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Light olefins (ethylene and propylene) have become prominent in chemical industries. Forecasting of the yields 
of light olefins plays a crucial role in monitoring and optimizing the Methanol-to-olefins (MTO) process. In this 
work, we introduce an approach for forecasting the yields of ethylene and propylene in the MTO process with 
the Relevance Vector Machine (RVM) model, which is uniquely enhanced with hybrid kernels and a rolling 
window methodology. Through an in-depth analysis of 32 independent variables and their pairwise differences, 
our research pinpoints temperature and pressure as the most critical factors influencing the yields of ethylene 
and propylene, respectively. The model showcases satisfactory predictive accuracy and reasonable interpretability 
compared with the traditional statistical and popular machine learning models, marking a step forward in the 
predictive modeling of chemical engineering processes.
1. Introduction

Light olefins, including ethylene and propylene, are pivotal chem-
ical feedstocks that occupy significant positions in the petrochemical 
and organic chemical industries (Chang, 1984; Monai et al., 2021). The 
conventional production processes for ethylene and propylene employ 
naphtha cracking technology, which entails substantial crude oil con-
sumption (Jiao et al., 2016). In contrast, Methanol-to-olefins (MTO) 
(Tian et al., 2015) represents an essential avenue for the efficient uti-
lization of resources. The Dalian Institute of Chemical Physics (DICP), 
Chinese Academy of Sciences, has researched MTO technology, DMTO, 
since the 1980s. In 2010, the first industrial-scale plant using the DMTO 
technology was completed and operated (Ying et al., 2015). DICP con-
tinued the research and developed the DMTO-II and DMTO-III technol-
ogy. Currently, more than 30 industrial MTO units have been licensed, 
making MTO one of the primary industrial routines for producing light 
olefins.

Under the framework of Industry 4.0, DMTO technology is also trans-
forming into intelligence (Moghaddam, 2023). Exploring the deep-level 
relationships between industrial process inputs and outputs, conducting 
forecasted research on olefins production has significant practical im-
plications for the future construction of brilliant chemical engineering 
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models, namely the development of self-design and improvement system 
for DMTO technology (Wang et al., 2021). In addition, for laboratory 
experiments, pilot scale-up, and factory production at the current stage, 
mining deep-level relationships between input variables and olefins pro-
duction, as well as accurate forecasting of olefins output, can provide 
reliable decision-making references for adjusting equipment and opera-
tional conditions (Huang et al., 2023; Abdi et al., 2023).

Classical statistical models have been frequently applied to forecast 
time series data. Addressing several persistent challenges is essential to 
construct a durable predictive statistical model. First, the variability and 
complexity of industrial operations often render these processes non-
stationary due to dynamic changes and diverse operational conditions 
(Cheng et al., 2015). Second, the complexity of prediction is further com-
pounded by the nonlinear relationships and dynamic interplays among 
the variables involved in these processes. Applying mathematical ap-
proaches based on reaction mechanisms and kinetics proves impractical 
for actual industrial applications. This impracticality stems from the in-
distinct nature of the physical laws linking inputs to outputs, coupled 
with the intricate configurations of industrial facilities (Linninger, 2002; 
Fan et al., 2024). Traditional statistical techniques such as the autore-
gressive integrated moving average (ARIMA) (Dey et al., 2023) have 
been widely adopted for forecasting time series data. Nevertheless, these 
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methodologies presuppose a linear association between future outcomes 
and past observations (De Gooijer and Hyndman, 2006), a presumption 
that often needing to be revised in industrial processes, leading to sub-
optimal predictive accuracy.

In recent years, methodologies grounded in machine learning and 
deep learning have become promising strategies for forecasting time se-
ries data. These approaches can autonomously discern complex input 
and output data relationships without requiring predefined models (Co-
ley et al., 2017). Notably, Recurrent Neural Networks (RNN), along with 
its derivatives, Long Short-Term Memory (LSTM) (Zhang et al., 2019), 
have been recognized for their exceptional efficacy (Long et al., 2023). 
For instance, research by Kumar et al. (2018) highlighted the adept-
ness of LSTM and Gated-Recurrent-Unit (GRU) models in addressing 
nonlinearities and seasonal patterns in electricity demand forecasting. 
Similarly, a study by Wang et al. (2020b) showcased the superiority 
of LSTM-based frameworks over conventional methodologies in pre-
dicting the periodic energy demands of cooling systems. Despite their 
commendable predictive capabilities, the scalability of RNNs is some-
what constrained due to their limited parallelization potential (Hu and 
Zheng, 2020). Conversely, Convolutional Neural Networks (CNN) have 
also been extensively utilized for time series forecasting, demonstrating 
significant potential. Wang et al. (2020c) introduced two CNN models 
that leverage symbolic hierarchical clustering for predicting operational 
trends in methanol production units. Furthermore, attention-based mod-
els have gained prominence for their ability to assign variable impor-
tance through an attention mechanism, thereby enhancing model fo-
cus on critical data segments. For example, studies by Aliabadi et al. 
(2020) and Li et al. (2021) have validated the superior performance 
of attention-based RNNs and LSTM models in multi-step forecasting 
of chemical processes. The integration of attention mechanisms with 
CNN-LSTM by Yang et al. (2021) facilitated precise predictions of wa-
ter quality indicators. A Hierarchical Attention-based Recurrent High-
way Network (HRHN) proposed by Tao et al. (2018) has demonstrated 
remarkable accuracy in stock trend forecasting. Additionally, the self-
attention mechanism has attracted significant attention for its ability 
to recognize patterns across extensive historical data, proving advan-
tageous for identifying long-term dependencies. Bi and Zhao (2021)
employed dual parallel self-attention layers to capture spatial corre-
lations and temporal dependencies within time series data. Although 
these methodologies have achieved notable success, the above models’ 
interpretation could be more satisfactory in indicating the significant in-
fluential factors. Also, the quest for further improvements in predictive 
accuracy continues unabated.

In industrial forecasting, vector machines have been widely em-
ployed for their ability to meet the accuracy and interpretability evalua-
tion criteria (Wang et al., 2020a; Lim et al., 2021). Tipping (1999, 2001)
pointed out the limitations of the Support Vector Machine (SVM) algo-
rithm and proposed a new sparse probabilistic model called Relevance 
Vector Machine (RVM) based on the Bayesian framework. The main ben-
efits of RVM are as follows (Wang et al., 2023): (1) it is more sparse and 
suitable for handling large datasets; (2) it offers a broader range of ker-
nel function choices; (3) it is based on a simple linear structure, which 
can support straightforward model modification and improvements.

RVM regression has demonstrated remarkable achievements in 
chemical engineering, showcasing excellent forecast capabilities. Fang 
et al. (2013) proposed an integrated modeling approach based on a 
unified design, combining RVM with genetic algorithms. This method 
aimed to enhance the efficiency of microbial fuel cells in converting 
chemical energy from wastewater into electrical energy, effectively 
improving battery performance and power density. Xu et al. (2017) pre-
sented an effective forecasting interval method based on Bootstrap and 
RVM. This method forecasts the density of polymers in the high-density 
polyethylene production process, demonstrating superior accuracy and 
efficiency. Wang et al. (2021) established a data-driven framework 
based on RVM for optimizing the operation of industrial MTO pro-
2

cesses. The optimal operating mode can be identified by associating the 
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forecasted yield distribution of major products with operating condi-
tions, resulting in improved ethylene yield. Acosta et al. (2021) offered 
an adaptive differential evolution algorithm combined with RVM for 
forecasting phosphorus concentration levels in steelmaking processes. 
The study demonstrated that RVM outperforms random forests (RF), 
artificial neural networks (ANN), K-nearest neighbor algorithms, and 
statistical learning techniques. Jiang et al. (2021) proposed a reliable 
cyclic aging forecasted method based on data-driven models to address 
the early forecasting of the remaining lifespan in lithium-ion batteries. 
Experimental results showed that the hybrid kernel function-based RVM 
accurately forecasts failure cycles and capacity degradation trajectories 
for different battery types. Reviewing previous literature shows three 
main application approaches of RVM in chemical engineering: direct 
utilization of the original RVM model, development of improved RVM 
models, and utilization of RVM in combination with other methods. This 
paper improves the RVM by setting the single and hybrid kernel stud-
ies for an accurate forecasting result. We also combine the RVM with 
a rolling window approach for a robust and efficient model, and we 
provide a more comprehensive research work than previous literature.

The structure of this paper is as follows: Section 2 introduces the data 
used in this study, Section 3 describes all models employed, Section 4
presents the empirical results, and Section 5 provides conclusions.

2. Data description

The data source is from one of the DMTO factories. The simplified 
flow diagram of the reaction and regeneration unit in a practical DMTO 
plant is shown in Fig. 1. This system is composed of four components, 
including wash tower, reactor, stripper, and stripper regenerator. First, 
gasified methanol enters the reactor and reacts with the catalyst (SAPO-
34) to produce product gases. Next, these product gases are then sent to a 
product analyzer for analysis, while the coker catalyst is circulated back 
to the regenerator through one of the risers and reacted with air to re-
store activity. Finally, the regenerated catalyst is returned to the reactor 
through another riser (Zhou et al., 2024). Since the reaction process will 
be affected by a variety of environmental factors, we select 32 typical 
variables in the DMTO flow as the explanation information. The 2 out-
put variables are the yields of ethylene and propylene, the main products 
of DMTO, shown in Fig. 1, labeled as 𝐴𝐼1603𝐺 and 𝐴𝐼1603𝐼 , respec-
tively. The data codebook lists all the variables’ meanings (Table 1). The 
collected time is from February 28, 2021, to March 11, 2022, totaling 
372 days (missing 4 days’ data). The data was measured every 2 hours 
and produced 12 batches daily so that the dataset has 372 ∗ 12 = 4464
batches. The whole dataset is 𝑺 𝑡𝑜𝑡𝑎𝑙 =

{
𝑿𝑡𝑜𝑡𝑎𝑙,𝒀 𝑡𝑜𝑡𝑎𝑙

}
, 𝑿𝑡𝑜𝑡𝑎𝑙 is 32 ×4464

dimensions and 𝒀 𝑡𝑜𝑡𝑎𝑙 is 2 × 4464 dimensions.
The output variables and the corresponding first-order difference 

are indicated in Fig. 2. The ethylene yield exhibits fluctuations rang-
ing from 45% and 50%, and the propylene yield fluctuates between 28%
and 31%. Besides, industrial process data presents more intricate charac-
teristics that pose a considerable challenge for forecasting. For example, 
anomalies such as data drift occasionally occur. The first-order differ-
ence illustrates that the outputs are stationary. In forecasting research, 
we conduct the normalization for all the dependent and independent 
variables to eliminate the influence of different units.

2.1. Clustering analysis

Considering the high dimensionality, large quantity of variables, and 
complex characteristics and relationships between data, the clustering 
analysis is performed. In this paper, 32 independent variables are clus-
tered utilizing the K-shape algorithm, where the optimal number of 
clusters is determined by the Elbow method. The K-shape clustering pro-
cess incorporating the Elbow method is described in Appendix A, Section 
3.1. K-means is often utilized for cluster analysis, but it performs poorly 
on data series with significant fluctuations because it employs the Eu-

clidean Distance (ED) to measure similarity (Hartingan and Wong, 1979; 
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Fig. 1. Flow diagram of the reaction-regeneration unit of the MTO process.

Table 1

Variables codebook and clustering results.

Cluster Code Name

Outputs AI1603G Ethylene

AI1603I Propylene

C1 FI1401B Methanol feed flow rate

FIC1116 Nitrogen flow rate for fluidization

FI1704 Non-condensable gas flow rate

C2 FI1811 Steam production

PI1101D Reaction pressure

FI1614A Product gas flow rate

DI1106 Density of the regenerated catalyst delivery pipe

C3 PDI1106 Pressure drop of spent catalyst slide valve

TI1119 The temperature of regenerated catalyst delivery pipe

TI1135B The temperature of the lower part of the stripping section

C4 AI1106 Flue gas O2

AI1107 Flue gas CO

AI1108 Flue gas CO2

PIC1110 Regeneration pressure

FIC1121A Main air flow rate

Cluster Code Name

C4 FIC1123 Supplementary Nitrogen Flow rate to Main Air

Q_PDI1113 Catalyst circulation flow rate

TI1134A Regeneration temperature

WI1105 Total catalyst inventory of the regenerator

C5 TIC1101 Reaction temperature

TI1111A Temperature of the reactor dilute phase

C6 WZ1101 Total catalyst inventory

C7 WIC1101 Catalyst inventory of the reactor dense phase

WI1102 Total catalyst inventory of the reactor

DI1105A Density of the reactor dense phase

C8 PIC1604 Water washing tower pressure

PDI1618 Pressure drop between the middle and upper parts of the 
water washing tower

PDI1619 Total pressure drop of water washing tower

PDI1620 Pressure drop at the bottom of the water washing tower

TI1611 Water washing tower temperature

C9 PDI1706 Total pressure drop in stripping tower

C10 FIC1001 Refining C4 flow rate
3

Fig. 2. Olefins yields (left) and first-difference (right) plots.
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Wu et al., 2022), and cannot capture the dynamic change characteris-
tics such as periodicity and volatility of time-series data. The principle 
of K-shape is similar to that of K-means, except that it improves the dis-
tance calculation method and optimizes the center of mass calculation 
method. K-shape algorithm uses Shape Based Distance (SBD) to compute 
the similarity between time series, and thus can efficiently handle long 
time series. It considers the scale and translation invariance of time se-
ries and can reasonably handle data with different amplitudes and phase 
differences (Yang et al., 2017).

The optimal number of clusters is 10 and the specific clustering re-
sults are shown in Table 1 and Fig. 1. Notably, the clustering results 
based on the K-shape are highly consistent with the actual chemical re-
action mechanism, which indirectly confirms the high quality of the data 
presented in this paper.

2.2. Correlation analysis

We apply the Maximal Information Coefficient (MIC) (Kinney and 
Atwal, 2014) to explore the correlation between output and influenc-
ing factors data. Unlike the Pearson Correlation Coefficient (Sedgwick, 
2012), which can only capture linear relationships between data, MIC 
captures both linear and nonlinear relationships. Given the character-
istics of the data utilized in this paper, MIC was chosen to calculate 
correlations. Section 3.2 in Appendix A demonstrates the formula of 
MIC, and the associated results are shown as Fig. S1. Overall, there are 
strong correlations between the variables studied in this paper.

Under the MIC correlation test, there is a correlation between the 32
independent variables and light olefins yields. Among those, TI1134A 
(C4), with the smallest MIC value, is not significantly correlated with 
both ethylene and propylene. In a word, regeneration temperature is not 
significantly related to the yield of ethylene and propylene. This result 
is the same as the empirical results in Section 4. Most of the independent 
variables correlate with output variables, especially when considering 
the MIC test, which means the dataset has a time-varying solid correla-
tion. This is the primary motivation for employing the rolling window 
approach to capture the time-varying correlation information for more 
acceptable accuracy and efficiency.

3. Model specification

3.1. Vector machine algorithm

Given a training dataset of the observed values as 𝑺 𝑡𝑟 =
{
𝑿𝑡𝑟,𝒀 𝑡𝑟

}
={(

𝒙𝑡𝑟1 , 𝑦
𝑡𝑟
1
)
,
(
𝒙𝑡𝑟2 , 𝑦

𝑡𝑟
2
)
,… ,

(
𝒙𝑡𝑟
𝑛
, 𝑦𝑡𝑟
𝑛

)}
, where 𝒙𝑡𝑟

𝑖
∈𝑿 ⊆𝑹𝑙 is the indepen-

dent variables and 𝑦𝑡𝑟
𝑖

is the dependent response, 𝑖 = 1, 2, … , 𝑛. The 
vector machine models (including the regression and classification) as-
sume that there is a kernel function 𝐾(⋅, ⋅) such that every arbitrary 
dependent variable 𝑦𝑡𝑟0 in the training dataset can be expressed as a 
weighted summation of kernel functions

𝑓
(
𝒙𝑡𝑟0 ;𝒘

)
=

𝑛∑
𝑖=1
𝑤𝑖𝐾

(
𝒙0,𝒙

𝑡𝑟
𝑖

)
+𝑤0, (1)

the estimation with an error term is

𝑦𝑡𝑟0 = 𝑓
(
𝒙𝑡𝑟0 ;𝒘

)
+ 𝜀0 =

𝑛∑
𝑖=1
𝑤𝑖𝐾

(
𝒙0,𝒙

𝑡𝑟
𝑖

)
+𝑤0 + 𝜀0. (2)

Eq. (1) is often rewritten in a matrix form as

𝑓
(
𝑿𝑡𝑟;𝒘

)
=𝚽𝑡𝑟𝒘, (3)

where 𝒘 = (𝑤0, 𝑤1, … , 𝑤𝑛)𝑇 is the weight vector, 𝚽𝑡𝑟 = (𝝓𝑡𝑟1 , 𝝓
𝑡𝑟
2 , … ,

𝝓𝑡𝑟
𝑛
)𝑇 is the kernel matrix of 𝑺 𝑡𝑟, with 𝝓𝑡𝑟

𝑖
=
(
1, 𝐾(𝒙𝑡𝑟1 , 𝒙

𝑡𝑟
𝑖
), 𝐾(𝒙𝑡𝑟2 , 𝒙

𝑡𝑟
𝑖
),

… , 𝐾(𝒙𝑡𝑟
𝑛
, 𝒙𝑡𝑟
𝑖
)
)
. A test dataset can be defined as 𝑺 𝑡𝑒 =

{
𝑿𝑡𝑒, 𝑌 𝑡𝑒

}
={

(𝒙𝑡𝑒1 , 𝑦
𝑡𝑒
1 ), (𝒙

𝑡𝑒
2 , 𝑦

𝑡𝑒
2 ), … , (𝒙𝑡𝑒

𝑚
, 𝑦𝑡𝑒
𝑚
)
}

, where 𝒙𝑡𝑒
𝑗
∈ 𝑿 ⊆𝑹𝑙 , 𝑿 is in the same 
4

vector space as 𝑺 𝑡𝑟, the dependent response is 𝑦𝑡𝑒
𝑗

, 𝑗 = 1, 2, … , 𝑚. After 
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obtaining the estimation of 𝒘 as 𝒘̂ based on 𝑺 𝑡𝑟, the forecasting of the 
𝑺 𝑡𝑒 is

𝑓
(
𝑿𝑡𝑒; 𝒘̂

)
=𝚽𝑡𝑒𝒘̂, (4)

where 𝚽𝑡𝑒 = (𝝓𝑡𝑒1 , 𝝓
𝑡𝑒
2 , … , 𝝓𝑡𝑒

𝑚
)𝑇 is the kernel matrix of 𝑺 𝑡𝑟 and 𝑺 𝑡𝑒, with 

𝝓𝑡𝑒
𝑗
= (1, 𝐾(𝒙𝑡𝑟1 , 𝒙

𝑡𝑒
𝑗
), 𝐾(𝒙𝑡𝑟2 , 𝒙

𝑡𝑒
𝑗
), … , 𝐾(𝒙𝑡𝑟

𝑛
, 𝒙𝑡𝑒
𝑗
)). In Eq. (4), the estima-

tion of parameter 𝒘 only depends on 𝑺𝑡𝑟. However, the kernel matrix 
𝚽𝑡𝑒 includes both the information of the training and test datasets, the 
interactive relationship of 𝑺 𝑡𝑟 and 𝑺 𝑡𝑒 is expressed by the kernel func-
tion.

3.2. RVM regression

Reflect on the kernel regression model presented in Eq. (1), (2), 
where 𝜀𝑖 ∼  (

0, 𝜎2
)
. The likelihood function, which is derived from 

model (3), follows a Gaussian distribution (Tipping, 2001)

𝑝
(
𝒀 𝑡𝑟 ∣𝒘, 𝜎2

)
=𝑛

(
𝒀 𝑡𝑟|𝚽𝑡𝑟𝒘, 𝜎2𝐼𝑛

)
=
(
2𝜋𝜎2

)− 𝑛

2 exp

{
−
‖‖𝒀 𝑡𝑟 −𝚽𝑡𝑟𝒘‖‖2

2𝜎2

}
. (5)

In RVM regression, it is often assumed that most of the coefficients 
𝑤𝑖 will be zero or of negligible magnitude. This is why a sparse repre-
sentation of Eq. (1) is sought after. A prior for 𝒘 is chosen to reflect this 
belief and obtain the desired sparse representation. To achieve sparsity, 
a separate independent zero-mean Gaussian prior is specified for each 
𝑤𝑖(
𝑤𝑖 ∣ 𝛼𝑖

)
∼ (

𝑤𝑖|0, 𝛼−1𝑖 )
,

𝑝(𝒘 ∣ 𝜶) =𝑛+1
(
𝒘|0, 𝛼−1

𝑖
𝐼𝑛+1

)
. (6)

While it may seem unlikely for a Gaussian prior to result in sparsity, 
it has been discovered that incorporating a Gamma hyperprior for each 
𝛼𝑖 leads to a Student-t marginal prior for 𝑤𝑖 when 𝛼𝑖 is integrated out. 
This implies that(
𝛼𝑖 ∣ 𝑎, 𝑏

)
∼𝐺𝑎

(
𝛼𝑖 ∣ 𝑎, 𝑏

)
, (7)

the marginal prior for 𝑤𝑖 is

𝑝
(
𝑤𝑖

)
= ∫ 𝑝

(
𝑤𝑖 ∣ 𝛼𝑖

)
𝑝
(
𝛼𝑖
)
𝑑𝛼𝑖

=
𝑏𝑎Γ(𝑎+ 1∕2)
(2𝜋)1∕2Γ(𝑎)

(
𝑏+𝑤1∕2

𝑖

)−(𝑎+1∕2)
. (8)

The prior distribution for the vector 𝒘, consisting of individual com-
ponents 𝑤𝑖, is characterized by a marginal prior that is remarkably 
sparse. A two-dimensional case 𝒘 =

(
𝑤1,𝑤2

)𝑇
is employed to demon-

strate that this prior (Fig. S2, right) induces even greater sparsity pres-
sure on the joint density of 

(
𝑤1,𝑤2

)
compared to the sparsity pressure 

exerted by the Gaussian and Laplace priors (Fig. S2, left and center). 
Sparse prior forces the most nonsignificant 𝑤𝑖 to be 0, making the RVM 
model efficient and robust (Fokoué et al., 2011). The parameter esti-
mation process of RVM regression is illustrated in Fig. S3 and Section 
3.3 in Appendix A. The forecasting process and pseudo-code of the RVM 
regression model are shown as Section 3.4 and Model 1 in Appendix A.

3.3. Kernel functions

One of the critical components of RVM is kernel function 𝐾(⋅, ⋅). By 
selecting different kernel functions, various vector machine models can 
be generated (Alvarez et al., 2012).

3.3.1. Fundamentals of kernel functions

For all points 𝒙, 𝒚 ∈ 𝑹𝑙 in a certain space, there exists a function 

𝐾(𝒙, 𝒚) that satisfies the following expression:
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𝐾(𝒙,𝒚) = 𝜑(𝒙) ⋅𝜑(𝒚). (9)

If 𝐾(𝒙, 𝒚) also satisfies the Mercer condition, it is referred to as a 
kernel function. Although RVM does not require the Mercer condition 
(Tipping, 1999), we still use the kernel functions under the Mercer con-
dition for the model comparison convenience. The Mercer condition is 
defined as:

Assuming 𝑔(𝒙) ∈𝐿2(𝑹𝑙) and 𝐾(𝒙, 𝒚) ∈𝐿2(𝑹𝑙 ⋅𝑹𝑙). For any 𝑔(𝒙) ≠ 0
with ∫ 𝑔(𝒙)2𝑑𝑥 <∞, the following equation holds:

∬ 𝐾(𝒙,𝒚)𝑔(𝒙)𝑔(𝒚)𝑑𝒙𝑑𝒚 ≥ 0, (10)

i.e., for all training samples, 𝑥1, 𝑥2, ..., 𝑥𝑛 ∈𝑹𝑙 , 𝐾(𝒙, 𝒚) is a positive def-
inite matrix.

The positive definite matrix guarantees that the objective function 
is convex and thus the optimization problem has a unique global opti-
mal solution. The kernel function that satisfies the Mercer condition can 
map the original data to a high-dimensional space through feature map-
ping, in which linear operations are performed. By satisfying the Mercer 
condition, we are able to take advantage of the kernel method to trans-
form a nonlinear problem into a linear problem in a high-dimensional 
space, thus improving the expressive and predictive performance of the 
model. It also facilitates the comparison with SVM, which must satisfy 
the Mercer condition.

The commonly used (also used in this paper) kernel functions in-
clude (Lall et al., 1993; Wang et al., 2015) Polynomial kernel, Linear 
kernel, Gaussian kernel, Sigmoid kernel, and Laplace kernel, defined in 
Appendix A, Section 3.5.

3.3.2. Choices of kernel functions

Each kernel function type has benefits and drawbacks, which deter-
mine its level of non-linearity. As recorded in Appendix A, Section 3.5, 
based on the characteristics of kernel functions, they can be categorized 
into two types: local kernel and global kernel (Xu et al., 2015).

Local kernels, including Gaussian, Laplace, and Sigmoid kernels (Fig. 
S4), emphasize the similarity between neighboring points and are there-
fore effective in capturing local patterns and variations in the data. Lin-
ear kernels and Polynomial kernels are common global kernels, which 
are less capable of interpolation than local kernels, but are able to model 
long-distance interactions between the overall structure and features, 
and therefore capture the global features of the sample more efficiently 
(Fig. S5). When the input sample values differ and have a wide range of 
variations, the global kernel function still strongly impacts the samples, 
indicating its strong generalization ability. Compared to local kernel 
functions, global kernel functions are characterized by weaker interpola-
tion ability but are more effective in capturing the global characteristics 
of the samples (Fig. S5). In addition to categorizing them as local and 
global, each kernel function has unique application scenarios. Table S1 
summarizes the application scenarios of the 5 kernel functions consid-
ered in this paper (Min and Lee, 2005; Gretton et al., 2012).

3.3.3. Hybrid kernel functions

In high-dimensional feature spaces, samples may exhibit uneven dis-
tribution. The results obtained from mapping transformations using a 
single kernel function may not be particularly satisfactory (Ding et al., 
2013). By leveraging the properties of the kernel function and combin-
ing them, a hybrid kernel function balancing both aspects of perfor-
mance and creating a new stable mixed kernel function model can be 
constructed to improve the stability greatly.

The general properties of kernel functions, which are very important 
for constructing our hybrid kernel RVM models, are shown in Appendix 
A, Section 3.6. Based on the five single kernel functions, the hybrid ker-
nel is expressed as:
5

𝐾
ℎ𝑦𝑏

𝑖,𝑗
= 𝜆𝐾𝑖 + (1 − 𝜆)𝐾𝑗, (11)
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Table 2

Grid search of hyperparameters.

Hyperparameters Range

Hybrid Kernel Weights [0.1, 0.9][0.2, 0.8][0.3, 0.7]
[0.4, 0.6][0.5, 0.5][0.6, 0.4]
[0.7, 0.3][0.8, 0.2][0.9, 0.1]

Kernel Function Type [gaussian][linear][polynomial][sigmoid][laplacian]
Gamma [10][1][0.1][0.01]
Window Size [2][3][4]. . . [24]
Polynomial Kernel Degree [0.1][1][2][3]

where {𝐾𝑖, 𝐾𝑗} ⊆ {𝐾𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙, 𝐾𝑙𝑖𝑛𝑒𝑎𝑟, 𝐾𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛, 𝐾𝑠𝑖𝑔𝑚𝑜𝑖𝑑 , 𝐾𝑙𝑎𝑝𝑙𝑎𝑐𝑒}, 𝜆 ∈
(0, 1), 𝑖 ≠ 𝑗.

The selection of kernel function-related parameters directly impacts 
the performance of machine learning methods. Fig. S6 shows the hybrid 
kernels of Gaussian (𝑥𝑗 = 0, 𝜎 = 1) with Laplace (𝑥𝑗 = 1, 𝜎 = 1), Linear, 
Sigmoid (𝑣 = 1, 𝑐 = 0), and Polynomial (𝑑 = 3, 𝑐 = 0). The hybrid kernel 
has the edges of two individual kernels and obtains additional freedom 
to adjust the weights for the most significant performance.

3.4. Estimation of hyper-parameters

Except for the primary parameter estimation in Model 1, research 
conducted by Dioşan et al. (2012) has shown that the performance 
of vector machines is also significantly determined by the hyper-
parameters in the kernel function and the weight coefficients. Therefore, 
this study also focuses on optimizing hyper-parameter estimation (Clae-
sen and De Moor, 2015). We apply the Grid Search (Lerman, 1980) 
method for hyper-parameters estimation as Model 2 in Appendix A.

The specific hyperparameters and their optimization search ranges 
are shown in Table 2.

3.5. Rolling-window training and test process

Based on the highly time-varying relationship between variables il-
lustrated in Section 2, the rolling-windows approach is preferred for this 
paper’s training and test process (Inoue et al., 2017). When describing 
a time-varying state where the value of a time series at a particular mo-
ment is highly correlated with data close to the current time point, the 
input and output data of the model should be continuously updated. This 
necessitates the introduction of rolling time window technology. Using 
a fixed range and time-rolling data interval for modeling can signifi-
cantly improve efficiency. It continuously evolves the base forecasting 
model by moving forward and including the latest period’s new sample 
in the “time window”. In this method, new sample data replaces old data 
in real time, and changes in the current window’s sample data require 
reconstructing a more optimal forecasting model.

The principle of the rolling window can be described as follows: 
assume a set of continuous data samples, where 𝑙 data groups can char-
acterize the state at time 𝑡 + 𝑙 from time 𝑡 to 𝑡 + 𝑙 − 1. Therefore, data 
from the interval between time 𝑡 and 𝑡 + 𝑙 − 1 establishes a model and 
forecasts the state at time 𝑡 + 𝑙. When the next moment arrives, while 
keeping the length of the time window 𝑙 constant, the data at time 𝑡 is 
discarded, and the data at time 𝑡 + 𝑙 is added. Then, data from time 𝑡 +1
to 𝑡 + 𝑙 is used to establish a model to obtain the forecasted output at 
time 𝑡 + 𝑙+ 1. The 𝑆 groups of continuous data intervals characterizing 
the state as time progresses are dynamically updated. Fig. S7 shows this 
paper’s comprehensive training and test process when 𝑙 = 2.

3.6. Criteria for forecasting performance

The loss function must be chosen for statistical tests to compare the 
forecasting performance of different model specifications. In this paper, 
two standard loss functions are used: Mean Squared Error (MSE) and 
Mean Absolute Error (MAE), which are both statistical measures used 

to evaluate the performance of a forecasted or estimated model. They 
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Table 3

Forecasting results of ethylene with single kernel.

C2H4

𝑙 Gaussian Linear Polynomial Sigmoid Laplace

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

2 0.001397 0.025564 0.001560 0.027651 0.001366 0.025579 0.001355 0.025425 0.001338 0.025277

3 0.001666 0.028904 0.001961 0.032018 0.001732 0.029741 0.001716 0.029556 0.001669 0.029143
4 0.001904 0.031401 0.002308 0.035406 0.002060 0.033117 0.002040 0.032909 0.001970 0.032300
5 0.002075 0.033243 0.002583 0.037927 0.002320 0.035598 0.002297 0.035383 0.002206 0.034653
6 0.002176 0.034289 0.002764 0.03960 0.002502 0.037324 0.002478 0.037115 0.002371 0.036247
7 0.002244 0.034806 0.002861 0.040419 0.002605 0.038221 0.002581 0.038019 0.002462 0.037055
8 0.002235 0.034638 0.002885 0.040418 0.002629 0.038263 0.002607 0.038072 0.002482 0.037076
9 0.002174 0.033978 0.002778 0.039539 0.00572 0.037601 0.002552 0.037423 0.002430 0.036484
10 0.002085 0.032997 0.002637 0.038226 0.002459 0.036486 0.002442 0.036326 0.002319 0.035400
11 0.001975 0.031812 0.002456 0.036562 0.002322 0.035086 0.002307 0.034946 0.002186 0.034029
12 0.001875 0.030701 0.002308 0.035109 0.002203 0.033800 0.002191 0.033670 0.002066 0.032780

Average 0.001982 0.032030 0.002464 0.036625 0.002252 0.034620 0.002233 0.034440 0.002136 0.033677
Optimal window 𝑙 = 2 𝑙 = 2 𝑙 = 2 𝑙 = 2 𝑙 = 2

Fig. 3. Variation of ethylene (left) and propylene (right) yield forecast error with windows (single kernel).
are both ways to quantify the difference between the actual values and 
those forecasted by the model.

MSE is calculated as the average squared differences between the 
forecasted and actual values. Conversely, MAE is calculated as the av-
erage absolute differences between the forecasted and actual values. 
Mathematically, they can be represented as follows:

𝑀𝑆𝐸 = 1
𝑛

𝑛∑
𝑖=1

(𝑦̂𝑖 − 𝑦𝑖)2,

𝑀𝐴𝐸 = 1
𝑛

𝑛∑
𝑖=1

|𝑦̂𝑖 − 𝑦𝑖|, (12)

where 𝑛 is the total number of data points, 𝑦𝑖 is the actual value, and 
𝑦̂𝑖 is the forecasted value for the 𝑖-th observation. A lower MSE or MAE 
indicates a more satisfactory fit of the model to the data. The key dif-
ference between MSE and MAE lies in how they handle outliers. Since 
MSE squares the differences before averaging, it tends to penalize larger 
errors more severely than MAE, which could make MSE more sensitive 
to outliers in the data.

4. Results

4.1. Olefins yields forecasting study

Apply the model in Section 3 to the data in Section 2 for forecasting 
the light olefins yields.

4.1.1. Ethylene yields forecasting
6

(1) Single kernel study
The results of the single kernel study for ethylene yield forecast-
ing are shown in Table 3. From the perspective of average value, the 
Gaussian kernel is the optimal one, which means the square of the differ-
ence between independent variables is most significant in contributing 
information to forecast the ethylene yield. From the rolling window per-
spective, 2 window length is most preferred for all the single kernels 
so that the forecasting can be done efficiently with four hours of data. 
Notably, as shown in Fig. 3 (left), the error (MSE) varies periodically 
(roughly 24 hours) as the window increases. Globally, the single Laplace 
kernel with 2 window length is the best, the corresponding forecasting 
results are shown in Fig. 4 (left).

(2) Hybrid kernel study

The results of the hybrid kernel study between Gaussian and Laplace 
for ethylene yield forecasting are shown in Table 4. (0.1⋅Gaussian+
0.9⋅Laplace) has a better result than the single Laplace kernel concerning 
MAE with the same window-length 2, and the errors continue to be cycli-
cal. From the perspective of average value, (0.9⋅Gaussian+0.1⋅Laplace)
is the optimal one, but not more reasonable than the single Laplace. The 
other hybrid kernel studies are worse than the single one, so we do not 
show the results.

In conclusion, the Laplace and Gaussian kernels are preferred by 
ethylene forecasting. The difference between independent variables can 
explain more about the ethylene yield in the DMTO system. Also, the 
hybrid of Laplace and Gaussian can obtain the most satisfactory result 
for forecasting. All the studies for ethylene forecasting show periodic 
variation in error and return the optimal window length of 2, which 
provides a desired scheme to conduct the efficient model. This suggests 
that ethylene yield is characterized by short-term fluctuations, and the 
rolling strategy can effectively capture this pattern for fast forecasting 

purposes.
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0.8,0.2a 0.9,0.1a

MAE MSE MAE MSE MAE

0.025398 0.001375 0.025440 0.001385 0.025491
0.028862 0.001653 0.028868 0.001659 0.028883
0.031508 0.001899 0.031463 0.001902 0.031430
0.033395 0.002071 0.033298 0.002073 0.033269
0.034602 0.002187 0.034448 0.002178 0.034365
0.035123 0.002245 0.034955 0.002240 0.034853
0.035104 0.002246 0.034867 0.002234 0.034721
0.034448 0.002188 0.034226 0.002180 0.034087
0.033417 0.002098 0.033275 0.002090 0.033120
0.032091 0.001982 0.032007 0.001979 0.031906
0.030997 0.001889 0.030912 0.001883 0.030792

0.032268 0.001985 0.032160 0.001982 0.032083

𝑙 = 2 𝑙 = 2
Table 4

Forecasting results of ethylene with hybrid kernels of Gaussian and Laplace.

C2H4

𝑙 0.1,0.9a 0.2,0.8a 0.3,0.7a 0.4,0.6a 0.5,0.5a 0.6,0.4a 0.7,0.3a

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

2 0.001338 0.025260 0.001340 0.025256 0.001343 0.025271 0.001347 0.025296 0.001353 0.025327 0.001359 0.025352 0.001367
3 0.001663 0.029087 0.001658 0.029038 0.001657 0.029012 0.001656 0.028991 0.001657 0.028982 0.001652 0.028902 0.001649
4 0.001958 0.032187 0.001949 0.032101 0.001942 0.032026 0.001934 0.031932 0.001921 0.031795 0.001912 0.031646 0.001898
5 0.002188 0.034481 0.002175 0.034356 0.002160 0.034235 0.002146 0.034074 0.002119 0.033820 0.002093 0.033587 0.002080
6 0.002348 0.036042 0.002335 0.035868 0.002312 0.035689 0.002291 0.035494 0.002250 0.035128 0.002221 0.034835 0.002203
7 0.002437 0.036821 0.002419 0.036613 0.002388 0.036356 0.002353 0.036087 0.002317 0.035708 0.002293 0.035428 0.002256
8 0.002456 0.036846 0.002425 0.036585 0.002393 0.036317 0.002361 0.036022 0.002318 0.035618 0.002284 0.035305 0.002264
9 0.002401 0.036230 0.002360 0.035959 0.002336 0.035729 0.002307 0.035438 0.002267 0.035088 0.002232 0.034746 0.002207
10 0.002286 0.035118 0.002257 0.034905 0.002235 0.034653 0.002210 0.034383 0.002170 0.034019 0.002132 0.033660 0.002107
11 0.002150 0.033733 0.002123 0.033509 0.002103 0.033290 0.002090 0.033078 0.002048 0.032719 0.002012 0.032357 0.001987
12 0.002036 0.032513 0.002011 0.032300 0.001992 0.032097 0.001983 0.031904 0.001945 0.031561 0.001912 0.031225 0.001891

Average 0.002115 0.033484 0.002096 0.033317 0.002078 0.033152 0.002062 0.032973 0.002033 0.032706 0.002009 0.032459 0.001992
Optimal window 𝑙 = 2 𝑙 = 2 𝑙 = 2 𝑙 = 2 𝑙 = 2 𝑙 = 2 𝑙 = 2

a Weights of Gaussian and Laplace kernels, respectively.
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Fig. 4. Ethylene (left) and propylene (right) optimal forecasting results with all independent variables.

Table 5

Forecasting results of propylene with single kernel.

C3H6

𝑙 Gaussian Linear Polynomial Sigmoid Laplace

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

2 0.001988 0.033704 0.002379 0.037005 0.002059 0.034271 0.002031 0.034010 0.001998 0.033780
3 0.002262 0.036291 0.002778 0.040536 0.002454 0.037799 0.002423 0.037536 0.002350 0.037045
4 0.002481 0.038283 0.003144 0.043407 0.002816 0.040625 0.002784 0.040347 0.002671 0.039644
5 0.002668 0.039880 0.003458 0.045719 0.003124 0.042974 0.003090 0.042694 0.002956 0.041839
6 0.002812 0.040934 0.003690 0.047331 0.003344 0.044569 0.003310 0.044289 0.003162 0.043329
7 0.002865 0.041336 0.003807 0.048010 0.003471 0.045388 0.003438 0.045111 0.003279 0.044095
8 0.002871 0.041300 0.003830 0.048036 0.003513 0.045584 0.003482 0.045329 0.003323 0.044327
9 0.002803 0.040757 0.003768 0.047488 0.003474 0.045174 0.003445 0.044938 0.003289 0.043928
10 0.002737 0.040134 0.003640 0.046533 0.003376 0.044426 0.003351 0.044206 0.003201 0.043218
11 0.002633 0.039238 0.003472 0.045357 0.003244 0.043424 0.003222 0.043230 0.003083 0.042295
12 0.002571 0.038617 0.003325 0.044252 0.003133 0.042550 0.003114 0.042369 0.002984 0.041457

Average 0.002608 0.039134 0.003390 0.044879 0.003092 0.042435 0.003063 0.042187 0.002936 0.041360
Optimal window 𝑙 = 2 𝑙 = 2 𝑙 = 2 𝑙 = 2 𝑙 = 2
4.1.2. Propylene yields forecasting

(1) Single kernel study

The results of the single kernel study for propylene yield forecasting 
are shown in Table 5. The Gaussian kernel outperforms in terms of global 
and average perspectives. The square difference between independent 
variables contributes the most influential information to forecast the 
propylene yield. From the rolling-window perspective, as shown in Fig. 
3, identical to the ethylene, the MSE for propylene yield forecasting con-
tinues to show cyclical variation and 2 window length is most preferred. 
The results for propylene forecasting with a single Gaussian kernel are 
shown in Fig. 4 (right).

(2) Hybrid kernel study

The results of the hybrid kernel study between Gaussian and Sig-
moid, Gaussian and Laplace for propylene yield forecasting are shown 
in Tables 6 and 7. (0.8⋅Gaussian+0.2⋅Sigmoid) and (0.7⋅Gaussian+
0.3⋅Laplace) have the most promising results for the hybrid studies, also 
are more reasonable than the single Gaussian kernel with same window-
length of 2, and the errors still continue to be cyclical. (0.7⋅Gaussian+
0.3⋅Laplace) outperforms all others for propylene forecasting. From the 
perspective of average value, (0.9⋅Gaussian+0.1⋅Sigmoid or Laplace) is 
the optimal one, which means Gaussian is still the most consequential 
kernel here. The other hybrid kernel studies are improper, so we do not 
show the results in the paper.

4.2. Analysis of independent variable clusters

To identify process variables that have a significant impact on the 
yields of ethylene and propylene, we conduct single cluster and mixed 
8

cluster studies. The single cluster study involves adding each of the 10
clusters to the model and identifying the clusters that have a signifi-
cant effect on yields forecasts. The mixed cluster study is the process of 
arranging and combining the different clusters in order to explore the 
combinatorial effects among them and fully exploit the potential infor-
mation affecting the light olefins yields.

4.2.1. Cluster study for ethylene yields

(1) Single Cluster Studies for Ethylene Yields

Based on the 10 clusters of independent variables in Section 2, we 
test the forecasting ability of each cluster to locate the influential ones 
in the DMTO process. The results of single cluster studies for ethylene 
yield forecasting are shown in Table 8. 𝐶3 is the most noteworthy one. 
𝐶5, 𝐶8, and 𝐶10 also provide the convincing results. The results indicate 
that the temperature (𝐶3 and 𝐶5) is the most important factor affecting 
ethylene yield. The pressure (𝐶3 and 𝐶8) and refining of heavy olefins 
(𝐶10) are also critical for ethylene production. In conclusion, tempera-
ture, pressure, and refining of heavy olefins are 3 factors that need to be 
focused on in the DMTO process to increase the ethylene yields, which 
is typically identical to the chemical knowledge.

The optimal window length shows that the single cluster needs a 
larger length than all independent variables studied because it has small 
dimensions. Hence, a larger data size is needed to enhance the informa-
tion for forecasting. 𝐶3 and 𝐶5 need the smallest 2 of window length, 
𝐶8 and 𝐶10 require the second smallest 3 of window length, which also 
illustrate that 𝐶3 and 𝐶5 include considerable data information for fore-
casting ethylene yields. This is an additional proof that 𝐶3, 𝐶5, 𝐶8, and 
𝐶10 are necessary factors.
(2) Mixed Clusters Studies for Ethylene Yields
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0.8,0.2a 0.9,0.1a

MAE MSE MAE MSE MAE

0.033699 0.001983 0.033682 0.001985 0.033688
0.036543 0.002276 0.036437 0.002268 0.036348
0.038768 0.002510 0.038525 0.002491 0.038365
0.040548 0.002710 0.040269 0.002687 0.040075
0.041664 0.002856 0.041318 0.002836 0.041123
0.042136 0.002939 0.041851 0.002902 0.041566
0.042227 0.002954 0.041898 0.002912 0.041602
0.041955 0.002923 0.041506 0.002867 0.041148
0.041220 0.002843 0.040833 0.002766 0.040396
0.040298 0.002689 0.039727 0.002664 0.039501
0.039514 0.002640 0.039129 0.002609 0.038914

0.039870 0.002666 0.039561 0.002635 0.039339

𝑙 = 2 𝑙 = 2

0.8,0.2a 0.9,0.1a

MAE MSE MAE MSE MAE

0.033668 0.001983 0.033677 0.001985 0.033687
0.036421 0.002264 0.036331 0.002263 0.036309
0.038496 0.002494 0.038410 0.002483 0.038315
0.040223 0.002688 0.040120 0.002679 0.040000
0.041317 0.002846 0.041172 0.002827 0.041048
0.041786 0.002909 0.041629 0.002885 0.041459
0.041858 0.002896 0.041598 0.002900 0.041530
0.041530 0.002890 0.041274 0.002848 0.041036
0.040767 0.002796 0.040556 0.002753 0.040300
0.039765 0.002664 0.039579 0.002650 0.039397
0.039033 0.002611 0.038942 0.002596 0.038794

0.039533 0.002640 0.039390 0.002624 0.039261

𝑙 = 2 𝑙 = 2
Table 6

Forecasting results of propylene with hybrid kernels of Gaussian and Sigmoid.

C3H6

𝑙 0.1,0.9a 0.2,0.8a 0.3,0.7a 0.4,0.6a 0.5,0.5a 0.6,0.4a 0.7,0.3a

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

2 0.002019 0.033932 0.002009 0.033866 0.002001 0.033815 0.001994 0.033770 0.001988 0.033733 0.001986 0.033709 0.001985
3 0.002401 0.037384 0.002374 0.037215 0.002357 0.037091 0.002336 0.036944 0.002322 0.036843 0.002305 0.036697 0.002286
4 0.002748 0.040126 0.002714 0.039916 0.002696 0.039777 0.002666 0.039587 0.002616 0.039328 0.002578 0.039054 0.002542
5 0.003042 0.042402 0.002999 0.042131 0.002955 0.041855 0.002911 0.041583 0.002856 0.041277 0.002799 0.040941 0.002746
6 0.003260 0.043963 0.003208 0.043638 0.003164 0.043340 0.003112 0.043001 0.003041 0.042620 0.002961 0.042103 0.002898
7 0.003383 0.044756 0.003328 0.044403 0.003268 0.044025 0.003199 0.043627 0.003144 0.043251 0.003053 0.042697 0.002966
8 0.003424 0.044971 0.003366 0.044610 0.003302 0.044216 0.003231 0.043781 0.003187 0.043462 0.003088 0.042820 0.002997
9 0.003388 0.044572 0.003330 0.044214 0.003271 0.043848 0.003206 0.043419 0.003157 0.043061 0.003067 0.042485 0.002989
10 0.003297 0.043855 0.003240 0.043499 0.003183 0.043130 0.003111 0.042686 0.003076 0.042404 0.002982 0.041741 0.002898
11 0.003168 0.042884 0.003118 0.042551 0.003064 0.042197 0.002994 0.041768 0.002959 0.041513 0.002867 0.040822 0.002783
12 0.003064 0.042039 0.003019 0.041729 0.002972 0.041408 0.002903 0.040946 0.002861 0.040628 0.002790 0.040072 0.002696

Average 0.003018 0.041899 0.002973 0.041616 0.002930 0.041337 0.002878 0.041010 0.002837 0.040738 0.002770 0.040286 0.002708
Optimal window 𝑙 = 2 𝑙 = 2 𝑙 = 2 𝑙 = 2 𝑙 = 2 𝑙 = 2 𝑙 = 2

a Weights of Gaussian and Sigmoid kernels, respectively.

Table 7

Forecasting results of propylene with hybrid kernels of Gaussian and Laplace.

C3H6

𝑙 0.1,0.9a 0.2,0.8a 0.3,0.7a 0.4,0.6a 0.5,0.5a 0.6,0.4a 0.7,0.3a

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

2 0.001993 0.033750 0.001989 0.033724 0.001985 0.033701 0.001982 0.033686 0.001982 0.033677 0.001982 0.033676 0.001981

3 0.002334 0.036931 0.002324 0.036860 0.002313 0.036768 0.002303 0.036697 0.002292 0.036603 0.002281 0.036501 0.002272
4 0.002662 0.039573 0.002642 0.039443 0.002602 0.039249 0.002581 0.039095 0.002552 0.038883 0.002523 0.038659 0.002505
5 0.002921 0.041627 0.002870 0.041377 0.002853 0.041263 0.002825 0.041085 0.002769 0.040730 0.002728 0.040417 0.002704
6 0.003114 0.043053 0.003082 0.042855 0.003051 0.042648 0.003005 0.042393 0.002931 0.041939 0.002877 0.041552 0.002854
7 0.003220 0.043780 0.003196 0.043546 0.003137 0.043268 0.003100 0.042991 0.003023 0.042491 0.002952 0.042051 0.002914
8 0.003256 0.043951 0.003233 0.043746 0.003185 0.043447 0.003142 0.043152 0.003063 0.042661 0.002991 0.042197 0.002940
9 0.003237 0.043624 0.003190 0.043316 0.003156 0.043067 0.003118 0.042818 0.003015 0.042182 0.002963 0.041808 0.002920
10 0.003144 0.042872 0.003100 0.042589 0.003068 0.042374 0.003036 0.042135 0.002953 0.041549 0.002883 0.041073 0.002838
11 0.003020 0.041913 0.002985 0.041699 0.002961 0.041526 0.002920 0.041225 0.002851 0.040692 0.002763 0.040146 0.002690
12 0.002927 0.041103 0.002890 0.040830 0.002867 0.040671 0.002831 0.040415 0.002755 0.039911 0.002677 0.039425 0.002615

Average 0.002894 0.041107 0.002864 0.040908 0.002834 0.040726 0.002804 0.040517 0.002744 0.040120 0.002693 0.039773 0.002657
Optimal window 𝑙 = 2 𝑙 = 2 𝑙 = 2 𝑙 = 2 𝑙 = 2 𝑙 = 2 𝑙 = 2

a Weights of Gaussian and Laplace kernels, respectively.
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Table 8

Forecasting results of ethylene in single cluster study.

C2H4

Cluster MSE MAE Mean Kernel Optimal 
window length

C1 0.001353 0.025412 0.013383 0.1⋅Gaussian+0.9⋅Laplace 5
C2 0.001352 0.025385 0.013369 0.1⋅Gaussian+0.9⋅Laplace 4
C3a 0.001345 0.025317 0.013334 0.5⋅Gaussian+0.5⋅Sigmoid 2
C4 0.001351 0.025409 0.013380 0.1⋅Polynomial+0.9⋅Laplace 5
C5b 0.001346 0.025311 0.013329 Gaussian 2
C6 0.001354 0.025423 0.013389 0.1⋅Polynomial+0.9⋅Laplace 4
C7 0.001355 0.025427 0.013391 Gaussian 4
C8b 0.001347 0.025327 0.013337 0.9⋅Gaussian+0.1⋅Laplace 3
C9 0.001354 0.025415 0.013384 Gaussian 5
C10b 0.001350 0.025344 0.013347 0.1⋅Linear+0.9⋅Laplace 3

a Best results are indicated in bold and underlined.
b Significant good results are indicated in bold.

Table 9

Forecasting Results of ethylene in hybrid clusters study.

C2H4

Cluster MSE MAE Mean Kernel Optimal 
window length

C3+C5 a 0.001337 0.025122 0.013230 0.2⋅Linear+0.8⋅Polynomial 2
C3+C8b 0.001339 0.025284 0.013316 Gaussian 2
C3+C10b 0.001341 0.025238 0.013289 0.3⋅Linear+0.7⋅Laplace 2
C5+C8 0.001354 0.025421 0.013387 Gaussian 2
C5+C10 0.001350 0.025341 0.013346 0.1⋅Linear+0.9⋅Laplace 3
C8+C10 0.001353 0.025399 0.013376 Gaussian 3

C3+C5+C8 a 0.001323 0.025107 0.013215 Gaussian 2
C3+C5+C10b 0.001323 0.025115 0.013219 0.2⋅Linear+0.8⋅Polynomial 2
C3+C8+C10 0.001328 0.025207 0.013268 Gaussian 2
C5+C8+C10 0.001333 0.025259 0.013296 Gaussian 2

C3+C5+C8+C10 0.001314 0.025007 0.013161 Gaussian 2

a Best results in each group are indicated in bold and underlined.
b Significant good results in each group are indicated in bold.

Table 10

Forecasting results of propylene in single cluster study.

C3H6

Cluster MSE MAE Mean Kernel Optimal 
window length

C1 0.002026 0.033992 0.018009 0.9⋅Gaussian+0.1⋅Laplace 7
C2 0.002029 0.033972 0.018000 Gaussian 7
C3b 0.002026 0.033972 0.017999 Gaussian 4
C4 0.002021 0.033976 0.017998 0.9⋅Gaussian+0.1⋅Sigmoid 6
C5b 0.002016 0.033899 0.017958 Gaussian 5
C6 0.002034 0.034034 0.018034 0.9⋅Gaussian+0.1⋅Sigmoid 7
C7 0.002030 0.034002 0.018016 Gaussian 5
C8b 0.002001 0.033656 0.017829 0.9⋅Gaussian+0.1⋅Sigmoid 5
C9 0.002030 0.034004 0.018039 Gaussian 7
C10a 0.001995 0.033610 0.017803 0.3⋅Linear+0.7⋅Laplace 4

a Best results are indicated in bold and underlined.
b Significant good results are indicated in bold.
Based on the 4 significant clusters of 𝐶3, 𝐶5, 𝐶8, and 𝐶10, we con-
ducted the 2, 3, and 4 mixed cluster studies. The results are listed in 
Table 9. 𝐶3 +𝐶5 +𝐶8 is the most noteworthy composition, and adding it 
to the model produces even smaller errors than the single cluster study. 
This suggests that taking both temperature and pressure into account 
would be more favorable for ethylene yield forecasting.

4.2.2. Cluster study for propylene yields

(1) Single Cluster Studies for Propylene Yields

Same as the single cluster studies for the ethylene yields, we con-
ducted the experiment for propylene yields, listed in Table 10. 𝐶3, 𝐶5, 
10

𝐶8 and 𝐶10 are still important for propylene. Compared with the ethy-
lene results, 𝐶10 is the most significant variable. This indicates that the 
refining of heavy olefins has a powerful impact on propylene yields. 𝐶8
is more influential than 𝐶3 and 𝐶5, which shows that the pressure is 
more important for propylene yield than ethylene yield.

The optimal window length results show the same information as 
the ethylene study. 𝐶10, 𝐶8, 𝐶3, and 𝐶5 have shorter window lengths 
than other clusters, which means they supply more information than 
other clusters in explaining the propylene yield.

(2) Mixed Clusters Studies for Propylene Yields

The mixed clusters studies between 𝐶3, 𝐶5, 𝐶8, and 𝐶10 are shown 

in Table 11. Unlike the ethylene yield forecasting, 𝐶8 +𝐶10 is the most 
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Table 11

Forecasting results of propylene in hybrid clusters study.

C3H6

Cluster MSE MAE Mean Kernel Optimal 
window length

C3+C5b 0.002011 0.033862 0.017936 Gaussian 2
C3+C8 0.002025 0.033964 0.017995 Gaussian 2
C3+C10b 0.002015 0.033891 0.017953 Gaussian 2
C5+C8 0.002021 0.033789 0.017905 Gaussian 2
C5+C10 0.002019 0.033906 0.017963 Gaussian 2
C8+C10 a 0.002005 0.033817 0.017911 Gaussian 2

C3+C5+C8 0.002027 0.033911 0.017969 Gaussian 2
C3+C5+C10 a 0.002009 0.033828 0.017918 Gaussian 2
C3+C8+C10 0.002023 0.033893 0.017958 Gaussian 2
C5+C8+C10b 0.002012 0.033846 0.017929 Gaussian 2

C3+C5+C8+C10 0.002008 0.033820 0.017914 Gaussian 2

a Best results in each group are indicated in bold and underlined.
b Significant good results in each group are indicated in bold.

Table 12

Summary of forecasting results based on proposed model.

Kernel Situation Single Kernel Hybrid Kernel Single Cluster Hybrid Two Cluster Hybrid Three Cluster

Criteria MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

C2H4
a 0.001338 0.025277 0.001338 0.025260 0.001265 0.024220 0.001274 0.024159 0.001268 0.024188

C3H6
a 0.001988 0.033704 0.001981 0.033668 0.001995 0.033710 0.002006 0.033807 0.002003 0.033760

a Best results regarding MSE are indicated in bold, and best results regarding MAE are indicated in bold and underlined.

Table 13

Forecasting Result of comparison test for ethylene.

C2H4
a

Proportions 50%− 50% 60%− 40% 70%− 30% 80%− 20% 90%− 10%

Model MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ANN 0.002297 0.036547 0.002042 0.033629 0.002339 0.034124 0.002370 0.034774 0.002070 0.032728
CNN 0.024763 0.125945 0.015329 0.097230 0.012234 0.087620 0.010889 0.091608 0.016465 0.108881
RNN 0.031805 0.157601 0.070685 0.248327 0.007294 0.071135 0.020908 0.116039 0.014699 0.106425
ARIMA 0.060204 0.212394 0.057600 0.207858 0.010030 0.085544 0.002458 0.039199 0.001527 0.027147

LSTM 0.024766 0.132009 0.009400 0.068151 0.005690 0.056198 0.006234 0.061259 0.006904 0.062581
RF 0.022741 0.130386 0.023567 0.127344 0.015858 0.091287 0.018452 0.104594 0.029111 0.156611
BBP 0.032244 0.161673 0.054239 0.215113 0.006692 0.061815 0.021797 0.124884 0.017308 0.110983
BDLRF 0.033500 0.141784 0.039044 0.181855 0.006646 0.058963 0.008934 0.071250 0.014166 0.100207

a Best results regarding MSE are indicated in bold, and best results regarding MAE are indicated in bold and underlined.
noteworthy composition for propylene yield forecasting. However, it is 
not as good a forecast as considering only 𝐶10 or 𝐶8.

4.3. Comparison studies

We conduct two kinds of comparison studies for this work. One com-
pares the forecasting results of the proposed model and the models with 
the train-test split data approaches; the other compares the RVM and 
SVM under the same kernel functions and rolling window approach. 
The first one indicates the advantage of the rolling-window approach in 
forecasting the yields of MTO, and the second one illustrates the bene-
fit of our proposed model with other vector machines under the same 
situations. The summary of the best forecasting results of ethylene and 
propylene in previous subsections are listed in Table 12.

For the train-test split data approach, the prevalent algorithms, in-
cluding the traditional time-series models (autoregressive integrated 
moving average (ARIMA) and long short-term memory (LSTM)) and the 
popular machine learning models (ANN, convolutional neural network 
(CNN), recurrent neural network (RNN), and RF) are chosen. Nabavi et 
al. (2009) provided the first forecasting work for the MTO yields with 
the Basic Backpropagation (BBP) and Backpropagation with Declining 
Learning-rate Factor (BDLRF) models, which are also considered as the 
11

comparative ones.
We set the proportions of the training and test data as 50% −
50%, 60% −40%, 70% − 30%, 80% −20%, and 90% −10% to conduct the 
forecasting, and the results are listed in Tables 13 and 14. ANN shows 
the best results except for the 90% − 10% proportion situation of ethy-
lene and 50% −50% proportion situation of propylene where the ARIMA 
outperforms others. However, the best results of the train-test split data 
approach are all worse than the best results of our proposed model 
shown in Table 12, which support the benefit of the rolling-window 
RVM compared to the traditional time-series and popular machine learn-
ing models.

For the comparison between RVM and SVM under same kernel and 
rolling-window setting, we list the results of SVM in Table 15, where 
we only show the Gaussian and Laplace kernel (other kernels or hybrid 
kernels provide worse results than Gaussian and Laplace kernels) with 
length of rolling-window setting of 2, 3, and 4 (lengths longer than 4 pro-
vided the significantly worse results). The results of RVM in Table 12 are 
slightly better than SVM in Table 15, which supports that RVM outper-
forms the SVM in forecasting the yields of MTO. Also, the results of SVM 
based on the rolling-window setting are significantly more profitable 
than those of Tables 13 and 14, where we can conclude that rolling-
window approach is more suitable for the MTO process study than the 

traditional train-test split data approach concerning forecasting accu-
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Table 14

Forecasting result of comparison test for propylene.

C3H6
a

Proportions 50%− 50% 60%− 40% 70%− 30% 80%− 20% 90%− 10%

Model MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ANN 0.002680 0.039382 0.002587 0.039498 0.003322 0.044740 0.003079 0.043479 0.002693 0.039947

CNN 0.032520 0.151288 0.028813 0.147767 0.023069 0.127348 0.088234 0.268584 0.014083 0.097744
RNN 0.012660 0.083737 0.018054 0.116784 0.007702 0.069028 0.008684 0.067141 0.026368 0.146983
ARIMA 0.002283 0.035970 0.017172 0.112159 0.017444 0.113908 0.006532 0.066309 0.003591 0.047113
LSTM 0.009200 0.077333 0.007730 0.071492 0.006107 0.063976 0.011448 0.086046 0.028270 0.151644
RF 0.050740 0.199272 0.153930 0.347003 0.081269 0.250701 0.018127 0.107941 0.051639 0.194610
BBP 0.017303 0.110021 0.018673 0.119221 0.007736 0.072777 0.013665 0.089943 0.025773 0.138350
BDLRF 0.030981 0.153509 0.038721 0.178011 0.007974 0.072891 0.015786 0.093168 0.041091 0.183767

a Best results regarding MSE are indicated in bold, and best results regarding MAE are indicated in bold and underlined.

Table 15

Forecasting result for SVM with single kernel.

𝑙 C2H4
a C3H6

a

Gaussian Laplace Gaussian Laplace

MSE MAE MSE MAE MSE MAE MSE MAE

2 0.001334 0.025340 0.001355 0.025405 0.002027 0.033981 0.002036 0.034010

3 0.001670 0.029450 0.001695 0.029530 0.002419 0.037651 0.002434 0.037706
4 0.001947 0.032589 0.001980 0.032689 0.002743 0.040444 0.002769 0.040542

a Best results regarding MSE are indicated in bold, and best results regarding MAE are indicated in bold and underlined.
racy. Considering that the rolling-window method is more efficient, the 
rolling-window approach should be focused and further studied in en-
gineering studies in the future.

5. Conclusions

Forecasting the yields of light olefins plays a paramount role in mon-
itoring and optimizing the MTO process. It is not only directly related 
to the improvement of production efficiency and economic benefits, 
but also has a far-reaching impact on the enterprise’s market share, 
environmental responsibility, technological innovation, and the stable 
operation of the whole industrial chain. In this paper, persistent yield 
data of light olefins are chosen as the dependent, and 32 yield impact in-
dicators are utilized as the independent variables to carry out ethylene 
and propylene forecasting research. Based on the hybrid kernel RVM 
and the rolling-window approaches, the following conclusions are ob-
tained:

(1) Regarding the single kernel function, the Laplace is optimal for 
ethylene yield forecasting, and the Gaussian is optimal for propylene 
yield forecasting. In terms of the hybrid kernel function, the most rea-
sonable forecasting results are given by the Gaussian+Laplace kernels 
for both yields, with the Gaussian kernel being the leading one regard-
ing propylene and the Laplace kernel being the leading one for ethylene. 
The results show that the DMTO yields impact indicators that provide 
little valuable information for forecasting; the squared difference and 
absolute value of the difference between the variables predominantly 
play decisive roles.

(2) The hybrid of local kernel functions has a substantial edge in 
forecasting the yields of DMTO over the hybrid of local and global ker-
nels, suggesting that the yields of ethylene and propylene have both 
short volatility trends. Meanwhile, the rolling window study shows that 
four hours of training information is more optimal in forecasting than a 
longer window length, also supporting the statements of short volatility 
trends in DMTO yields. The conclusion is consistent with the traditional 
DMTO study, which provides a multi-faceted confirmation of the trend 
study.

(3) The 4-hour time window has the most satisfactory forecasting ef-
fect on the yields of DMTO, indicating that the fluctuation cycle is about 
12

4 hours when considering all the variables. In cluster studies, when we 
consider fewer independent variables and the optimal window lengths 
become more prominent, the 32 independent variables are all necessary 
in this study to provide sufficient information for forecasting. Compared 
with the previous DMTO forecasting studies using train-test split data 
approaches, this paper’s optimal rolling time window can achieve effi-
cient forecasting and increase the practicability of the research content. 
Moreover, it can provide researchers with data to support the develop-
ment of more efficient MTO catalysts and processes.

(4) The significant clusters of variables can be effectively screened by 
the single cluster and mixed cluster studies. In particular, temperature is 
the most influential factor in ethylene forecasting; pressure and refining 
of heavy olefins are also consequential. In addition, the combination 
of temperature and pressure produces better results for ethylene yield 
forecasting. The refining of heavy olefins is most vital for propylene 
forecasting, and pressure and temperature are also significant, but the 
combination of clusters does not have a greater impact on propylene 
yield forecasts.

It is worth noting that temperature and pressure have the most sig-
nificant impact on the prediction of ethylene and propylene yields, with 
ethylene being more sensitive to temperature and propylene being more 
affected by pressure. In future applications, researchers optimize the 
MTO process by making timely adjustments to the dosages of these im-
portant variables to increase ethylene and propylene yields.
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