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ABSTRACT: Zeolites are crucial in industrial catalysis, renowned for their unique =~ Micro Realistic Simulations

microporous structures and versatile catalytic properties. However, accurately
simulating zeolite-catalyzed processes poses significant challenges due to their \IMD
B =nhanced
DFT ( Sampling —— <MC
VILP MD

spatiotemporal complexity, which requires capturing both atomic-level interactions
and macroscopic phenomena. This review examines recent advancements in realistic

simulations of zeolite catalytic processes, focusing on techniques such as machine

learning potentials (MLPs), enhanced sampling methods, and kinetic Monte Carlo )

(KMC) simulations. These computational strategies have substantially improved the geﬂe 9

accuracy and efficiency of catalytic reaction simulations, addressing the traditional

limitations associated with complex systems like zeolites. MLPs offer precise potential energy surfaces at lower computational costs,
enabling extended molecular dynamics simulations. Enhanced sampling techniques, including umbrella sampling and metadynamics,
effectively explore rare events and complex energy landscapes, although their success depends on the careful selection of collective
variables (CVs). KMC simulations further enhance our understanding by modeling long-term molecular events, such as diffusion
and reaction kinetics, at larger spatial and temporal scales. Despite notable progress, challenges remain, particularly regarding CV
selection and KMC’s reliance on accurate first-principles data. The integration of machine learning approaches, such as automated
CV selection and transfer learning for MLP refinement, presents promising solutions to these issues. This review highlights these
advancements and their potential to revolutionize the study of zeolite catalytic processes, bridging the gap between theoretical
modeling and experimental observations and contributing to the design of more effective and sustainable catalysts.

B INTRODUCTION

Zeolites are integral to many chemical researches due to their
complex structures and diverse applications."”” These crystal-
line aluminosilicates possess unique microporous frameworks,
formed from corner-sharing [TO,] tetrahedral units, which

scopic experimental observations, providing a more compre-
hensive and accurate understanding of zeolite catalysis in real-
world applications.

As shown in Figure 1, this review aims to explore the recent
advancements in computational methods that address these

create channels, cages, and acidic sites. This distinctive
architecture allows zeolites to serve as highly effective
molecular sieves and catalysts, making them essential in
industries like petrochemicals and environmental protection.
However, understanding the intricate chemical reactions and
dynamic processes within zeolites presents considerable
challenges, primarily due to their spatial and temporal
complexity. Under reaction conditions, numerous experiments
have shown that zeolites exhibit significant flexibility—
meaning their structures cannot be assumed as fixed or
rigid—along with heterogeneity, where active sites and defects
are unevenly distributed, and dynamic behavior, as these
properties evolve over time. This demands first-principles-
based simulations capable of spanning extended time scales
and large spatial dimensions to capture the true nature of
chemical reactions within zeolites.” Such an approach bridges
the gap between microscopic theoretical models and macro-
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challenges. Specifically, we examine state-of-the-art techniques
that integrate both quantum mechanical accuracy and practical
scalability, bridging the gap between atomic-level interactions
and macroscopic catalytic behaviors. Traditional quantum
mechanical approaches, such as Density Functional Theory
(DFT), have been pivotal in elucidating reaction mechanisms
within zeolites, yet they are constrained by high computational
demands, which limit their applicability to smaller systems and
shorter time scales. In light of these limitations, this review
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Figure 1. Schematic representation of the key topics in this review.
This figure highlights the adsorption-reaction-diffusion processes in
zeolite catalysis. State-of-the-art computational methods are illus-
trated, including Density Functional Theory (DFT) for atomic-level
insights, Machine Learning Potentials (MLPs) that enable large-scale
molecular dynamics (MD) simulations, and enhanced sampling
techniques for exploring complex free energy landscapes. Additionally,
kinetic Monte Carlo (KMC) simulations are shown as powerful tools
to model long-time scale phenomena.

highlights alternative methods, including machine learning-
based potentials, enhanced sampling molecular dynamics, and
kinetic Monte Carlo (KMC) simulations, that enable multi-
scale simulations with efliciency and accuracy.

Recent advancements in computational methods have
expanded the potential for realistic simulations® ° in zeolite
catalysis. Machine learning techniques, especially neural
network potentials, have proven valuable for accurately
constructing potential energy surfaces (PES) while significantly
reducing computational expenses.” These ML-driven PES
models enable molecular dynamics (MD) simulations to be
conducted over longer time scales and larger system sizes
compared to conventional DFT approaches.

In addition to ML-driven PES, enhanced sampling methods
like umbrella sampling (US), metadynamics (MTD) have been
developed to probe rare events and complex free energy
landscapes in catalytic processes.” These techniques effectively
navigate energy barriers, allowing for the exploration of various
reaction pathways. When combined with ML-driven PES
models, enhanced sampling can better capture the intricate
dynamics of zeolite catalysis under realistic conditions.

Kinetic Monte Carlo (KMC) simulations offer another
significant advancement by modeling events as discrete
transitions between states.”'® This approach allows for the
simulation of processes over much longer time scales without
the need to resolve atomic vibrations in detail, making KMC
particularly effective for studying mass transport, diffusion, and
reaction kinetics in porous materials like zeolites.

Despite these progressions, challenges persist, such as the
reliance on human intuition for selecting collective variables
(CVs) in enhanced sampling methods and the dependence of
KMC on precise first-principles data. To address these
challenges, researchers are increasingly leveraging advanced
machine learning techniques, including automated CV
selection and transfer learning for MLP refinement.”"'

This review explores these recent advancements, high-
lighting their potential to transform the study of zeolite
catalytic processes. By providing an in-depth overview of
machine learning potentials, enhanced sampling methods, and
kinetic Monte Carlo simulations, this paper outlines pathways
toward more accurate, efficient, and practical realistic
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simulations. While the focus of this review is on catalytic
reaction and diffusion processes, it is worth noting that these
simulation techniques are also theoretically applicable to other
areas of zeolite science, such as nucleation, crystallization, and
crystal growth.'”'® The integration of these innovative
computational approaches aims to bridge the gap between
theoretical modeling and experimental observations, ultimately
aiding in the design of more effective and sustainable catalysts.

B SPATIOTEMPORAL COMPLEXITY IN REALISTIC
ZEOLITE CATALYSIS

Zeolite catalytic processes are characterized by significant
spatiotemporal complexity. A primary challenge in zeolite
catalysis is the inherent heterogeneity of the system. Buurmans
and Weckhuysen have noted that catalyst particles exhibit both
spatial and temporal heterogeneity,'* a trait that is particularly
pronounced in zeolite systems. Variations in pore size, shape,
and active site distribution create diverse reaction environ-
ments within individual catalyst particles, influencing reaction
rates and molecular behavior, and resulting in nonuniform
catalytic performance.

Recent studies that combine AIMD (Ab Initio Molecular
Dynamics) simulations with advanced spectroscopic techni-
ques have significantly advanced our understanding of the
intricate catalytic behavior of zeolites.”””'" These efforts
underscore the crucial role of zeolite confinement effects in
stabilizing short-lived, highly reactive intermediates such as
nonclassical carbocations and acylium ions.">'” AIMD
simulations have provided valuable insights into the formation,
migration, and transformation of these intermediates under
realistic reaction conditions, thereby offering a more detailed
perspective on zeolite catalysis.'¥'” For example, the
stabilization of acylium ions and other reactive species within
the confined zeolite environment plays a pivotal role in
determining reaction pathways, reactivity, and selectivity.'®'’
These findings highlight the indispensable role of realistic
simulations in elucidating the dynamics of active species and
their interactions within the zeolite framework, as well as the
influence of structural and environmental factors on catalytic
performance.''®

Beyond molecular interactions, macroscopic variations
within the catalyst also contribute to overall system
heterogeneity. For example, during hydrocarbon conversion
processes, Bronsted acid sites (BAS) and carbonaceous
intermediates are unevenly distributed within zeolite crystals.
This heterogeneity is further complicated by variations in
temperature, guest molecule concentration, and heat transfer,
all of which affect reaction dynamics. Advanced imaging
techniques, such as infrared microscopy (IRM), confocal
fluorescence microscopy (CFM), and interference microscopy,
have been instrumental in visualizing these variations within
individual particles.”*~>*

In addition, recent studies by Weckhuysen’s group have
uncovered temperature differences between the external
surfaces of catalyst particles and the reactor bed. Local surface
temperatures can increase by as much as +16 K during
methane oxychlorination®® and +40 K during syngas
conversion.”” Additionally, research by Ye et al. showed that
factors like particle size and zeolite density can create
significant temperature gradients within a single catalyst
particle (Figure 2a).”” These temperature heterogeneities
critically influence the reactivity and diffusion of guest
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Figure 2. Representative cases of spatiotemporal complexity in zeolite
catalysis. (a) Temperature distribution within a single catalyst particle,
as measured by nanoscale temperature probes, illustrating the thermal
gradients present during reaction processes.”’ Reproduced from ref
20. Copyright 2024 ACS. (b) Migration of active sites throughout the
catalytic process, highlighting dynamic changes in reactivity and
efficiency.”’ Reproduced with permission from ref 21. Copyright 2017
AAAS. (c) Comparison of the zeolite structure before and after
molecular filling, demonstrating the extensibility and adaptability of
the molecular sieve framework in response to adsorbate interaction.””
Reproduced with permission from ref 22. Copyright 2022 AAAS.

The dynamic nature of catalytic processes adds another layer
of complexity.”*** Reactants, intermediates, and products
within zeolite pores are in constant motion, influenced by
environmental factors such as temperature, pressure, and the
presence of other adsorbed molecules. The mobility of these
species directly impacts catalytic efficiency and reaction rates.
For instance, Paolucci and colleagues21 found that under
certain reaction conditions, copper ions can become mobile
within the zeolite framework, forming transient ion pairs that
move through the zeolite’s windows (Figure 2b). This mobility
alters reaction rates, particularly at low temperatures, where the
behavior of these transient species diverges from that of
reactions occurring at fixed sites. Similarly, Wei et al
demonstrated that zeolite pores can expand by up to 15%
when interacting with confined benzene molecules, allowin
larger molecules to diffuse through the material (Figure 2c).”
This challenges the assumption that pore sizes remain constant
during reactions.

These dynamic behaviors significantly influence molecular
diffusion and reaction kinetics within zeolites. Therefore,
realistic simulation models of zeolite catalysis must account for
structural fluctuations and the mobility of active sites to
accurately predict catalytic performance. Zeolite catalysis, like
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many real-world chemical processes, involves reactions that
span multiple scales. Chemical bond vibrations occur on the
femtosecond scale, which is markedly different from the longer
time scales of molecular diffusion. Capturing the entirety of the
catalytic process requires simulations that encompass these
diverse time and spatial scales, necessitating a combination of
various computational methods.

In summary, realistic simulations of zeolite catalytic
processes must address the inherent spatiotemporal complexity
of these systems, including their heterogeneity and dynamic
behavior, and must be conducted from a macroscopic, dynamic
perspective.'’ Understanding these processes requires a
multiscale approach that integrates various simulation
techniques. At the atomic level, bond vibrations happen on
femtosecond (fs) and Angstrom (A) scales, while molecular
diffusion occurs over microsecond (us) and micrometer (um)
scales. To effectively capture the full catalytic process in
zeolites, a robust workflow that combines Density Functional
Theory (DFT), machine learning-based potential energy
surfaces, molecular dynamics (MD), and kinetic Monte
Carlo (KMC) simulations is essential. Given the complexities
of zeolite catalysis—ranging from atomic-level bond vibrations
to diffusion processes spanning microseconds and micro-
meters—it is evident that no single simulation method can
fully capture the entire process. A multiscale approach is
necessary to create a unified molecular description of the
catalytic process that encompasses reaction, diffusion, and
adsorption/desorption, which will enhance our understanding
of the interactions that govern catalytic performance and
provide insights crucial for the design and optimization of
industrial catalytic systems.

B ON-THE-FLY SIMULATIONS WITH
FIRST-PRINCIPLES ACCURACY

Density Functional Theory (DFT). Density Functional
Theory (DFT) serves as a foundational tool in computational
catalysis, balancing accuracy with computational efficiency. In
realistic simulations, DFT provides vital insights into the
electronic structures of active sites in zeolites, including the
adsorption and activation of reactants. These calculations are
essential for understanding reaction mechanisms, particularly
in processes like methanol-to-olefins (MTO) conversion.

Recent advancements in DFT have improved its accuracy,
especially regarding long-range dispersion interactions. The
DFT-D method, which incorporates dispersion corrections
into standard Kohn—Sham DFT, has notably progressed. The
DFT-D3 approach developed by Grimme and colleagues
achieves accuracy within 10% of the coupled-cluster single,
double, and perturbative triple (CCSD(T)) method for van
der Waals complexes and noncovalent interactions.’® This
enhancement is critical for studying the conformations and
stability of adsorbed molecules within zeolite frameworks.
However, it is worth noting that the Grimme group has
recently introduced the successor DFT-D4, which further
improves the model by making the atomic reference
polarizabilities charge-dependent. While its application to
zeolite catalysis remains an area for further exploration, the
D4 version holds significant potential for more accurate
simulations in zeolite catalysis.”"**

Despite significant advancements, challenges remain in
accurately modeling complex catalytic processes. For instance,
conventional DFT methods often underestimate energy
barriers in acid-catalyzed reactions. Goncalves et al. highlighted
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Figure 3. Enhancement of DFT accuracy through Delta-Learning. (a) Schematic of the Delta-Learning approach, showing the interaction among
three models: a lower-level method (DFT), a higher-level method (CCSD(T)), and a Delta model, applied to the water system.>® Reproduced
from ref 39. Copyright 2020 The Authors. (b) Use of Delta-Learning with higher-level references to analyze a proton jump behavior in acidic CHA

zeolites.*® Reproduced from ref 40. Copyright 2024 The Authors.

that the commonly used PBE-D3 functional can exhibit mean
absolute errors exceeding 40 kJ/mol for reaction barrier
heights.”> The benchmark hierarchical cluster approach®~**
developed by Sauer and Plessow, which combines PBE-D3 for
cluster optimization with DLPNO—CCSD(T) for single-point
calculations, offers a highly accurate description of reaction
barriers and energies in zeolite-catalyzed reactions. This
approach allows for a detailed comparison of the performance
of various density functionals, including M06 and PBE-D3. In
contrast, hybrid functionals such as MO06 demonstrate
improved reliability, reducing errors to as low as 7 kJ/mol
compared to the DLPNO—CCSD(T) benchmark, thereby
providing a more precise representation of zeolite-catalyzed
reactions.

While higher-level ab initio methods, such as coupled-cluster
theory, provide superior accuracy, their high computational
costs limit their application to small systems. To overcome this
constraint, researchers like Bogojeski et al. have explored
machine learning techniques, including A-learning (Figure
3a).”” This method applies corrections to standard DFT
calculations using data from high-level methods like CCSD-
(T), allowing for quantum-chemical accuracy in larger systems.
Erlebach et al. successfully applied this approach in zeolite
catalysis, achieving hybrid-level accuracy using the SCAN
+D3(BJ) model (Figure 3b).*

In summary, advancements in DFT—through improved
functionals and dispersion corrections—have significantly
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enhanced the modeling of zeolite catalysis. These develop-
ments deepen our understanding of reaction energetics and
mechanisms, ultimately facilitating more effective prediction
and optimization of catalytic performance.

Ab Initio Molecular Dynamics (AIMD). Ab initio
molecular dynamics (AIMD) simulations extend the capa-
bilities of static DFT by revealing the dynamic behavior of
catalytic systems under realistic conditions.*" Unlike static
DFT, which provides a fixed view of the reaction landscape,
AIMD incorporates thermal fluctuations and dynamic effects.
This enables the investigation of how temperature, pressure,
and molecular diffusion influence catalytic activity. AIMD is
particularly effective for studying the movement of reactants
and products within zeolite pores and the stability of reaction
intermediates.

In AIMD, nuclei are treated as classical particles moving on a
potential energy surface (PES) calculated from the electronic
structure at each time step. The system evolves according to
Newtonian equations of motion, with the PES guiding the
nuclei’s movement. This method offers a more dynamic and
realistic perspective on catalytic processes, uncovering
phenomena that static models may overlook. For instance,
Hack et al. combined ultrafast two-dimensional infrared (2D
IR) spectroscopy with AIMD to study water confined within
the pores of highly hydrated zeolite HZSM-5. Their research
provided quantitative insights into the molecular environments
and hydrogen-bonding structures of protonated water clusters

https://doi.org/10.1021/acs.jpcc.4c07342
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under extreme confinement conditions.** Similarly, Hutton et
al. employed AIMD simulations to investigate the adsorption
of methane, ethane, and propane onto purely siliceous and
protonated SSZ-13 zeolites.*’ Their results were compared to
static calculation methods, which typically assume that
molecules completely lose their translational degrees of
freedom upon adsorption and leads to an overestimation of
the adsorption free energy relative to the results of AIMD.

However, AIMD simulations are typically limited to short
time scales, often in the range of hundreds of picoseconds,
particularly in zeolite systems. Since catalytic processes often
involve rare events, such as activated transitions, these time
limitations restrict AIMD’s ability to capture the full scope of
reaction dynamics. To mitigate this, enhanced sampling
techniques are being developed to broaden the applicability
of AIMD, enabling the study of rare events that occur over
longer time scales.

The integration of AIMD with enhanced sampling methods
holds promise for revealing critical dynamic features of
catalytic processes, contributing to a more comprehensive
understanding of zeolite catalysis.*® For instance, research from
Veronique Van Speybroeck’s group employed enhanced
sampling molecular dynamics to examine how molecular
factors affect the diffusion of light olefins through the 8-ring
windows of H-SAPO-34 (Figure 4a)."* Their findings indicate
that Bronsted acid sites significantly enhance diffusion, while
aromatic hydrocarbons may hinder it. Additionally, studies in
the same group that use AIMD simulations alongside
experimental techniques, such as Pulsed Field Gradient
Nuclear Magnetic Resonance (PFG-NMR) and pulse-response
temporal analysis (TAP), have provided insights into the
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diffusion of light olefins and paraffins through zeolite SAPO-34
(Figure 4b).*> AIMD simulations examine interactions at the
nanometer scale, while PFG-NMR experiments, conducted on
large zeolite crystals (20—30 mm), measure intracrystalline
diffusivities over milliseconds. TAP experiments on micron-
sized H-SAPO-34 crystals probe surface barrier resistances and
diffusion characteristics. These methods, though separate,
complement each other, with AIMD helping to interpret the
experimental data and revealing how Brensted acid sites affect
the diffusion of ethene and propene, but not alkanes. In
another notable study, Xu and Liu et al. used a combination of
metadynamics and AIMD simulations to show that water
molecules can participate in catalytic reactions through a
proton transfer mechanism. They revealed that a water-
mediated proton transfer bridge enhances the continuous
oxidation of methane to methanol over Cu-BEA zeolite.*’
These findings highlight the potential of enhanced AIMD
approaches to uncover previously unknown pathways in
catalytic processes.

In conclusion, recent advancements in both DFT and AIMD
have greatly enhanced our capacity to simulate catalytic
processes with first-principles accuracy. Although challenges
remain—particularly concerning time scale limitations in
AIMD and energy barrier accuracy in DFT—ongoing
developments in hybrid functionals, machine learning
corrections, and enhanced sampling techniques are paving
the way for more accurate and efficient realistic simulations of
zeolite catalysis.
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B MOVING TOWARD REALISTIC SIMULATION WITH
MACHINE LEARNING POTENTIAL ENERGY
SURFACES

Machine Learning Potential Energy Surfaces. In
molecular dynamics and quantum chemistry, the Born—
Oppenheimer (BO) approximation simplifies the study of
molecular systems by separating the motions of nuclei and
electrons. This separation allows researchers to focus on
electronic structures while treating the nuclei as relatively fixed.
However, exploring intricate potential energy surfaces (PES)
for complex molecules often requires numerous quantum
mechanical calculations, which can be prohibitively expensive.

Recent advancements in machine learning (ML) offer
efficient alternatives for calculating PES.**7>*7°"** Leveraging
extensive existing quantum mechanical data, ML models such
as neural network (NN) potentials, Gaussian approximation
potentials (GAP) can accurately approximate PES while
significantly reducing computational costs. These ML-driven
PES models can effectively capture molecular interactions
across diverse chemical environments, making them suitable
for studying complex systems in catalysis and materials science.
Among these, NN PES has garnered significant attention in the
field of zeolite catalysis due to its exceptional prediction speed,
making it particularly advantageous for large-scale molecular
dynamics simulations. Other methods, such as GAP, are more
suitable for smaller systems or those requiring higher
interpretability, but they tend to be more computationally
expensive when predicting energy and forces.>
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A key challenge in developing ML potentials lies in
accurately representing atomic configurations through struc-
tural descriptors. These descriptors transform raw atomic
coordinates into features interpretable by ML models. After
selecting appropriate descriptors, they are linked to the
system’s total energy using either a many-body expansion or
an atomic energy summation approach.

The many-body expansion method decomposes the total
energy into interaction terms, accounting for one-, two-, and
three-body interactions. While precise, this method becomes
impractical for large molecular systems due to the exponential
increase in interaction terms with system size. Conversely, the
atomic energy summation method, as utilized in the high-
dimensional neural network (HDNN) model developed by
Behler and Parrinello,”* scales more efficiently by associating
each atom’s energy with its local chemical environment,
making it better suited for complex systems.

Choosing suitable structural descriptors is critical for the
accuracy of ML potentials. Various descriptor types are
employed, including Gaussian-type symmetry functions
(GTE), power-type structure descriptors (PTSD), and smooth
overlap of atomic positions (SOAP).>® These descriptors are
designed to be invariant to atomic permutations, translations,
and rotations, ensuring that ML models accurately reflect the
system’s physics. The quality of these descriptors directly
affects the performance of ML potentials, particularly when
extrapolating to new molecular configurations. Self-learning
methods, where ML models refine their training sets with new
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complex reactions.'' Reproduced from ref 11. Copyright 2023 ACS.

data, are being explored to improve the robustness and
accuracy of ML potentials.”**”

ML potentials have shown considerable success in modeling
gas or surface small-molecule reactions. For instance, neural
network-fitted PES models have been applied to reactions such
as H, on Ag(111),’* O + CH,> and F~ + (CH,),CL*
producing results that closely align with experimental
observations and quantum mechanical simulations. These
models effectively capture essential PES features, providing
detailed insights into reaction pathways and energy barriers
while offering substantial speed improvements over traditional
quantum mechanical methods.

As ML-driven potentials gain traction, their application to
more complex environments, such as zeolite-catalyzed
reactions, has emerged as a significant research area.’’
Traditional quantum mechanical methods struggle to handle
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the large system sizes and complex interactions inherent in
zeolite-catalyzed reactions. Recently, neural network potentials
have successfully simulated proton hopping in H—CHA
zeolites, reproducing DFT-calculated PES and enabling
molecular dynamics simulations over longer time scales than
typically allowed by DFT. These simulations provide valuable
insights into reaction kinetics, diffusion processes, and nuclear
quantum effects, particularly at elevated temperatures (around
473 K).%” In another significant study, Kulkarni et al. leveraged
an extensive DFT data set, comprising 219 unique zeolite
topologies and over 350,000 DFT calculations from the
International Zeolite Association (IZA) database, to train a
machine learning potential (MLP) (Figure Sa). This MLP
demonstrated strong agreement with DFT predictions for
various zeolite properties, including structural characteristics,
energy-volume relationships, and phonon density of states.®>
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Utilizing ML potentials in molecular dynamics simulations
significantly enhances computational efficiency. For example,
recent studies demonstrated that simulations of CHA zeolite
using the same NN potentials showed a significant speedup,
with the time per MD-simulation step reduced from ~8.3 s on
56 Xeon ES cores to ~0.01 s on a single NVIDIA V100
GPU.”> This improvement allows researchers to explore a
broader range of conditions, including longer time scales and
larger system sizes previously constrained by computational
limitations. As a result, ML potentials are increasingly
employed to investigate complex chemical processes relevant
to industrial catalysis and material design.

Despite their successes, challenges remain in applying ML
potentials to realistic studies of catalytic systems. Realistic
simulations aim to capture catalytic processes in real-time,
requiring efficient sampling of diverse chemical environments,
including various reactant and product states. Reactive neural
network potentials (NNPs), developed specifically for
reactions in acidic zeolites, have shown promise in overcoming
these challenges. For instance, NNPs accounting for varying
water concentrations and Si/Al ratios in zeolites have
maintained DFT-level accuracy while sampling a much broader
range of configurations (Figure Sb). This has led to the
identification of previously unknown reaction mechanisms,
such as surface defect formation, which traditional computa-
tional methods could not access.

Looking ahead, integrating machine learning techniques
with traditional quantum mechanical methods is poised to
transform the study of PES in complex systems. One promising
avenue is transfer learning,s’40 wherein models trained on
lower-level quantum mechanical data (e.g, DFT) are fine-
tuned with a smaller set of high-level data (e.g., post-Hartree—
Fock or coupled-cluster). This strategy allows researchers to
benefit from the efficiency of ML potentials while preserving
the accuracy of high-level quantum mechanical calculations.
Additionally, employing graph neural networks (GNNs) to
learn PES representations shows potential for enhancing the
scalability and accuracy of ML models.”**® GNNs can
effectively capture both local and global atomic interactions,
making them particularly suitable for modeling complex
chemical environments in catalysis and materials science.

Adsorption, diffusion, and reaction are three fundamental
processes of zeolite catatic reactions, and an integrated free
energy surface of a complete catalytic cycle (including all these
three processes) at the realistic reaction conditions should be
one of the ultimate goal for zeolite catalytic reactions,”*® and
AIMD simulations with enhanced sampling methods can
realize the establishment of this kind of free energy surface in a
small spatiotemporal scale, but the combination between MLP
and enhanced sampling methods will greatly increase this scale
(longer time scale, larger zeolite lattice, more reaction
conditions, etc.), therefore greatly bridging the gap between
theoretical modeling and experimental observations.

Enhanced Sampling Techniques. A significant challenge
in molecular simulations is the identification of suitable
collective variables (CVs), which are essential for enhanced
sampling techniques.””® Methods such as umbrella sampling
(US), metadynamics (MTD) rely on well-chosen CVs to bias
the system’s dynamics and efficiently sample the free energy
landscape. An effective CV should be dependent solely on the
system’s configuration, vary consistently along the reaction
coordinate, and reduce the dimensionality of the free energy
surface (FES) to a manageable number of degrees of freedom.
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However, finding appropriate CVs can be difficult, particularly
in complex systems with multiple competing reaction path-
ways.

Umbrella sampling (US), one of the earliest enhanced
sampling methods, is widely used to calculate free energy
profiles along a reaction coordinate. In US, the system is biased
to explore specific regions of the reaction coordinate, and the
FES is reconstructed by combining results from multiple
biased simulations. The accuracy of the reconstructed FES
depends heavily on the chosen reaction coordinate, high-
lighting the importance of selecting an appropriate CV for the
method’s success.

Metadynamics (MTD) is another popular enhanced
sampling technique that addresses some limitations of US by
constructing a dynamic bias potential during the simulation. In
MTD, Gaussian “hills” are periodically added to the bias
potential, encouraging the system to escape energy minima and
explore new regions of the FES. While MTD offers more
flexibility than US, the choice of CV remains crucial, especially
in complex systems like zeolite catalysis, where multiple
reaction pathways may coexist, necessitating the use of
multiple CVs to adequately describe reaction dynamics.

An illustrative example of the importance of CV selection is
the methylation of ethene in H-ZSM-5 zeolites,** a key step in
the methanol-to-olefins (MTO) process (Figure 6a). Different
CVs can describe this reaction, each providing unique insights
into the reaction dynamics and free energy barriers.
Researchers have employed enhanced sampling methods to
examine how various CVs influence the calculated FES,
comparing these results with static DFT calculations and
experimental data. Such studies underscore the necessity of
careful CV selection, as even minor differences can lead to
significant variations in predicted reaction kinetics.

To address the challenge of CV selection, researchers are
increasingly turning to machine learning (ML) techni-
ques.'"***” ML methods, including dimensionality reduction
techniques like principal component analysis (PCA) and
advanced approaches such as variational autoencoders (VAEs),
can automatically identify optimal CVs by analyzing atomic
configurations (Figure 6b). These approaches are particularly
beneficial in complex systems where manually defining CVs is
impractical. ML-based methods can capture both structural
and energetic features of the system, systematically selecting
CVs that accurately represent underlying reaction mechanisms.
Additionally, neural networks can be trained to learn the most
relevant CVs from input data, enhancing the applicability of
enhanced sampling methods in complex scenarios.

While these machine learning-driven approaches show
promise, many enhanced sampling simulations in zeolite
catalysis still rely on manually defined CVs. As machine
learning techniques advance, they are expected to play a more
significant role in the automated selection of reaction
coordinates, reducing reliance on human intuition and
broadening the applicability of enhanced sampling methods.

Advancements in enhanced sampling techniques have
greatly improved our ability to explore complex free energy
landscapes in zeolite catalysis. By effectively identifying and
utilizing appropriate CVs, these methods provide deeper
insights into reaction mechanisms and energetics. However,
to fully capture the long-time scale dynamics and rare events
critical in catalytic processes, it is essential to integrate
enhanced sampling techniques with other simulation method-
ologies. The following section explores kinetic Monte Carlo
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1

(KMC) simulations, which complement enhanced sampling
methods by offering insights into the temporal evolution of
catalytic systems over extended periods. Together, these
approaches create a comprehensive framework for modeling
the intricate dynamics of zeolite-catalyzed reactions.

Kinetic Monte Carlo (KMC) Simulations. Kinetic Monte
Carlo (KMC) simulations are vital for studying stochastic
processes in systems where molecular events—such as
adsorption, desorption, diffusion, and chemical reactions—
occur over extended time scales.””’°~’® Unlike molecular
dynamics (MD) simulations that track atomic trajectories
through interatomic potentials, KMC models events as discrete
transitions between states.”> Each state in the system
represents a specific configuration, and transitions between
states occur with probabilities determined by reaction rates or
diffusion coeflicients. These transition rates are derived from
rate constants, which can be obtained either from experimental
data, first-principles calculations, or enhanced sampling
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methods. Enhanced sampling techniques provide free energy
profiles and activation barriers for key molecular events,
especially those involving slow processes such as cage-to-cage
diffusion. Conversely, MD simulations using MLP offer a
reliable approach to capture fast processes, such as chemical
reactions. By combining these methods, KMC simulations can
accurately capture the intricate dynamics of zeolite catalytic
processes under realistic conditions. KMC allows for the
simulation of processes over significantly longer time frames
without the need for detailed atomic vibration resolution
which represents a significant computational bottleneck in MD
simulations, making the method particularly useful for
exploring phenomena like mass transport in zeolite materi-
als.”778

One notable application of KMC simulations is in the study
of molecular diffusion within zeolites. Karger group utilized
KMC to generate transient molecular uptake profiles for
adsorbates in zeolites, comparing the results with those from
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the two-region diffusion model (Karger model) (Figure 7b).”?

The KMC-generated profiles aligned well with the Karger
model, demonstrating KMC’s effectiveness in capturing
molecular diffusion in porous materials. These findings
highlight KMC’s potential to optimize mass transfer in
zeolite-based catalytic processes and offer valuable insights
into the efliciency of industrial catalysts. Similarly, Paschek et
al. reported KMC simulations of self-diffusion of a methane/
perfluoromethane mixture in silicalite.”> Their relatively simple
KMC model successfully reproduced key features of the
mixture’s diffusion behavior and supported the validity of a
logarithmic interpolation rule for mixture self-diffusion
coefficients, findings that were recently observed in MD
simulations. In a related study, Babu Joseph et al. used KMC to
investigate the diffusion behaviors of binary mixtures of alkanes
and aromatics through ZSM-5 zeolite (Figure 7¢).% The KMC
simulations showed reasonable agreement with experimental
data. This further highlights KMC’s ability to model complex
diffusion phenomena and its relevance to industrial applica-
tions involving zeolite-based catalysts.

In addition to diffusion studies, KMC simulations have been
employed to investigate the effects of adsorption, desorption,
and chemical reactions on adsorbate distribution in zeolites.
For instance, Huang et.al modeled the distribution of
adsorbates in ZSM-$ zeolites using KMC,*' revealing complex
spatial patterns such as nonlinear concentration gradients and
adsorbate shell formation (Figure 7d). These insights are
crucial for understanding catalytic efficiency, as they illustrate
how adsorbates interact with the zeolite framework and how
these interactions affect overall reaction rates.

A key advantage of KMC simulations is their ability to
bridge the gap between atomic-level insights and larger-scale
phenomena. While MD simulations excel at detailing atomic-
scale processes, they are less efficient for simulating long-term
events like diffusion and reaction kinetics in porous materials.
In contrast, KMC models these processes as random jumps
between adsorption sites, providing a more computationally
efficient method for studying long-term dynamics in systems
such as zeolites.

KMC simulations are also highly adaptable and can be
integrated with other methodologies, including Transition
State Theory (TST) and temperature-accelerated molecular
dynamics, to enhance accuracy while maintaining computa-
tional efficiency. This versatility makes KMC a valuable tool
for investigating dynamic systems, including amorphous
materials where atomic environments evolve continuously
under reaction conditions. In zeolite catalysis, where
adsorption sites and reaction pathways frequently change,
KMC offers a robust framework for modeling complex catalytic
processes over extended time scales.”” ™

Despite their advantages, KMC simulations face challenges,
particularly in integrating first-principles data. The accuracy of
KMC relies heavily on the quality of the input data, often
sourced from methods like Density Functional Theory (DFT).
Ensuring that DFT calculations accurately capture the relevant
potential energy surfaces (PES) for adsorption and reaction
events is crucial for KMC’s success. However, as DFT data
becomes more accessible and machine learning-based
potentials improve, these challenges are being addressed,
positioning KMC simulations as an increasingly important tool
in catalytic research.

In conclusion, KMC simulations provide a versatile and
powerful method for studying zeolite catalytic systems. By
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bridging the gap between atomistic and macroscopic
phenomena, KMC yields valuable insights into the processes
influencing catalytic efficiency, from molecular diffusion to
chemical reactions. As computational techniques advance,
KMC is expected to play an even more integral role in catalytic
research, especially when combined with methods like
enhanced sampling and machine learning-driven potentials.

Conclusions and Outlook In this review, we explored recent
advancements in realistic simulations of zeolite catalytic
processes, with a focus on machine learning potentials
(MLPs), enhanced sampling methods, and kinetic Monte
Carlo (KMC) simulations. These approaches have significantly
improved the accuracy and efliciency of catalytic reaction
simulations by overcoming traditional computational limita-
tions, particularly in complex systems like zeolites. MLPs offer
precise descriptions of potential energy surfaces while reducing
computational costs, enabling molecular dynamics simulations
to extend over longer time scales. Enhanced sampling
techniques address the challenge of exploring rare events in
catalytic processes, although their success is still heavily reliant
on the appropriate selection of collective variables (CVs).
KMC simulations complement these methods by modeling
long-term molecular events, such as diffusion and reaction
kinetics, across micron and microsecond time scales.

Despite these advancements, several challenges remain. The
selection of CVs for enhanced sampling often depends on
human intuition, and KMC simulations require accurate first-
principles data. However, the integration of machine learning
(ML) techniques, including automated CV selection and
transfer learning for refining MLPs, shows great potential for
addressing these challenges. Additionally, innovations in graph
neural networks (GNNs) and multiscale simulation frame-
works are expected to significantly enhance realistic
simulations.

Looking forward, the combination of these advanced
techniques could yield transformative insights into catalytic
processes, paving the way for more efficient and sustainable
industrial applications. Ongoing improvements in ML-driven
potentials, enhanced sampling methods, and hybrid simulation
approaches are likely to expand the horizons of catalyst design
and optimization, fueling innovation in chemical engineering
and materials science. In summary, the integration of these
advanced simulation techniques is set to revolutionize the field
of zeolite catalysis. By bridging the gap between atomistic
interactions and macroscopic behavior, these methods offer
unprecedented opportunities for understanding and optimizing
catalytic processes. As computational capabilities and algo-
rithms continue to progress, we anticipate further significant
advancements in the design of highly efficient and sustainable
catalysts, ultimately contributing to improvements in chemical
manufacturing and environmental sustainability.
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