableness of the shipping accident simulation model, 
and the following is the validation process.

The collision between Greek-registered bulk carrier Spartan and 
Australian rock lobster fishing vessel Hannah Lee

At 05:35 on April 17th, 2005, 17 nautical miles off Bouvard, off the 
southwest coast of Western Australia, the Greek-registered bulk carrier 
Sparta collided with the Australian rock lobster fishing vessel Hannah 
Lee at 32◦43′8″S, 115◦16′9″E. The Sparta was on its way to the port of 
Banbury to load alumina. Hannah Lee left the small port of Mandurah at 
03:45 and went to work in the rock lobster pools located approximately 
37 nautical miles southwest of the port.

The following risk sub-factors were extracted from the accident 
description: vessel type, coastal administration, accident season, acci
dent month, accident time, flag, extreme weather, and accident location. 
They were entered into the BN model as evidence and forward reasoning 
to obtain the following results, as shown in Figs. 9 and 10. The results of 
the forward reasoning are shown in Table 4.

Substituting the RIFs extracted from the accident case descriptions 
into the simulation model reveals that the probability of the severity 
level being "serious" is significantly higher. In contrast, the results for 
other types of accidents are significantly lower, and the accident’s 
severity level in the accident record is also "serious", which is in line with 
the facts.

Hong Kong cargo vessel "Huilong" sinks
On May 18th, 2005, the general cargo vessel "Huilong", registered in 

Hong Kong, sailed from Indonesia to India. This vessel carried 11,245 
tons of mixed general cargo, including 5185 tons of fluorite minerals in 

Fig. 7. Process of BN model constructions.
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bulk. At 15:35 local time (UTC+5), the vessel was 173 nautical miles 
from Shangri Lanka, located at 5◦55′30″N, 84◦20′42″E; the vessel sud
denly tilted 15 degrees to the port side. The situation continued to 
deteriorate, and the captain abandoned the vessel at 16:02 after the port 
deck was submerged in 40-degree water, and all 23 crew members were 
rescued by the passing container freighter Nedlloyd Asia. The next day, a 
salvage tug was called in an unsuccessful attempt to rescue the vessel, 
which sank on May 20th, 2005.

The exact reason for the sinking of "Huilong" could not be deter
mined. After investigating the possible causes of the accident, it was 
concluded that the liquefaction of the bottle stone in cargo holds No. 1 
and No. 3 was the cause of the accident. The flow state of bottled stone 
goods may cause the vessel to sink.

The following risk sub-factors were extracted from the accident 
introduction: type of accident, vessel type, accident season, accident 
time, accident month, accident location, extreme weather, flag and 

Fig. 8. BN model constructions.

Fig. 9. Setting the node state (Case 1).
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classification society. They are entered into the BN model as evidence, 
and forward inference is performed to obtain the following results, as 
shown in Figs. 11 and 12. The results of the forward reasoning are shown 
in Table 5.

Analysis of forward reasoning results: The RIFs extracted from the 
accident case descriptions were substituted into the simulation model. It 
was found that the probability of the severity level of "very serious" is 
significantly higher, while the results of the other severity are not sig
nificant. The severity level of this accident in the accident record is "very 
serious", which is in line with the facts. Twenty samples were tested 
according to this process, and the results are shown in Table A2 and 
Table A3.

We followed strict standards and processes when selecting 20 data 
points to validate the mathematical model. The sample data comes from 
maritime incidents in the RCEP region from 2011 to 2016 (out of the 
analysis data range in Section 3.1.2), and the selection of sample data 
adhered to three principles: randomness, representativeness, and non- 
overlapping. First, the sample dataset was grouped by year, and then 
it was further grouped by the severity of the incidents. A stratified 
sampling method was employed to obtain 10 groups from each category. 
In determining the sample size, this study initially tried groups of 10, 20, 
and 30 data points. After 100 repeated sampling analyses, it was found 
that when the sample data consisted of 20 groups, the test results could 

achieve the desired outcomes more quickly while ensuring stability. 
Therefore, 20 data points were chosen as the sample test set, and ulti
mately, one group was selected through simple random sampling as the 
test group for validating the effectiveness of the model presented in this 
paper. When determining the adequacy of a model’s predictive results 
by assessing whether the "posterior probability change of the target type 
corresponding to the tested cases" is highest and if the model aligns with 
actual real-world situations, it has been verified that the overall quali
fication rate of 20 cases is 95 %. This certification confirms that the 
validated result of this model is reasonable.

5. Empirical results

5.1. Identification of key risk factors

To accurately identify the influence of each sub-factor in ship acci
dents and put forward targeted suggestions on the prevention of ship
ping accidents, this section uses the proposed model for reverse 
reasoning and empirical research. When analyzing accidents of a certain 
severity, the posterior probability of each risk subfactor can be deduced 
by adjusting the state probability of the "severity" node in the BN. 
Generally, the subfactor with a higher posterior probability is consid
ered the critical subfactor at that severity.

(1) Identify critical sub-factors based on 549 RCEP regional maritime 
accident data, taking "very serious" as an example.

(1.1)Record the posterior probability of each risk factor in the initial 
state, as shown in Fig. 13;

(1.2)Set the probability of "very serious" to 100 %, as shown in 
Fig. 14;

(1.3)Inference is performed to obtain the posterior probability under 
the set state, as shown in Fig. 15.

Based on the severity of "very serious", it can be observed that among 
the eight primary factors, "type of accident (D: vessel wreck and over
turning)" and "type of accident (F: other accidents)" emerge as 

Fig. 10. Forward reasoning results (Case 1).

Table 4 
Accident simulation forward reasoning results (Case 1).

Severity Before entering 
evidence (%)

After entering 
evidence (%)

Probability 
variation (%)

Very 
serious

69 51 − 26.09

Serious 23 42 82.61
Less 
serious

6 4 − 33.33

Undefined 3 4 \
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significant ones. According to the findings, when the accident is classi
fied as "very serious", there is a decrease in the posterior probability of 
occurrence for "flag (A: white)", while there is an increase in posterior 

probability for both "flag (B: grey)" and "flag (C: black)". This aligns with 
common sense that ships displaying flags indicating more satisfactory 
performance have lower risk levels. Regarding "extreme weather" 

Fig. 11. Setting the node state (Case 2).

Fig. 12. Forward reasoning results (Case 2).
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impact, there has been a decline in the posterior probability of occur
rences categorized as "extreme weather (A: not affected by extreme 
weather)", whereas occurrences classified as "extreme weather (B: 
affected by extreme weather)" posterior probability have shown an in
crease. These results suggest that ship accidents are more likely to be 
labeled "very serious" under extreme weather conditions. The remaining 
primary factors have exhibited minimal changes.

Among the secondary factors, "SOLAS certification (B: no SOLAS 
certification)", "classification society (A: not part of the top ten classifi
cation societies)", "vessel length (A: 0–100 m)" and "vessel age (F: more 
than 25 years)" posterior probability all increased, indicating that in the 
RCEP area, ships with the above factors are more likely to have "very 
serious" accidents.

Repeat the same analyzing approach for the remaining two severity 
levels.

(2) Fig. 16 shows the result of a "serious" accident. Based on the 
severity of "serious", it can be seen that among the eight primary factors, 
"type of accident (A: grounding)", "type of accident (B: collision)", "type 
of accident (C: fire)" and "type of accident (E: damage to vessel and 
cargo)" posterior probability are significantly increased. Accident time is 
more concentrated in the "accident time (A: 0:00–7:59)" period; The 
"flag (A: white)" posterior probabilities has risen, while the "flag (B: 
grey)" and "flag (C: black)" posterior probability have fallen. The "vessel 

type (A: dry bulk carrier)" posterior probability has decreased, while the 
"vessel type (B: container vessel)" posterior probability has increased. In 
the secondary factors, the probability of "classification society (B: be
longs to the top ten classification societies)", "vessel’s main engine 
power (B: more than 3000 kW)", and "SOLAS certification (A: possesses 
SOLAS certification)" posterior probability increased, while "vessel age", 
"gross registered tonnage", "vessel length" and "vessel width" posterior 
probability all have the trend of improvement.

(3) Fig. 17 shows the results of "less serious" accidents. Based on the 
severity of "less serious", it can be seen that among the eight primary 
factors, the posterior probability of "flag (A: white)" increases signifi
cantly; "type of accident (A: grounding)", "type of accident (B: collision)", 
and "type of accident (E: damage to vessel and cargo)" posterior prob
ability all increased significantly. "extreme weather (A: not affected by 
extreme weather)" and "accident location (B: sea area)" posterior prob
ability have increased. In terms of vessel type, the posterior probability 
of "vessel type (A: dry bulk carrier)" has increased, while "vessel type(G: 
others)" posterior probability has decreased significantly. In terms of 
coastal administration, the posterior probabilities of "coastal adminis
tration (A: China)" and "coastal administration (G: non-RCEP countries)" 
have decreased. Among the secondary factors, "vessel length", "vessel 
width", "vessel’s main engine power" and "registered gross tonnage" 
posterior probability have all increased. These show that with the 
expansion of ship size, safety measures will be more ideal and less likely 
to occur "very serious" ship accidents. In addition, the posterior proba
bility of "classification society (B: belongs to the top ten classification 
societies)" is increased.

To sum up, among the eight primary factors, in terms of accident 
type, two sub-factors, "type of accident (D: vessel wreck and over
turning)" and "type of accident (F: other accidents)", significantly lead to 
"very serious" accidents; "type of accident (A: grounding)", "type of ac
cident (B: collision)", and "type of accident (E: collision)" tend to make 
the accident severity "serious" or "less serious". The posterior probability 
of "type of accident (C: fire)" increases significantly only when the 

Table 5 
Accident simulation forward reasoning results (Case 2).

Severity Before entering 
evidence (%)

After entering 
evidence (%)

Probability 
variation (%)

Very 
serious

69 92 33.33

Serious 23 6 − 73.91
Less 
serious

6 0 \

Undefined 3 1 \

Fig. 13. Initial posterior probability.
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severity is "serious". In terms of the flag, ships characterized by a "white" 
flag were more likely to have "serious" and "less serious" accidents than 
ships characterized by a "grey" flag and a "black" flag. In terms of 

extreme weather, "extreme weather (B: affected by extreme weather)" 
can lead to more severe accidents. In the secondary factors, "vessel 
length", "vessel width", "vessel’s main engine power", "gross registered 

Fig. 14. Setting the node status (very serious).

Fig. 15. Posterior probability of each risk subfactor (very serious).

W. Wang et al.                                                                                                                                                                                                                                  Process Safety and Environmental Protection 194 (2025) 1235–1256 

1248 



tonnage", "number of persons on board", and other factors that express 
ship size reflect that smaller ships are more likely to have "very serious" 
accidents, which may be since small ships still have insufficient safety 

precautions and lack of safety awareness. In terms of maritime safety 
certification, ships with "SOLAS certification (A: having SOLAS certifi
cation)" characteristics are less likely to have "very serious" accidents. 

Fig. 16. Posterior probability of each risk subfactor (serious).

Fig. 17. Posterior probability of each risk subfactor (less serious).
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The two sub-factors of "vessel company" and "place of vessel construc
tion" have little influence on the severity of vessel accidents.

5.2. Ranking by RIFs

When different risk sub-factors are selected, the corresponding 
probability of the severity of ship accidents will change. The statistical 
change amplitude can reflect the influence of each factor on the severity 
of accidents; that is, the ranking of the importance of influencing factors 
can be obtained.

(1) Record the initial probabilities of each class severity when the 
probability of no impact is set, as shown in Fig. 18.

(2) Set the probability of "A" in "vessel length" to 100 % and record 
the probability of each class severity, as shown in Fig. 19.

(3) Repeat the above steps to complete the probability setting of all 
RIFs and record the probability of various class severity in each state.

Based on the above analysis of the results of "very serious", "serious", 
and "less serious", the top ten factors that have the most significant 
impact on the severity of each level are shown in Tables 6, 7, and 8.

As can be seen from Table 6, "type of accident: D (vessel wreck and 
overturning)" and "type of accident: F (other accidents)" are two primary 
factors that significantly cause the accident severity level to be "very 
serious". Two secondary factors, "flag: C (black)" and "flag: D (grey)", will 
lead to a greater probability of the accident grade changing to "very 
serious." Thus, it can be seen that the black, white, and grey of the flag 
state has a practical effect on the prediction of maritime risks to a certain 
extent. "Vessel type: G (others)", "vessel type: D (tug)", and "vessel type: F 
(ro-ro passenger vessel)" also increase the risk of ship accidents. In 
addition to the above factors, the vessel’s SOLAS certification and ac
cident time factors will also lead to an increase in the severity level, 
which requires the attention of the ship management personnel.

In Table 7, when the "type of accident: E (damage to vessel and 
cargo)", "type of accident: A (grounding)", "type of accident: B (colli
sion)", and "type of accident: C (fire)" occur, the high probability of ship 

accident is a "serious" accident, and the common feature of this kind of 
accident is that it causes damage to the ship but does not have the impact 
of ship scrapping and casualties. "Vessel type: E (engineering vessel)" 
and "vessel type: C (liquefaction vessel)" are more likely to have "serious" 
class accidents in the event of an accident. In addition, coastal admin
istration, accident time, and flag will also increase the number of 
"serious" ship accidents.

Table 8 shows that "coastal administration: E (New Zealand)" and 
"coastal administration: D (Australia)" in maritime accidents are more 
inclined to the "less serious" class. The probability of a ship accident 
being "less serious" is increased for the "type of accident: E (damage to 
vessel and cargo)", "type of accident: A (grounding)", and "type of acci
dent: B (collision)". "Flag: A (white)" also tends to be the "less serious" 
type of accident. In addition to the above factors, "flag: A (white)" and 
the "accident location: A (coastwise)" also increase the posterior prob
ability of the ship’s accident severity being "less serious".

In summary, in the category of marine accidents, "capsizing" and 
"other accidents" are more likely to occur in "very serious" accidents, 
while "damage to vessel and cargo", "grounding", and "collision" make 
the severity of accidents more skewed towards the "serious" and "less 
serious" levels. In the ranking of the importance of influencing factors, it 
can be seen that the key influencing factors of "serious" and "less serious" 
accidents have a significant overlap degree, and some factors have 
similar impacts on the two severity levels, which may be due to the 
unclear classification criteria of "serious" and "less serious" in the 
severity of accidents, confusing the classification of accidents and room 
for improvement. In addition, the result proves that the classification of 
flag grades, that is, the classification of white, black, and grey flags, has a 
particular significance, which can reflect the risk of the ship to a certain 
extent. According to the SOLAS certification of the accident ship, it can 
also be found that the ship without relevant certification is more likely to 
have a "very serious" accident. From the perspective of vessel type, "tug", 
"ro-ro passenger vessel", and "others" are more likely to have "very 
serious" accidents. In contrast "engineering vessel", "liquefaction vessel", 

Fig. 18. Initial probability of each severity.
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and "container vessel" tend to have "serious" and "less serious" accidents, 
which may be due to the lack of adequate safety measures and standard 
safety precautions for ships such as "tug", more likely to occur crew 
casualties and ship damage.

5.3. Model evaluation

The BN model has undergone substantial development in influencing 
factor analysis. The motivation of this work to choose the BN model as 
the analysis method is because it can provide probability values for 
potential risks as a reference and offer graphical models that make the 
results more intuitive.

The BN model has significant advantages compared to other popular 
influencing factor analysis models. Probability Risk Assessment (PRA) 
models rely on historical data and fault tree analysis, often neglecting 
uncertainty and dynamic updates, while BNs can update risk assess
ments in real time and handle uncertainty. Multi-criteria decision- 
making (MCDM) models, such as the Analytic Hierarchy Process (AHP), 

Fig. 19. Severity probability in the probability setting of "vessel length".

Table 6 
Top 10 factors in the "very serious" category.

Ranking Influencing factor code Influencing factor Probability 
change/%

1 Type of accident: D Vessel wreck and 
overturning

35.41

2 Type of accident: F Other accidents 32.47
3 Flag: C Black 23.92
4 Flag: B Grey 20.34
5 Vessel type: G Others 13.33
6 Vessel type: D Tug 12.17
7 Vessel type: F Ro-ro passenger vessel 9.97
8 SOLAS certification: B No SOLAS certification 7.32
9 Accident time: C 16:00–23:59 6.78

10 Number of persons on 
board: A

0–10 5.93

Table 7 
Top 10 factors in the "serious" category.

Ranking Influencing factor 
code

Influencing factor Probability 
change/%

1 Type of accident: E Damage to vessel and 
cargo

127.34

2 Type of accident: A Grounding 97.52
3 Vessel type: E Engineering vessel 60.69
4 Type of accident: B Collision 49.56
5 Vessel type: B Container vessel 45.59
6 Coastal 

administration: C
South Korea 45.12

7 Vessel type: C Liquefaction vessel 42.56
8 Type of accident: C Fire 33.84
9 Accident time: A 0:00–7:59 29.20

10 Flag:A White 19.40

Table 8 
Top 10 factors in the "less serious" category.

Ranking Influencing factor 
code

Influencing factor Probability 
change/%

1 Coastal 
administration: E

New Zealand 252.34

2 Type of accident: E Damage to vessel and 
cargo

143.78

3 Vessel type: C Liquefaction vessel 115.20
4 Type of accident: A Grounding 111.15
5 Accident season: C Third quarter 82.48
6 Type of accident: B Collision 56.33
7 Accident location: A Coastwise 50.97
8 Flag: A White 35.59
9 Coastal 

administration: D
Australia 35.50

10 Accident time: C 16:00–23:59 28.35
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mainly depend on expert judgment, which may introduce subjective 
bias. In contrast, BNs quantify uncertainty, providing data-driven deci
sion support that reduces the impact of subjective factors. System Dy
namics models focus more on the dynamic changes within systems but 
usually require complex model structures and numerous parameters. 
BNs, on the other hand, have a simple structure that is easy to construct 
and understand, making them more adaptable to different contexts, with 
minimal differences in final results. Machine learning models, such as 
random forests and neural networks, are often black-box models that are 
difficult to interpret regarding causal relationships. BNs provide trans
parent causal relationships and influence pathways, facilitating under
standing and communication. BN models demonstrate more robust 
advantages over traditional models in handling uncertainty relation
ships, dynamic updating capabilities, integrating diverse information, 
and displaying causal relationships. BN is the most suitable model 
choice for this work, considering its accuracy (the accuracy is 95 % in 
the 20 samples test), efficiency (easy understanding of the model 
structure and fast construction with the software), and interpretability 
(clear graphic illustration). The comparison of BN and other typical 
models is listed in Table 9.

6. Conclusions and outlook

6.1. Conclusions

Under the background of the formal implementation of RCEP, this 
paper makes an in-depth discussion of the maritime risk assessment of 
RCEP member states. By constructing a simulation model based on BN, 
the key factors affecting the severity of ship incidents are successfully 
identified and quantified. It was found that factors such as accident 
category, ship nationality, ship flag, and extreme weather significantly 
impact predicting and inferring the severity of ship accidents. In addi
tion, through specific case analysis, this paper verifies the effectiveness 
and practicability of the proposed model, provides valuable risk man
agement suggestions for ship administration departments, and supports 
improved maritime safety in the RCEP region. 

(1) Summary of influencing factors based on accident severity (for
ward analysis summary)

The categories of influencing factors that appear among the top 10 
influencing factors with the most significant impact under each severity 
level of maritime incidents are defined as the key influencing factors for 
that severity level. The factors affecting the severity of accidents in 
Section 5 are sorted out, and the results are shown in Table 10. The 
primary factors impacting the severity of ship accidents are type of ac
cident, flag, vessel type, and extreme weather. Among the secondary 
factors, vessel length, vessel age, vessel’s main engine power, and 
SOLAS certification significantly affect the severity of ship accidents. In 
summary, two primary factors, type of accident and flag, and two sec
ondary factors, vessel length and classification society, especially in
fluence the severity of the three kinds of accidents (bold in Table 10). 
Therefore, shipowners and ship administration departments can priori
tize the management and optimization of the above four factors to 
ensure ship safety. 

(2) Summary of accident severity based on influencing factors 
(reverse analysis summary)

The conclusions of accident severity caused by the ten factors with 
the most significant impact in Section 5 are concluded, and the results 
are shown in Tables 11 and 12, where "✔" indicates that the factor has a 
significant impact on accident severity. The influence of primary factors 
on the severity of ship accidents is significantly more influential than 
that of secondary factors, and the influence factors of "very serious" and 
"serious" are almost the same (except for the "coastal administration" 
factor). In contrast, the factors that influence "less serious" accidents are 
almost every primary factor (except the "extreme weather" factor).

To sum up, vessel type, type of accident, and flag are more likely to 
affect the severity of ship accidents. At the same time, the ship owners 
should also pay attention to updating the ship’s SOLAS safety certifi
cation in time to meet the relevant requirements, significantly reducing 
the risk of ship accidents. Through an in-depth analysis of maritime ship 
incidents in the RCEP area, this paper not only improves the under
standing of maritime traffic safety but also provides a scientific basis for 
further optimizing ship management and improving the quality of 
maritime safety research. The BN model in this study provides an 
effective analytical tool for future research, which enables more accu
rate assessment and prediction of the risk of ship accidents.

The usability of this study is multifaceted and significant for various 
stakeholders in the maritime industry within the RCEP region. The 
identified key risk factors for policymakers and regulatory bodies pro
vide a data-driven basis for developing targeted safety regulations and 
inspection protocols. Shipping companies can use these findings to 
enhance their risk management strategies, prioritizing resources for the 
most impactful safety measures. Maritime insurance providers may find 
the risk factor rankings valuable for refining risk assessment models and 
pricing policies. Additionally, the BN model developed in this study 

Table 9 
Modle comparasion with the 20 samples.

Model Accuracy rate

BN 95 %
MCDM 90 %
FRAM 85 %
KDE 90 %
Lempel-Ziv 80 %
Decision tree 95 %
Convolutional Neural Network 95 %

Table 10 
Influencing factors summary of forward analysis.

Severity Primary factors Secondary factors

Very 
serious

Type of accident、Flag、 
Extreme weather

Classification society、Vessel 
length、Vessel age、SOLAS 
certification

Serious Type of accident、Flag、 
Vessel type

Classification society、Vessel’s 
main engine power、SOLAS 
certification、Vessel length、 
Vessel width

Less 
serious

Type of accident、Flag、 
Extreme weather、Accident 
location、Coastal 
administration、Vessel type

Vessel length、Vessel width、 
Vessel’s main engine power、Gross 
registered tonnage、Classification 
society

Table 11 
Reverse analysis of primary RIFs.

Primary factors Very serious Serious Less serious

Vessel type

Type of accident

Accident season ​ ​

Accident time

Accident location ​ ​

Coastal administration ​

Extreme weather ​ ​ ​
Flag
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offers a practical tool for real-time risk assessment, which can be inte
grated into vessel management systems to support decision-making 
during operations. The methodology presented here is also adaptable, 
allowing for its application in other geographical regions or specific 
maritime sectors, thus extending its usability beyond the RCEP context. 
Overall, this study bridges the gap between academic research and 
practical application in maritime safety, offering actionable insights for 
improving process safety in the shipping industry.

6.2. Outlook

There is still room for further deepening and expansion of this 
research in the future: 

(1) Build a dynamic BN model to achieve real-time data tracking and 
updating 

The data employed in this paper is historical data, which is 
preprocessed and imported into the model for analysis, where 
naïve BN is most suitable regarding the model efficiency and 
simplicity. In the follow-up study, the data can be tracked in real- 
time. With the continuous growth of economic and trade activ
ities in the RCEP region, maritime ship activities will also become 
more frequent. Therefore, continuous tracking and analysis of 
new data and real-time updating of risk assessment models will 
be a critical direction of future research. With the continuous 
influx of new data, the model can dynamically adjust internal 
parameters to optimize its decision-making process so that the 
model can continuously optimize its performance over the long 
run.

(2) Integration of large language model, directly put forward man
agement suggestions 

The large language model of continuous development can also 
be integrated into the future research of this paper. The data in 
this paper are based on accident information directly available in 
marine accident investigation results. After integrating the large 
language model, more abundant data support can be obtained 

through multiple channels such as marine accident investigation 
reports, articles, magazines, and Internet forums. The model has a 
robust self-updating ability and high data information coverage. 
In addition, the intelligence of the large language model can 
couple the professional knowledge information of shipping 
management and update it automatically. The model can directly 
give corresponding management suggestions while analyzing the 
factors of marine accidents.

(3) Increase the number of risk factors, enhance international coop
eration and standardization

In terms of data, future studies can consider incorporating more 
types of risk factors into the model, such as crew quality and route 
channel conditions, to further improve the accuracy and applicability of 
the model. The results of this paper provide technical reference for ship 
administration departments in the RCEP region, and relevant divisions 
can focus on preventing high-risk factors in ship accidents according to 
the operation results of the proposed model to ensure the safety and 
stability of RCEP maritime trade. Therefore, according to the results of 
this paper, strengthening cooperation among RCEP member states and 
promoting the formulation of uniform maritime safety standards can 
jointly improve maritime traffic safety in the region.
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Table 12 
Reverse analysis of secondary RIFs.

Secondary factors Very serious Serious Less serious

Vessel length ​ ​ ​
Vessel width ​ ​ ​
Vessel age ​ ​ ​
Vessel’s main engine power ​ ​ ​
Gross registered tonnage ​ ​ ​
Number of persons on board ​ ​

SOLAS certification ​ ​

Place of vessel construction ​ ​ ​
Vessel company ​ ​ ​
Classification society ​ ​ ​
Accident month ​ ​ ​
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Appendix I. : RIFs and Accident Severity

Table A1 
Vessel accident influencing factors and labeling

RIFs Label RIFs Label

Flag White—A 
Grey—B 
Black—C 
Unlogged—D

Accident month From January to December—A to L

SOLAS certification Possesses SOLAS certification—A 
No SOLAS certification—B

Vessel type Dry bulk carrier—A 
Container vessel—B 
Liquefaction vessel—C 
Tug—D 
Engineering vessel—E 
Ro-ro passenger vessel—F 
Others—G

Place of vessel construction Developed country—A 
Developing country—B 
Indeterminacy—C

Number of persons on board 0–10—A 
11–20—B 
21–30—C 
More than 30—D

Vessel company Vessel operating companies and vessel management companies are the 
same—A 
Vessel operating companies and vessel management companies are 
different—B

Gross registered tonnage (0, 1000]—A 
(1000, 3000]—B 
(3000, 5000]—C 
(5000, 10000]—D 
(10001, 20000]—E 
(20000, ∞)—F

Classification society Not part of the top ten classification societies—A 
Belongs to the top ten classification societies—B

Vessel’s main engine power Less than or equal to 3000 kW—A 
More than 3000 kW—B

Extreme weather Not affected by extreme weather—A 
Affected by extreme weather—B

Vessel age (0, 6) years—A 
[6, 11) years—B 
[11, 16)years—C 
[16, 21) years—D 
[21, 26) years—E 
[26,∞ ) years—F

Accident location Coastwise—A 
Sea area—B

Vessel width (0, 20] meters—A 
(20, 30] meters—B 
(30, 40] meters—C 
(40, ∞) meters—D

Coastal administration China—A 
Japan—B 
South Korea—C 
Australia—D 
New Zealand—E 
Other RCEP countries—F 
Non-RCEP countries—G

Vessel length (0, 100] meters—A 
(100, 200] meters—B 
(200, ∞) meters—C

Accident time 0:00–7:59—A 
8:00–15:59—B 
16:00–23:59—C

Type of accident Grounding—A 
Collision—B 
Fire—C 
Vessel wreck and overturning—D 
Damage to vessel and cargo—E 
Other accidents—F

Accident season First quarter—A 
Second quarter—B 
Third quarter—C 
Fourth quarter—D

Severity Very serious—A 
Serious—B 
Less serious—C 
Unspecified—D

Table A2 
Summary of accident characteristics

Case serial 
number

Accident characteristics Severity

1 Flag A, Accident time A, Accident location B, Accident season D, Accident month K, Vessel type A, Registered total tonnage C, Type of accident D, 
Coastal administration A

Very 
serious

2 Type of accident D, Accident time B, Accident location B, Flag B, Number of persons on board D, Coastal administration C Very 
serious

3 Vessel type A, Flag A, Accident location B, Accident time B, Type of accident C Serious
4 Vessel type A, Flag A, Classification society A, Extreme weather B, Coastal administration D, Accident location B, Accident time B, Type of accident 

D
Very 
serious

5 Type of accident F, Accident time B, Coastal administration B, Vessel type A, Extreme weather A, Accident location B, Accident month I, Flag A Very 
serious

6 Vessel type A, Flag D, Extreme weather A, Coastal administration D, Accident location B, Accident time A, Accident month D, Type of accident B, 
Accident month E

Serious

7 Vessel type A, Flag B, Extreme weather A, Coastal administration C, Accident location A, Accident time A, Accident month B, Type of accident A Serious

(continued on next page)
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Table A2 (continued )

Case serial 
number 

Accident characteristics Severity

8 Flag B, Extreme weather A, Coastal administration E, Accident location B, Accident time A, Accident month L, Type of accident D, Vessel type G Very 
serious

9 Vessel type A, Flag B, Extreme weather A, Coastal administration C, Accident location A, Accident time B, Accident month A, Type of accident A Serious
10 Accident month F, Flag A, Accident location A, Accident season B, Vessel type B, Type of accident F, Coastal administration A Very 

serious
11 Flag B, Extreme weather A, Coastal administration C, Accident location B, Accident time B, Accident month I, Type of accident D, Vessel type C Very 

serious
12 Flag A,Extreme weather A, Coastal administration A, Accident location B, Accident time C, Accident month L, Type of accident D, Vessel type A Very 

serious
13 Vessel type B, Extreme weather A, Accident time B, Accident month L, Type of accident C Serious
14 Flag A, Vessel type B, Extreme weather A, Accident location A, Accident time C, Accident month L, Type of accident F Very 

serious
15 Flag B, Extreme weather B, Coastal administration C, Accident location B, Accident time B, Accident month I, Type of accident B, Vessel type D Very 

serious
16 Flag A, Extreme weather A, Coastal administration A, Accident location B, Accident time C, Accident month L, Type of accident D, Vessel type C Very 

serious
17 Flag B, Extreme weather A, Coastal administration C, Accident location B, Accident time B, Accident month I, Type of accident D, Vessel type D Very 

serious
18 Flag A, Vessel type D, Accident location B, Accident month B, Type of accident B, Extreme weather A Very 

serious
19 Accident month K, Flag A, Accident location A, Accident season D, Vessel type F, Type of accident B, Number of persons on board D, Coastal 

administration F
Serious

20 Type of accident B, Accident time B, Vessel type B, Accident month G, Extreme weather A, Accident location A Less serious

Table A3 
Reasonability verification of proposed model

Case serial 
number

Type of 
accident

Posterior probability of target 
type /%

Posterior probability change of target 
type /%

Whether the target type has the greatest posterior 
probability change

1 Very serious 91 31.88 Yes
2 Very serious 96 39.13 Yes
3 Serious 31 34.78 Yes
4 Very serious 92 33.33 Yes
5 Very serious 89 28.99 Yes
6 Serious 42 82.61 Yes
7 Serious 47 104.35 Yes
8 Very serious 97 40.58 Yes
9 Serious 35 52.17 Yes
10 Very serious 84 21.74 Yes
11 Very serious 94 36.23 Yes
12 Very serious 94 36.23 Yes
13 Serious 39 69.57 Yes
14 Very serious 86 24.64 Yes
15 Very serious 83 20.29 Yes
16 Very serious 90 30.43 Yes
17 Very serious 98 42.03 Yes
18 Very serious 95 37.68 Yes
19 Serious 20 − 15.00 No
20 Less serious 29 383.33 Yes
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Schröder-Hinrichs, J.U., Hollnagel, E., Baldauf, M., Hofmann, S., Kataria, A., 2013. 
Maritime human factors and IMO policy. Marit. Policy Manag. 40 (3), 243–260.

Sotiralis, P., Ventikos, N.P., Hamann, R., Golyshev, P., Teixeira, A.P., 2016. 
Incorporation of human factors into ship collision risk models focusing on human 
centred design aspects. Reliab. Eng. Syst. Saf. 156, 210–227.

Trucco, P., Cagno, E., Ruggeri, F., Grande, O., 2008. A bayesian belief network modelling 
of organisational factors in risk analysis: a case study in maritime transportation. 
Reliab. Eng. Syst. Saf. 93 (6), 845-856. 

Wan, C., Yan, X., Zhang, D., Yang, Z., 2019. Analysis of risk factors influencing the safety 
of maritime container supply chains. Int. J. Shipp. Transp. Logist. 11 (6), 476–507.

Wu, B., Wang, Y., Zhang, J., Savan, E.E., Yan, X., 2015. Effectiveness of maritime safety 
control in different navigation zones using a spatial sequential DEA model: Yangtze 
River case. Accid. Anal. Prev. 81, 232–242.
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