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Light olefins (ethylene and propylene) have become prominent in chemical industries. Forecasting of the yields
of light olefins plays a crucial role in monitoring and optimizing the Methanol-to-olefins (MTO) process. In this
work, we introduce an approach for forecasting the yields of ethylene and propylene in the MTO process with
the Relevance Vector Machine (RVM) model, which is uniquely enhanced with hybrid kernels and a rolling
window methodology. Through an in-depth analysis of 32 independent variables and their pairwise differences,

our research pinpoints temperature and pressure as the most critical factors influencing the yields of ethylene
and propylene, respectively. The model showcases satisfactory predictive accuracy and reasonable interpretability
compared with the traditional statistical and popular machine learning models, marking a step forward in the
predictive modeling of chemical engineering processes.

1. Introduction

Light olefins, including ethylene and propylene, are pivotal chem-
ical feedstocks that occupy significant positions in the petrochemical
and organic chemical industries (Chang, 1984; Monai et al., 2021). The
conventional production processes for ethylene and propylene employ
naphtha cracking technology, which entails substantial crude oil con-
sumption (Jiao et al., 2016). In contrast, Methanol-to-olefins (MTO)
(Tian et al., 2015) represents an essential avenue for the efficient uti-
lization of resources. The Dalian Institute of Chemical Physics (DICP),
Chinese Academy of Sciences, has researched MTO technology, DMTO,
since the 1980s. In 2010, the first industrial-scale plant using the DMTO
technology was completed and operated (Ying et al., 2015). DICP con-
tinued the research and developed the DMTO-II and DMTO-III technol-
ogy. Currently, more than 30 industrial MTO units have been licensed,
making MTO one of the primary industrial routines for producing light
olefins.

Under the framework of Industry 4.0, DMTO technology is also trans-
forming into intelligence (Moghaddam, 2023). Exploring the deep-level
relationships between industrial process inputs and outputs, conducting
forecasted research on olefins production has significant practical im-
plications for the future construction of brilliant chemical engineering
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models, namely the development of self-design and improvement system
for DMTO technology (Wang et al., 2021). In addition, for laboratory
experiments, pilot scale-up, and factory production at the current stage,
mining deep-level relationships between input variables and olefins pro-
duction, as well as accurate forecasting of olefins output, can provide
reliable decision-making references for adjusting equipment and opera-
tional conditions (Huang et al., 2023; Abdi et al., 2023).

Classical statistical models have been frequently applied to forecast
time series data. Addressing several persistent challenges is essential to
construct a durable predictive statistical model. First, the variability and
complexity of industrial operations often render these processes non-
stationary due to dynamic changes and diverse operational conditions
(Cheng et al., 2015). Second, the complexity of prediction is further com-
pounded by the nonlinear relationships and dynamic interplays among
the variables involved in these processes. Applying mathematical ap-
proaches based on reaction mechanisms and kinetics proves impractical
for actual industrial applications. This impracticality stems from the in-
distinct nature of the physical laws linking inputs to outputs, coupled
with the intricate configurations of industrial facilities (Linninger, 2002;
Fan et al., 2024). Traditional statistical techniques such as the autore-
gressive integrated moving average (ARIMA) (Dey et al., 2023) have
been widely adopted for forecasting time series data. Nevertheless, these
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methodologies presuppose a linear association between future outcomes
and past observations (De Gooijer and Hyndman, 2006), a presumption
that often needing to be revised in industrial processes, leading to sub-
optimal predictive accuracy.

In recent years, methodologies grounded in machine learning and
deep learning have become promising strategies for forecasting time se-
ries data. These approaches can autonomously discern complex input
and output data relationships without requiring predefined models (Co-
ley et al., 2017). Notably, Recurrent Neural Networks (RNN), along with
its derivatives, Long Short-Term Memory (LSTM) (Zhang et al., 2019),
have been recognized for their exceptional efficacy (Long et al., 2023).
For instance, research by Kumar et al. (2018) highlighted the adept-
ness of LSTM and Gated-Recurrent-Unit (GRU) models in addressing
nonlinearities and seasonal patterns in electricity demand forecasting.
Similarly, a study by Wang et al. (2020b) showcased the superiority
of LSTM-based frameworks over conventional methodologies in pre-
dicting the periodic energy demands of cooling systems. Despite their
commendable predictive capabilities, the scalability of RNNs is some-
what constrained due to their limited parallelization potential (Hu and
Zheng, 2020). Conversely, Convolutional Neural Networks (CNN) have
also been extensively utilized for time series forecasting, demonstrating
significant potential. Wang et al. (2020c) introduced two CNN models
that leverage symbolic hierarchical clustering for predicting operational
trends in methanol production units. Furthermore, attention-based mod-
els have gained prominence for their ability to assign variable impor-
tance through an attention mechanism, thereby enhancing model fo-
cus on critical data segments. For example, studies by Aliabadi et al.
(2020) and Li et al. (2021) have validated the superior performance
of attention-based RNNs and LSTM models in multi-step forecasting
of chemical processes. The integration of attention mechanisms with
CNN-LSTM by Yang et al. (2021) facilitated precise predictions of wa-
ter quality indicators. A Hierarchical Attention-based Recurrent High-
way Network (HRHN) proposed by Tao et al. (2018) has demonstrated
remarkable accuracy in stock trend forecasting. Additionally, the self-
attention mechanism has attracted significant attention for its ability
to recognize patterns across extensive historical data, proving advan-
tageous for identifying long-term dependencies. Bi and Zhao (2021)
employed dual parallel self-attention layers to capture spatial corre-
lations and temporal dependencies within time series data. Although
these methodologies have achieved notable success, the above models’
interpretation could be more satisfactory in indicating the significant in-
fluential factors. Also, the quest for further improvements in predictive
accuracy continues unabated.

In industrial forecasting, vector machines have been widely em-
ployed for their ability to meet the accuracy and interpretability evalua-
tion criteria (Wang et al., 2020a; Lim et al., 2021). Tipping (1999, 2001)
pointed out the limitations of the Support Vector Machine (SVM) algo-
rithm and proposed a new sparse probabilistic model called Relevance
Vector Machine (RVM) based on the Bayesian framework. The main ben-
efits of RVM are as follows (Wang et al., 2023): (1) it is more sparse and
suitable for handling large datasets; (2) it offers a broader range of ker-
nel function choices; (3) it is based on a simple linear structure, which
can support straightforward model modification and improvements.

RVM regression has demonstrated remarkable achievements in
chemical engineering, showcasing excellent forecast capabilities. Fang
et al. (2013) proposed an integrated modeling approach based on a
unified design, combining RVM with genetic algorithms. This method
aimed to enhance the efficiency of microbial fuel cells in converting
chemical energy from wastewater into electrical energy, effectively
improving battery performance and power density. Xu et al. (2017) pre-
sented an effective forecasting interval method based on Bootstrap and
RVM. This method forecasts the density of polymers in the high-density
polyethylene production process, demonstrating superior accuracy and
efficiency. Wang et al. (2021) established a data-driven framework
based on RVM for optimizing the operation of industrial MTO pro-
cesses. The optimal operating mode can be identified by associating the
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forecasted yield distribution of major products with operating condi-
tions, resulting in improved ethylene yield. Acosta et al. (2021) offered
an adaptive differential evolution algorithm combined with RVM for
forecasting phosphorus concentration levels in steelmaking processes.
The study demonstrated that RVM outperforms random forests (RF),
artificial neural networks (ANN), K-nearest neighbor algorithms, and
statistical learning techniques. Jiang et al. (2021) proposed a reliable
cyclic aging forecasted method based on data-driven models to address
the early forecasting of the remaining lifespan in lithium-ion batteries.
Experimental results showed that the hybrid kernel function-based RVM
accurately forecasts failure cycles and capacity degradation trajectories
for different battery types. Reviewing previous literature shows three
main application approaches of RVM in chemical engineering: direct
utilization of the original RVM model, development of improved RVM
models, and utilization of RVM in combination with other methods. This
paper improves the RVM by setting the single and hybrid kernel stud-
ies for an accurate forecasting result. We also combine the RVM with
a rolling window approach for a robust and efficient model, and we
provide a more comprehensive research work than previous literature.
The structure of this paper is as follows: Section 2 introduces the data
used in this study, Section 3 describes all models employed, Section 4
presents the empirical results, and Section 5 provides conclusions.

2. Data description

The data source is from one of the DMTO factories. The simplified
flow diagram of the reaction and regeneration unit in a practical DMTO
plant is shown in Fig. 1. This system is composed of four components,
including wash tower, reactor, stripper, and stripper regenerator. First,
gasified methanol enters the reactor and reacts with the catalyst (SAPO-
34) to produce product gases. Next, these product gases are then sent to a
product analyzer for analysis, while the coker catalyst is circulated back
to the regenerator through one of the risers and reacted with air to re-
store activity. Finally, the regenerated catalyst is returned to the reactor
through another riser (Zhou et al., 2024). Since the reaction process will
be affected by a variety of environmental factors, we select 32 typical
variables in the DMTO flow as the explanation information. The 2 out-
put variables are the yields of ethylene and propylene, the main products
of DMTO, shown in Fig. 1, labeled as AT1603G and AI16031, respec-
tively. The data codebook lists all the variables’ meanings (Table 1). The
collected time is from February 28, 2021, to March 11, 2022, totaling
372 days (missing 4 days’ data). The data was measured every 2 hours
and produced 12 batches daily so that the dataset has 372 % 12 = 4464
batches. The whole dataset is S = {X total ytotal }, X'l i 30 x 4464
dimensions and Y is 2 x 4464 dimensions.

The output variables and the corresponding first-order difference
are indicated in Fig. 2. The ethylene yield exhibits fluctuations rang-
ing from 45% and 50%, and the propylene yield fluctuates between 28%
and 31%. Besides, industrial process data presents more intricate charac-
teristics that pose a considerable challenge for forecasting. For example,
anomalies such as data drift occasionally occur. The first-order differ-
ence illustrates that the outputs are stationary. In forecasting research,
we conduct the normalization for all the dependent and independent
variables to eliminate the influence of different units.

2.1. Clustering analysis

Considering the high dimensionality, large quantity of variables, and
complex characteristics and relationships between data, the clustering
analysis is performed. In this paper, 32 independent variables are clus-
tered utilizing the K-shape algorithm, where the optimal number of
clusters is determined by the Elbow method. The K-shape clustering pro-
cess incorporating the Elbow method is described in Appendix A, Section
3.1. K-means is often utilized for cluster analysis, but it performs poorly
on data series with significant fluctuations because it employs the Eu-
clidean Distance (ED) to measure similarity (Hartingan and Wong, 1979;
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Fig. 1. Flow diagram of the reaction-regeneration unit of the MTO process.

Table 1
Variables codebook and clustering results.
Cluster Code Name Cluster ~ Code Name
Outputs AI1603G Ethylene C4 FIC1123 Supplementary Nitrogen Flow rate to Main Air
AI1603I Propylene Q_PDI1113  Catalyst circulation flow rate
| feed fl TI1134A Regeneration temperature
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FI1704 Non-condensable gas flow rate eaction temperature .
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TI1135B The temperature of the lower part of the stripping section water washing tower
ca AI1106 Flue gas 02 PDI1619 Total pressure drop of water washing tower
AI1107 Flue gas CO PDI1620 Pressure drop at the bottom of the water washing tower
AT1108 Flue gas CO2 TI1611 Water washing tower temperature
PIC1110 Regeneration pressure Cc9 PDI1706 Total pressure drop in stripping tower
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Fig. 2. Olefins yields (left) and first-difference (right) plots.
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Wau et al., 2022), and cannot capture the dynamic change characteris-
tics such as periodicity and volatility of time-series data. The principle
of K-shape is similar to that of K-means, except that it improves the dis-
tance calculation method and optimizes the center of mass calculation
method. K-shape algorithm uses Shape Based Distance (SBD) to compute
the similarity between time series, and thus can efficiently handle long
time series. It considers the scale and translation invariance of time se-
ries and can reasonably handle data with different amplitudes and phase
differences (Yang et al., 2017).

The optimal number of clusters is 10 and the specific clustering re-
sults are shown in Table 1 and Fig. 1. Notably, the clustering results
based on the K-shape are highly consistent with the actual chemical re-
action mechanism, which indirectly confirms the high quality of the data
presented in this paper.

2.2. Correlation analysis

We apply the Maximal Information Coefficient (MIC) (Kinney and
Atwal, 2014) to explore the correlation between output and influenc-
ing factors data. Unlike the Pearson Correlation Coefficient (Sedgwick,
2012), which can only capture linear relationships between data, MIC
captures both linear and nonlinear relationships. Given the character-
istics of the data utilized in this paper, MIC was chosen to calculate
correlations. Section 3.2 in Appendix A demonstrates the formula of
MIC, and the associated results are shown as Fig. S1. Overall, there are
strong correlations between the variables studied in this paper.

Under the MIC correlation test, there is a correlation between the 32
independent variables and light olefins yields. Among those, TI1134A
(C4), with the smallest MIC value, is not significantly correlated with
both ethylene and propylene. In a word, regeneration temperature is not
significantly related to the yield of ethylene and propylene. This result
is the same as the empirical results in Section 4. Most of the independent
variables correlate with output variables, especially when considering
the MIC test, which means the dataset has a time-varying solid correla-
tion. This is the primary motivation for employing the rolling window
approach to capture the time-varying correlation information for more
acceptable accuracy and efficiency.

3. Model specification
3.1. Vector machine algorithm

Given a training dataset of the observed values as $" = { X", Y} =
{(x’l’,y’{) , (x’zr,y’zr) s (XYY }, where xI" € X C R is the indepen-
dent variables and yf.’ is the dependent response, i = 1,2,...,n. The
vector machine models (including the regression and classification) as-
sume that there is a kernel function K(-,-) such that every arbitrary

dependent variable yz)’ in the training dataset can be expressed as a

weighted summation of kernel functions
n
f (xiw) = 3 wiK (x0.x]) +w. §
i=1
the estimation with an error term is

n
y;)’:f(xg;w)+50=Zw[K(x0,x§’)+w0+£0. (2)

i=1

Eq. (1) is often rewritten in a matrix form as

f(X"w)=0"w, ©)

where w = (wy,wy,...,w,)T is the weight vector, ®" = ( ’1’, ’2’,

(I);')T is the kernel matrix of S", with ¢! = (1, K, xi"), K(x, x]"),
...,K(x;’,x;’)). A test dataset can be defined as S’ = {X’e,Y"’} =
{(x'f,y’l"), (x’z",y’z" e, (xi;’,y’wf)}, where x;.e € X C R!, X is in the same
vector space as S, the dependent response is y;e, j=1,2,...,m. After

Chemical Engineering Science 301 (2025) 120656

obtaining the estimation of w as @ based on S, the forecasting of the
S’ is

(X w) = w, @
where @ = (¢'¢, pY, ..., ¢'<)" is the kernel matrix of S" and ', with
¢;" = (1,K(x’lr,x}e),K(x;’,x}e),...,K(x;’,x;")). In Eq. (4), the estima-
tion of parameter w only depends on S”". However, the kernel matrix
®@'¢ includes both the information of the training and test datasets, the

interactive relationship of S’ and S is expressed by the kernel func-
tion.

3.2. RVM regression

Reflect on the kernel regression model presented in Eq. (1), (2),
where &; ~ N (0,0?). The likelihood function, which is derived from
model (3), follows a Gaussian distribution (Tipping, 2001)

p(Y' w,0*) =N, (Y"®"w,0%1,)

n Yrr _(Dtr 2
=(2m72) 2exp{—w}. 5)

202

In RVM regression, it is often assumed that most of the coefficients
w; will be zero or of negligible magnitude. This is why a sparse repre-
sentation of Eq. (1) is sought after. A prior for w is chosen to reflect this
belief and obtain the desired sparse representation. To achieve sparsity,
a separate independent zero-mean Gaussian prior is specified for each

w;

(w; la;) ~N (w;10,a;),

pw|a)= N, (w|0,07'1,,,). (6)
While it may seem unlikely for a Gaussian prior to result in sparsity,

it has been discovered that incorporating a Gamma hyperprior for each

@; leads to a Student-t marginal prior for w; when «; is integrated out.

This implies that

(a,- | a,b) ~Ga (a,- | a, b) ) 7)

the marginal prior for w; is

P(Wi) =/P(wi |a[)p(a,-)da,-
_ bT(a+1/2) 12\~ +1/2)
= i ( + ) ) .

The prior distribution for the vector w, consisting of individual com-
ponents w;, is characterized by a marginal prior that is remarkably

®

sparse. A two-dimensional case w = ( wi, wz)T is employed to demon-
strate that this prior (Fig. S2, right) induces even greater sparsity pres-
sure on the joint density of (w] s wz) compared to the sparsity pressure
exerted by the Gaussian and Laplace priors (Fig. S2, left and center).
Sparse prior forces the most nonsignificant w; to be 0, making the RVM
model efficient and robust (Fokoué et al., 2011). The parameter esti-
mation process of RVM regression is illustrated in Fig. S3 and Section
3.3 in Appendix A. The forecasting process and pseudo-code of the RVM
regression model are shown as Section 3.4 and Model 1 in Appendix A.

3.3. Kernel functions

One of the critical components of RVM is kernel function K(:,). By
selecting different kernel functions, various vector machine models can
be generated (Alvarez et al., 2012).

3.3.1. Fundamentals of kernel functions
For all points x,y € R’ in a certain space, there exists a function
K(x,y) that satisfies the following expression:
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K(x,y) = @(x) - p(y). (C)]

If K(x,y) also satisfies the Mercer condition, it is referred to as a
kernel function. Although RVM does not require the Mercer condition
(Tipping, 1999), we still use the kernel functions under the Mercer con-
dition for the model comparison convenience. The Mercer condition is
defined as:

Assuming g(x) € L,(R') and K(x, y) € L,(R' - R"). For any g(x) #0
with / 2(x)?dx < o, the following equation holds:

[ Kxszmaxay=o, (10)
i.e., for all training samples, x;, x5, ..., X, € R, K(x,y) is a positive def-
inite matrix.

The positive definite matrix guarantees that the objective function
is convex and thus the optimization problem has a unique global opti-
mal solution. The kernel function that satisfies the Mercer condition can
map the original data to a high-dimensional space through feature map-
ping, in which linear operations are performed. By satisfying the Mercer
condition, we are able to take advantage of the kernel method to trans-
form a nonlinear problem into a linear problem in a high-dimensional
space, thus improving the expressive and predictive performance of the
model. It also facilitates the comparison with SVM, which must satisfy
the Mercer condition.

The commonly used (also used in this paper) kernel functions in-
clude (Lall et al., 1993; Wang et al., 2015) Polynomial kernel, Linear
kernel, Gaussian kernel, Sigmoid kernel, and Laplace kernel, defined in
Appendix A, Section 3.5.

3.3.2. Choices of kernel functions

Each kernel function type has benefits and drawbacks, which deter-
mine its level of non-linearity. As recorded in Appendix A, Section 3.5,
based on the characteristics of kernel functions, they can be categorized
into two types: local kernel and global kernel (Xu et al., 2015).

Local kernels, including Gaussian, Laplace, and Sigmoid kernels (Fig.
S4), emphasize the similarity between neighboring points and are there-
fore effective in capturing local patterns and variations in the data. Lin-
ear kernels and Polynomial kernels are common global kernels, which
are less capable of interpolation than local kernels, but are able to model
long-distance interactions between the overall structure and features,
and therefore capture the global features of the sample more efficiently
(Fig. S5). When the input sample values differ and have a wide range of
variations, the global kernel function still strongly impacts the samples,
indicating its strong generalization ability. Compared to local kernel
functions, global kernel functions are characterized by weaker interpola-
tion ability but are more effective in capturing the global characteristics
of the samples (Fig. S5). In addition to categorizing them as local and
global, each kernel function has unique application scenarios. Table S1
summarizes the application scenarios of the 5 kernel functions consid-
ered in this paper (Min and Lee, 2005; Gretton et al., 2012).

3.3.3. Hybrid kernel functions

In high-dimensional feature spaces, samples may exhibit uneven dis-
tribution. The results obtained from mapping transformations using a
single kernel function may not be particularly satisfactory (Ding et al.,
2013). By leveraging the properties of the kernel function and combin-
ing them, a hybrid kernel function balancing both aspects of perfor-
mance and creating a new stable mixed kernel function model can be
constructed to improve the stability greatly.

The general properties of kernel functions, which are very important
for constructing our hybrid kernel RVM models, are shown in Appendix
A, Section 3.6. Based on the five single kernel functions, the hybrid ker-
nel is expressed as:

K" = 0K, + (1 = DK;, an
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Table 2
Grid search of hyperparameters.
Hyperparameters Range
Hybrid Kernel Weights [0.1, 0.9][0.2, 0.8][0.3, 0.7]

[0.4, 0.6][0.5, 0.5][0.6, 0.4]
[0.7, 0.3]1[0.8, 0.2][0.9, 0.1]

[gaussian][linear] [polynomial] [sigmoid] [laplacian]
[101[1][0.1][0.01]

[2][31[4]...[24]

[0.11[1][2][3]

Kernel Function Type
Gamma

Window Size

Polynomial Kernel Degree

where {Ki.K;} € {K K K re

-polynomial » Klinear’
0, 1),i# .

The selection of kernel function-related parameters directly impacts
the performance of machine learning methods. Fig. S6 shows the hybrid
kernels of Gaussian (x ;= 0,0 = 1) with Laplace (x ;= 1,0 = 1), Linear,
Sigmoid (v =1,¢ =0), and Polynomial (d = 3, ¢ = 0). The hybrid kernel
has the edges of two individual kernels and obtains additional freedom
to adjust the weights for the most significant performance.

gaussian> > sigmoid > Klaplace }’

3.4. Estimation of hyper-parameters

Except for the primary parameter estimation in Model 1, research
conducted by Diosan et al. (2012) has shown that the performance
of vector machines is also significantly determined by the hyper-
parameters in the kernel function and the weight coefficients. Therefore,
this study also focuses on optimizing hyper-parameter estimation (Clae-
sen and De Moor, 2015). We apply the Grid Search (Lerman, 1980)
method for hyper-parameters estimation as Model 2 in Appendix A.

The specific hyperparameters and their optimization search ranges
are shown in Table 2.

3.5. Rolling-window training and test process

Based on the highly time-varying relationship between variables il-
lustrated in Section 2, the rolling-windows approach is preferred for this
paper’s training and test process (Inoue et al., 2017). When describing
a time-varying state where the value of a time series at a particular mo-
ment is highly correlated with data close to the current time point, the
input and output data of the model should be continuously updated. This
necessitates the introduction of rolling time window technology. Using
a fixed range and time-rolling data interval for modeling can signifi-
cantly improve efficiency. It continuously evolves the base forecasting
model by moving forward and including the latest period’s new sample
in the “time window”. In this method, new sample data replaces old data
in real time, and changes in the current window’s sample data require
reconstructing a more optimal forecasting model.

The principle of the rolling window can be described as follows:
assume a set of continuous data samples, where / data groups can char-
acterize the state at time ¢ + / from time ¢ to ¢ + / — 1. Therefore, data
from the interval between time ¢ and 7 + / — 1 establishes a model and
forecasts the state at time ¢ + /. When the next moment arrives, while
keeping the length of the time window / constant, the data at time ¢ is
discarded, and the data at time 7+ / is added. Then, data from time 7+ 1
to t +/ is used to establish a model to obtain the forecasted output at
time 7+ 7+ 1. The .S groups of continuous data intervals characterizing
the state as time progresses are dynamically updated. Fig. S7 shows this
paper’s comprehensive training and test process when / = 2.

3.6. Criteria for forecasting performance

The loss function must be chosen for statistical tests to compare the
forecasting performance of different model specifications. In this paper,
two standard loss functions are used: Mean Squared Error (MSE) and
Mean Absolute Error (MAE), which are both statistical measures used
to evaluate the performance of a forecasted or estimated model. They
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Table 3

Forecasting results of ethylene with single kernel.
C,H,
! Gaussian Linear Polynomial Sigmoid Laplace

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

2 0.001397 0.025564 0.001560 0.027651 0.001366 0.025579 0.001355 0.025425 0.001338 0.025277
3 0.001666 0.028904 0.001961 0.032018 0.001732 0.029741 0.001716 0.029556 0.001669 0.029143
4 0.001904 0.031401 0.002308 0.035406 0.002060 0.033117 0.002040 0.032909 0.001970 0.032300
5 0.002075 0.033243 0.002583 0.037927 0.002320 0.035598 0.002297 0.035383 0.002206 0.034653
6 0.002176 0.034289 0.002764 0.03960 0.002502 0.037324 0.002478 0.037115 0.002371 0.036247
7 0.002244 0.034806 0.002861 0.040419 0.002605 0.038221 0.002581 0.038019 0.002462 0.037055
8 0.002235 0.034638 0.002885 0.040418 0.002629 0.038263 0.002607 0.038072 0.002482 0.037076
9 0.002174 0.033978 0.002778 0.039539 0.00572 0.037601 0.002552 0.037423 0.002430 0.036484
10 0.002085 0.032997 0.002637 0.038226 0.002459 0.036486 0.002442 0.036326 0.002319 0.035400
11 0.001975 0.031812 0.002456 0.036562 0.002322 0.035086 0.002307 0.034946 0.002186 0.034029
12 0.001875 0.030701 0.002308 0.035109 0.002203 0.033800 0.002191 0.033670 0.002066 0.032780
Average 0.001982 0.032030 0.002464 0.036625 0.002252 0.034620 0.002233 0.034440 0.002136 0.033677
Optimal window 1=2 1=2 1=2 1=2 =2
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Fig. 3. Variation of ethylene (left) and propylene (right) yield forecast error with windows (single kernel).

are both ways to quantify the difference between the actual values and
those forecasted by the model.

MSE is calculated as the average squared differences between the
forecasted and actual values. Conversely, MAE is calculated as the av-
erage absolute differences between the forecasted and actual values.
Mathematically, they can be represented as follows:

Z(J;i _J’[)z,

MSE:l
n

[9: = ¥il, 12)

™-

MAE=1
n

i=1

where # is the total number of data points, y; is the actual value, and
9; is the forecasted value for the i-th observation. A lower MSE or MAE
indicates a more satisfactory fit of the model to the data. The key dif-
ference between MSE and MAE lies in how they handle outliers. Since
MSE squares the differences before averaging, it tends to penalize larger
errors more severely than MAE, which could make MSE more sensitive
to outliers in the data.

4. Results
4.1. Olefins yields forecasting study

Apply the model in Section 3 to the data in Section 2 for forecasting
the light olefins yields.

4.1.1. Ethylene yields forecasting
(1) Single kernel study

The results of the single kernel study for ethylene yield forecast-
ing are shown in Table 3. From the perspective of average value, the
Gaussian kernel is the optimal one, which means the square of the differ-
ence between independent variables is most significant in contributing
information to forecast the ethylene yield. From the rolling window per-
spective, 2 window length is most preferred for all the single kernels
so that the forecasting can be done efficiently with four hours of data.
Notably, as shown in Fig. 3 (left), the error (MSE) varies periodically
(roughly 24 hours) as the window increases. Globally, the single Laplace
kernel with 2 window length is the best, the corresponding forecasting
results are shown in Fig. 4 (left).

(2) Hybrid kernel study

The results of the hybrid kernel study between Gaussian and Laplace
for ethylene yield forecasting are shown in Table 4. (0.1-Gaussian+
0.9-Laplace) has a better result than the single Laplace kernel concerning
MAE with the same window-length 2, and the errors continue to be cycli-
cal. From the perspective of average value, (0.9-Gaussian+0.1-Laplace)
is the optimal one, but not more reasonable than the single Laplace. The
other hybrid kernel studies are worse than the single one, so we do not
show the results.

In conclusion, the Laplace and Gaussian kernels are preferred by
ethylene forecasting. The difference between independent variables can
explain more about the ethylene yield in the DMTO system. Also, the
hybrid of Laplace and Gaussian can obtain the most satisfactory result
for forecasting. All the studies for ethylene forecasting show periodic
variation in error and return the optimal window length of 2, which
provides a desired scheme to conduct the efficient model. This suggests
that ethylene yield is characterized by short-term fluctuations, and the
rolling strategy can effectively capture this pattern for fast forecasting
purposes.



Table 4

Forecasting results of ethylene with hybrid kernels of Gaussian and Laplace.
C,H,
! 0.1,0.9° 0.2,0.8° 0.3,0.7° 0.4,0.6° 0.5,0.5° 0.6,0.4° 0.7,0.3° 0.8,0.2° 0.9,0.1°

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

2 0.001338  0.025260  0.001340  0.025256  0.001343  0.025271  0.001347  0.025296  0.001353  0.025327  0.001359  0.025352  0.001367  0.025398  0.001375  0.025440  0.001385  0.025491
3 0.001663 ~ 0.029087  0.001658  0.029038  0.001657  0.029012  0.001656  0.028991  0.001657  0.028982  0.001652  0.028902  0.001649  0.028862  0.001653  0.028868  0.001659  0.028883
4 0.001958  0.032187  0.001949  0.032101  0.001942  0.032026  0.001934  0.031932  0.001921  0.031795  0.001912  0.031646  0.001898  0.031508  0.001899  0.031463  0.001902  0.031430
5 0.002188  0.034481  0.002175  0.034356  0.002160  0.034235  0.002146  0.034074  0.002119  0.033820  0.002093  0.033587  0.002080  0.033395  0.002071  0.033298  0.002073  0.033269
6 0.002348  0.036042  0.002335  0.035868  0.002312  0.035689  0.002291  0.035494  0.002250  0.035128  0.002221  0.034835  0.002203  0.034602  0.002187  0.034448  0.002178  0.034365
7 0.002437  0.036821  0.002419  0.036613  0.002388  0.036356  0.002353  0.036087  0.002317  0.035708  0.002293  0.035428  0.002256  0.035123  0.002245  0.034955  0.002240  0.034853
8 0.002456  0.036846  0.002425  0.036585  0.002393  0.036317  0.002361  0.036022  0.002318  0.035618  0.002284  0.035305  0.002264  0.035104  0.002246  0.034867  0.002234  0.034721
9 0.002401  0.036230  0.002360  0.035959  0.002336  0.035729  0.002307  0.035438  0.002267  0.035088  0.002232  0.034746  0.002207  0.034448  0.002188  0.034226  0.002180  0.034087
10 0.002286  0.035118  0.002257  0.034905  0.002235  0.034653  0.002210  0.034383  0.002170  0.034019  0.002132  0.033660  0.002107  0.033417  0.002098  0.033275  0.002090  0.033120
11 0.002150  0.033733  0.002123  0.033509  0.002103  0.033290  0.002090 ~ 0.033078  0.002048  0.032719  0.002012  0.032357  0.001987  0.032091  0.001982  0.032007  0.001979  0.031906
12 0.002036  0.032513  0.002011  0.032300  0.001992  0.032097  0.001983  0.031904  0.001945  0.031561  0.001912  0.031225  0.001891  0.030997  0.001889  0.030912  0.001883  0.030792
Average 0.002115  0.033484  0.002096  0.033317  0.002078  0.033152  0.002062  0.032973  0.002033  0.032706  0.002009  0.032459  0.001992  0.032268  0.001985  0.032160  0.001982  0.032083
Optimal window /=2 1=2 =2 1=2 1=2 =2 1=2 1=2 1=2

2 Weights of Gaussian and Laplace kernels, respectively.
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Fig. 4. Ethylene (left) and propylene (right) optimal forecasting results with all independent variables.
Table 5
Forecasting results of propylene with single kernel.
C;Hg
i Gaussian Linear Polynomial Sigmoid Laplace
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
2 0.001988 0.033704 0.002379 0.037005 0.002059 0.034271 0.002031 0.034010 0.001998 0.033780
3 0.002262 0.036291 0.002778 0.040536 0.002454 0.037799 0.002423 0.037536 0.002350 0.037045
4 0.002481 0.038283 0.003144 0.043407 0.002816 0.040625 0.002784 0.040347 0.002671 0.039644
5 0.002668 0.039880 0.003458 0.045719 0.003124 0.042974 0.003090 0.042694 0.002956 0.041839
6 0.002812 0.040934 0.003690 0.047331 0.003344 0.044569 0.003310 0.044289 0.003162 0.043329
7 0.002865 0.041336 0.003807 0.048010 0.003471 0.045388 0.003438 0.045111 0.003279 0.044095
8 0.002871 0.041300 0.003830 0.048036 0.003513 0.045584 0.003482 0.045329 0.003323 0.044327
9 0.002803 0.040757 0.003768 0.047488 0.003474 0.045174 0.003445 0.044938 0.003289 0.043928
10 0.002737 0.040134 0.003640 0.046533 0.003376 0.044426 0.003351 0.044206 0.003201 0.043218
11 0.002633 0.039238 0.003472 0.045357 0.003244 0.043424 0.003222 0.043230 0.003083 0.042295
12 0.002571 0.038617 0.003325 0.044252 0.003133 0.042550 0.003114 0.042369 0.002984 0.041457
Average 0.002608 0.039134 0.003390 0.044879 0.003092 0.042435 0.003063 0.042187 0.002936 0.041360
Optimal window =2 =2 =2 1=2 1=2

4.1.2. Propylene yields forecasting
(1) Single kernel study

The results of the single kernel study for propylene yield forecasting
are shown in Table 5. The Gaussian kernel outperforms in terms of global
and average perspectives. The square difference between independent
variables contributes the most influential information to forecast the
propylene yield. From the rolling-window perspective, as shown in Fig.
3, identical to the ethylene, the MSE for propylene yield forecasting con-
tinues to show cyclical variation and 2 window length is most preferred.
The results for propylene forecasting with a single Gaussian kernel are
shown in Fig. 4 (right).

(2) Hybrid kernel study

The results of the hybrid kernel study between Gaussian and Sig-
moid, Gaussian and Laplace for propylene yield forecasting are shown
in Tables 6 and 7. (0.8-Gaussian+0.2-Sigmoid) and (0.7-Gaussian+
0.3-Laplace) have the most promising results for the hybrid studies, also
are more reasonable than the single Gaussian kernel with same window-
length of 2, and the errors still continue to be cyclical. (0.7-Gaussian+
0.3-Laplace) outperforms all others for propylene forecasting. From the
perspective of average value, (0.9-Gaussian+0.1-Sigmoid or Laplace) is
the optimal one, which means Gaussian is still the most consequential
kernel here. The other hybrid kernel studies are improper, so we do not
show the results in the paper.

4.2. Analysis of independent variable clusters
To identify process variables that have a significant impact on the

yields of ethylene and propylene, we conduct single cluster and mixed
cluster studies. The single cluster study involves adding each of the 10

clusters to the model and identifying the clusters that have a signifi-
cant effect on yields forecasts. The mixed cluster study is the process of
arranging and combining the different clusters in order to explore the
combinatorial effects among them and fully exploit the potential infor-
mation affecting the light olefins yields.

4.2.1. Cluster study for ethylene yields
(1) Single Cluster Studies for Ethylene Yields

Based on the 10 clusters of independent variables in Section 2, we
test the forecasting ability of each cluster to locate the influential ones
in the DMTO process. The results of single cluster studies for ethylene
yield forecasting are shown in Table 8. C3 is the most noteworthy one.
C5,C8, and C10 also provide the convincing results. The results indicate
that the temperature (C3 and C5) is the most important factor affecting
ethylene yield. The pressure (C3 and C8) and refining of heavy olefins
(C10) are also critical for ethylene production. In conclusion, tempera-
ture, pressure, and refining of heavy olefins are 3 factors that need to be
focused on in the DMTO process to increase the ethylene yields, which
is typically identical to the chemical knowledge.

The optimal window length shows that the single cluster needs a
larger length than all independent variables studied because it has small
dimensions. Hence, a larger data size is needed to enhance the informa-
tion for forecasting. C3 and C5 need the smallest 2 of window length,
C8 and C10 require the second smallest 3 of window length, which also
illustrate that C3 and C5 include considerable data information for fore-
casting ethylene yields. This is an additional proof that C3,C5,C8, and
C10 are necessary factors.

(2) Mixed Clusters Studies for Ethylene Yields



Table 6

Forecasting results of propylene with hybrid kernels of Gaussian and Sigmoid.
C3H6
! 0.1,0.9 0.2,0.8* 0.3,0.7* 0.4,0.6 0.5,0.5" 0.6,0.4" 0.7,0.3* 0.8,0.2* 0.9,0.1*

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

2 0.002019  0.033932  0.002009  0.033866  0.002001  0.033815  0.001994  0.033770  0.001988  0.033733  0.001986  0.033709  0.001985  0.033699  0.001983  0.033682  0.001985  0.033688
3 0.002401  0.037384  0.002374  0.037215  0.002357  0.037091  0.002336  0.036944  0.002322  0.036843  0.002305  0.036697  0.002286  0.036543  0.002276  0.036437  0.002268  0.036348
4 0.002748  0.040126  0.002714  0.039916  0.002696  0.039777  0.002666  0.039587  0.002616  0.039328  0.002578  0.039054  0.002542  0.038768  0.002510  0.038525  0.002491  0.038365
5 0.003042  0.042402  0.002999  0.042131  0.002955  0.041855  0.002911  0.041583  0.002856  0.041277  0.002799  0.040941  0.002746  0.040548  0.002710  0.040269  0.002687  0.040075
6 0.003260  0.043963  0.003208  0.043638  0.003164  0.043340  0.003112  0.043001  0.003041  0.042620  0.002961  0.042103  0.002898  0.041664  0.002856  0.041318  0.002836  0.041123
7 0.003383  0.044756  0.003328  0.044403  0.003268  0.044025  0.003199  0.043627  0.003144  0.043251  0.003053  0.042697  0.002966  0.042136  0.002939  0.041851  0.002902  0.041566
8 0.003424  0.044971  0.003366  0.044610  0.003302  0.044216  0.003231  0.043781  0.003187  0.043462  0.003088  0.042820  0.002997  0.042227  0.002954  0.041898  0.002912  0.041602
9 0.003388  0.044572  0.003330  0.044214  0.003271  0.043848  0.003206  0.043419  0.003157  0.043061  0.003067  0.042485  0.002989  0.041955  0.002923  0.041506  0.002867  0.041148
10 0.003297  0.043855  0.003240  0.043499  0.003183  0.043130  0.003111  0.042686  0.003076  0.042404  0.002982  0.041741  0.002898  0.041220  0.002843  0.040833  0.002766  0.040396
11 0.003168  0.042884  0.003118  0.042551  0.003064  0.042197  0.002994  0.041768  0.002959  0.041513  0.002867  0.040822  0.002783  0.040298  0.002689  0.039727  0.002664  0.039501
12 0.003064  0.042039  0.003019  0.041729  0.002972  0.041408  0.002903  0.040946  0.002861  0.040628  0.002790  0.040072  0.002696  0.039514  0.002640  0.039129  0.002609  0.038914
Average 0.003018  0.041899  0.002973  0.041616  0.002930  0.041337  0.002878  0.041010  0.002837  0.040738  0.002770  0.040286  0.002708  0.039870  0.002666  0.039561  0.002635  0.039339
Optimal window /=2 1=2 1=2 1=2 1=2 1=2 1=2 1=2 1=2
2 Weights of Gaussian and Sigmoid kernels, respectively.

Table 7

Forecasting results of propylene with hybrid kernels of Gaussian and Laplace.
C3H6
! 0.1,0.9 0.2,0.8" 0.3,0.7 0.4,0.6 0.5,0.5" 0.6,0.4° 0.7,0.3* 0.8,0.2° 0.9,0.1°

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

2 0.001993  0.033750  0.001989  0.033724  0.001985  0.033701  0.001982  0.033686  0.001982  0.033677  0.001982  0.033676  0.001981  0.033668  0.001983  0.033677  0.001985  0.033687
3 0.002334  0.036931  0.002324  0.036860  0.002313  0.036768  0.002303  0.036697  0.002292  0.036603  0.002281  0.036501  0.002272  0.036421  0.002264  0.036331  0.002263  0.036309
4 0.002662  0.039573  0.002642  0.039443  0.002602  0.039249  0.002581  0.039095  0.002552  0.038883  0.002523  0.038659  0.002505  0.038496  0.002494  0.038410  0.002483  0.038315
5 0.002921  0.041627  0.002870  0.041377  0.002853  0.041263  0.002825  0.041085  0.002769  0.040730  0.002728  0.040417  0.002704  0.040223  0.002688  0.040120  0.002679  0.040000
6 0.003114  0.043053  0.003082  0.042855  0.003051  0.042648  0.003005  0.042393  0.002931  0.041939  0.002877  0.041552  0.002854  0.041317  0.002846  0.041172  0.002827  0.041048
7 0.003220  0.043780  0.003196  0.043546  0.003137  0.043268  0.003100  0.042991  0.003023  0.042491  0.002952  0.042051  0.002914  0.041786  0.002909  0.041629  0.002885  0.041459
8 0.003256  0.043951  0.003233  0.043746  0.003185  0.043447  0.003142  0.043152  0.003063  0.042661  0.002991  0.042197  0.002940  0.041858  0.002896  0.041598  0.002900  0.041530
9 0.003237  0.043624  0.003190  0.043316  0.003156  0.043067  0.003118  0.042818  0.003015  0.042182  0.002963  0.041808  0.002920  0.041530  0.002890  0.041274  0.002848  0.041036
10 0.003144  0.042872  0.003100  0.042589  0.003068  0.042374  0.003036  0.042135  0.002953  0.041549  0.002883  0.041073  0.002838  0.040767  0.002796  0.040556  0.002753  0.040300
11 0.003020  0.041913  0.002985  0.041699  0.002961  0.041526  0.002920  0.041225  0.002851  0.040692  0.002763  0.040146  0.002690  0.039765  0.002664  0.039579  0.002650  0.039397
12 0.002927  0.041103  0.002890  0.040830  0.002867  0.040671  0.002831  0.040415  0.002755  0.039911  0.002677  0.039425  0.002615  0.039033  0.002611  0.038942  0.002596  0.038794
Average 0.002894  0.041107  0.002864  0.040908  0.002834  0.040726  0.002804  0.040517  0.002744  0.040120  0.002693  0.039773  0.002657  0.039533  0.002640  0.039390  0.002624  0.039261
Optimal window =2 1=2 =2 1=2 1=2 1=2 1=2 =2 =2

2 Weights of Gaussian and Laplace kernels, respectively.
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Table 8
Forecasting results of ethylene in single cluster study.
C,H,
Cluster ~ MSE MAE Mean Kernel Optimal
window length
Cl 0.001353 0.025412 0.013383 0.1-Gaussian+0.9-Laplace 5
Cc2 0.001352 0.025385 0.013369 0.1-Gaussian+0.9-Laplace 4
Cc3? 0.001345  0.025317  0.013334  0.5-Gaussian+0.5-Sigmoid 2
Cc4 0.001351 0.025409 0.013380 0.1-Polynomial+0.9-Laplace 5
csP 0.001346 0.025311 0.013329 Gaussian 2
Cc6 0.001354 0.025423 0.013389 0.1-Polynomial+0.9-Laplace 4
c7 0.001355 0.025427 0.013391 Gaussian 4
cs’ 0.001347 0.025327 0.013337 0.9-Gaussian+0.1-Laplace 3
Cc9 0.001354 0.025415 0.013384 Gaussian 5
c10° 0.001350  0.025344  0.013347  0.1-Linear+0.9-Laplace 3

2 Best results are indicated in bold and underlined.

b Significant good results are indicated in bold.

Table 9

Forecasting Results of ethylene in hybrid clusters study.
C,H,
Cluster MSE MAE Mean Kernel Optimal

window length

C3+C5* 0.001337  0.025122  0.013230  0.2:Linear+0.8-Polynomial =~ 2
c3+Cs8’ 0.001339 0.025284 0.013316 Gaussian 2
C3+C10° 0.001341 0.025238 0.013289 0.3-Linear+0.7-Laplace 2
C5+C8 0.001354 0.025421 0.013387 Gaussian 2
C5+C10 0.001350 0.025341 0.013346 0.1-Linear+0.9-Laplace 3
C8+C10 0.001353 0.025399 0.013376 Gaussian 3
C3+C5+C8 * 0.001323 0.025107 0.013215 Gaussian 2
C3+C5+C10" 0.001323 0.025115 0.013219 0.2-Linear+0.8-Polynomial 2
C3+C8+C10 0.001328 0.025207 0.013268 Gaussian 2
C5+C8+C10 0.001333 0.025259 0.013296 Gaussian 2
C3+C5+C8+C10 0.001314 0.025007 0.013161 Gaussian 2

@ Best results in each group are indicated in bold and underlined.
b Significant good results in each group are indicated in bold.

Table 10
Forecasting results of propylene in single cluster study.
C3 fo
Cluster ~ MSE MAE Mean Kernel Optimal
window length
Cl 0.002026 0.033992 0.018009 0.9-Gaussian+0.1-Laplace 7
Cc2 0.002029 0.033972 0.018000 Gaussian 7
c3® 0.002026 0.033972 0.017999 Gaussian 4
C4 0.002021 0.033976 0.017998 0.9-Gaussian+0.1-Sigmoid 6
C5° 0.002016 0.033899 0.017958 Gaussian 5
(€9 0.002034 0.034034 0.018034 0.9-Gaussian+0.1-Sigmoid 7
Cc7 0.002030 0.034002 0.018016 Gaussian 5
cs® 0.002001 0.033656 0.017829 0.9-Gaussian+0.1-Sigmoid 5
Cc9 0.002030 0.034004 0.018039 Gaussian 7
c10° 0.001995 0.033610 0.017803 0.3-Linear+0.7-Laplace 4

@ Best results are indicated in bold and underlined.

b Significant good results are indicated in bold.

Based on the 4 significant clusters of C3, C5, C8, and C10, we con-
ducted the 2,3, and 4 mixed cluster studies. The results are listed in
Table 9. C3+C5+C8 is the most noteworthy composition, and adding it
to the model produces even smaller errors than the single cluster study.
This suggests that taking both temperature and pressure into account
would be more favorable for ethylene yield forecasting.

4.2.2. Cluster study for propylene yields
(1) Single Cluster Studies for Propylene Yields

Same as the single cluster studies for the ethylene yields, we con-
ducted the experiment for propylene yields, listed in Table 10. C3, CS5,
C8 and C10 are still important for propylene. Compared with the ethy-
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lene results, C'10 is the most significant variable. This indicates that the
refining of heavy olefins has a powerful impact on propylene yields. C8
is more influential than C3 and C5, which shows that the pressure is
more important for propylene yield than ethylene yield.

The optimal window length results show the same information as
the ethylene study. C10, C8, C3, and C5 have shorter window lengths
than other clusters, which means they supply more information than
other clusters in explaining the propylene yield.

(2) Mixed Clusters Studies for Propylene Yields

The mixed clusters studies between C3, C5, C8, and C10 are shown
in Table 11. Unlike the ethylene yield forecasting, C8 + C10 is the most
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Table 11

Forecasting results of propylene in hybrid clusters study.
C3H6
Cluster MSE MAE Mean Kernel Optimal

window length

C3+C5° 0.002011 0.033862 0.017936 Gaussian 2
C3+C8 0.002025 0.033964 0.017995 Gaussian 2
C3+C10° 0.002015 0.033891 0.017953 Gaussian 2
C5+C8 0.002021 0.033789 0.017905 Gaussian 2
C5+C10 0.002019 0.033906 0.017963 Gaussian 2
C8+C10 * 0.002005 0.033817 0.017911 Gaussian 2
C3+C5+C8 0.002027 0.033911 0.017969 Gaussian 2
C3+C5+C10 * 0.002009 0.033828 0.017918 Gaussian 2
C3+C8+C10 0.002023 0.033893 0.017958 Gaussian 2
C5+C8+C10° 0.002012 0.033846 0.017929 Gaussian 2
C3+C5+C8+C10 0.002008 0.033820 0.017914 Gaussian 2

@ Best results in each group are indicated in bold and underlined.
b Significant good results in each group are indicated in bold.

Table 12
Summary of forecasting results based on proposed model.

Kernel Situation  Single Kernel Hybrid Kernel Single Cluster Hybrid Two Cluster Hybrid Three Cluster
Criteria MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
C,H,? 0.001338 0.025277 0.001338 0.025260 0.001265 0.024220 0.001274 0.024159 0.001268 0.024188
C;Hg? 0.001988 0.033704 0.001981 0.033668 0.001995 0.033710 0.002006 0.033807 0.002003 0.033760
2 Best results regarding MSE are indicated in bold, and best results regarding MAE are indicated in bold and underlined.
Table 13
Forecasting Result of comparison test for ethylene.
C,H,*
Proportions  50% — 50% 60% — 40% 70% — 30% 80% —20% 90% — 10%
Model MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ANN 0.002297 0.036547 0.002042 0.033629 0.002339 0.034124 0.002370 0.034774 0.002070 0.032728
CNN 0.024763 0.125945 0.015329 0.097230 0.012234 0.087620 0.010889 0.091608 0.016465 0.108881
RNN 0.031805 0.157601 0.070685 0.248327 0.007294 0.071135 0.020908 0.116039 0.014699 0.106425
ARIMA 0.060204 0.212394 0.057600 0.207858 0.010030 0.085544 0.002458 0.039199 0.001527 0.027147
LSTM 0.024766 0.132009 0.009400 0.068151 0.005690 0.056198 0.006234 0.061259 0.006904 0.062581
RF 0.022741 0.130386 0.023567 0.127344 0.015858 0.091287 0.018452 0.104594 0.029111 0.156611
BBP 0.032244 0.161673 0.054239 0.215113 0.006692 0.061815 0.021797 0.124884 0.017308 0.110983
BDLRF 0.033500 0.141784 0.039044 0.181855 0.006646 0.058963 0.008934 0.071250 0.014166 0.100207

2 Best results regarding MSE are indicated in bold, and best results regarding MAE are indicated in bold and underlined.

noteworthy composition for propylene yield forecasting. However, it is
not as good a forecast as considering only C10 or C8.

4.3. Comparison studies

We conduct two kinds of comparison studies for this work. One com-
pares the forecasting results of the proposed model and the models with
the train-test split data approaches; the other compares the RVM and
SVM under the same kernel functions and rolling window approach.
The first one indicates the advantage of the rolling-window approach in
forecasting the yields of MTO, and the second one illustrates the bene-
fit of our proposed model with other vector machines under the same
situations. The summary of the best forecasting results of ethylene and
propylene in previous subsections are listed in Table 12.

For the train-test split data approach, the prevalent algorithms, in-
cluding the traditional time-series models (autoregressive integrated
moving average (ARIMA) and long short-term memory (LSTM)) and the
popular machine learning models (ANN, convolutional neural network
(CNN), recurrent neural network (RNN), and RF) are chosen. Nabavi et
al. (2009) provided the first forecasting work for the MTO yields with
the Basic Backpropagation (BBP) and Backpropagation with Declining
Learning-rate Factor (BDLRF) models, which are also considered as the
comparative ones.
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We set the proportions of the training and test data as 50% —
50%,60% — 40%, 70% — 30%, 80% — 20%, and 90% — 10% to conduct the
forecasting, and the results are listed in Tables 13 and 14. ANN shows
the best results except for the 90% — 10% proportion situation of ethy-
lene and 50% — 50% proportion situation of propylene where the ARIMA
outperforms others. However, the best results of the train-test split data
approach are all worse than the best results of our proposed model
shown in Table 12, which support the benefit of the rolling-window
RVM compared to the traditional time-series and popular machine learn-
ing models.

For the comparison between RVM and SVM under same kernel and
rolling-window setting, we list the results of SVM in Table 15, where
we only show the Gaussian and Laplace kernel (other kernels or hybrid
kernels provide worse results than Gaussian and Laplace kernels) with
length of rolling-window setting of 2, 3, and 4 (lengths longer than 4 pro-
vided the significantly worse results). The results of RVM in Table 12 are
slightly better than SVM in Table 15, which supports that RVM outper-
forms the SVM in forecasting the yields of MTO. Also, the results of SVM
based on the rolling-window setting are significantly more profitable
than those of Tables 13 and 14, where we can conclude that rolling-
window approach is more suitable for the MTO process study than the
traditional train-test split data approach concerning forecasting accu-
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Table 14
Forecasting result of comparison test for propylene.
C3H6a
Proportions  50% —50% 60% — 40% 70% — 30% 80% —20% 90% — 10%
Model MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ANN 0.002680 0.039382 0.002587 0.039498 0.003322 0.044740 0.003079 0.043479 0.002693 0.039947
CNN 0.032520 0.151288 0.028813 0.147767 0.023069 0.127348 0.088234 0.268584 0.014083 0.097744
RNN 0.012660 0.083737 0.018054 0.116784 0.007702 0.069028 0.008684 0.067141 0.026368 0.146983
ARIMA 0.002283 0.035970 0.017172 0.112159 0.017444 0.113908 0.006532 0.066309 0.003591 0.047113
LSTM 0.009200 0.077333 0.007730 0.071492 0.006107 0.063976 0.011448 0.086046 0.028270 0.151644
RF 0.050740 0.199272 0.153930 0.347003 0.081269 0.250701 0.018127 0.107941 0.051639 0.194610
BBP 0.017303 0.110021 0.018673 0.119221 0.007736 0.072777 0.013665 0.089943 0.025773 0.138350
BDLRF 0.030981 0.153509 0.038721 0.178011 0.007974 0.072891 0.015786 0.093168 0.041091 0.183767
@ Best results regarding MSE are indicated in bold, and best results regarding MAE are indicated in bold and underlined.
Table 15
Forecasting result for SVM with single kernel.
I GH? CHy"
Gaussian Laplace Gaussian Laplace
MSE MAE MSE MAE MSE MAE MSE MAE

2 0.001334 0.025340 0.001355 0.025405 0.002027 0.033981 0.002036 0.034010

3 0.001670 0.029450 0.001695 0.029530 0.002419 0.037651 0.002434 0.037706

4 0.001947 0.032589 0.001980 0.032689 0.002743 0.040444 0.002769 0.040542

2 Best results regarding MSE are indicated in bold, and best results regarding MAE are indicated in bold and underlined.

racy. Considering that the rolling-window method is more efficient, the
rolling-window approach should be focused and further studied in en-
gineering studies in the future.

5. Conclusions

Forecasting the yields of light olefins plays a paramount role in mon-
itoring and optimizing the MTO process. It is not only directly related
to the improvement of production efficiency and economic benefits,
but also has a far-reaching impact on the enterprise’s market share,
environmental responsibility, technological innovation, and the stable
operation of the whole industrial chain. In this paper, persistent yield
data of light olefins are chosen as the dependent, and 32 yield impact in-
dicators are utilized as the independent variables to carry out ethylene
and propylene forecasting research. Based on the hybrid kernel RVM
and the rolling-window approaches, the following conclusions are ob-
tained:

(1) Regarding the single kernel function, the Laplace is optimal for
ethylene yield forecasting, and the Gaussian is optimal for propylene
yield forecasting. In terms of the hybrid kernel function, the most rea-
sonable forecasting results are given by the Gaussian+Laplace kernels
for both yields, with the Gaussian kernel being the leading one regard-
ing propylene and the Laplace kernel being the leading one for ethylene.
The results show that the DMTO yields impact indicators that provide
little valuable information for forecasting; the squared difference and
absolute value of the difference between the variables predominantly
play decisive roles.

(2) The hybrid of local kernel functions has a substantial edge in
forecasting the yields of DMTO over the hybrid of local and global ker-
nels, suggesting that the yields of ethylene and propylene have both
short volatility trends. Meanwhile, the rolling window study shows that
four hours of training information is more optimal in forecasting than a
longer window length, also supporting the statements of short volatility
trends in DMTO yields. The conclusion is consistent with the traditional
DMTO study, which provides a multi-faceted confirmation of the trend
study.

(3) The 4-hour time window has the most satisfactory forecasting ef-
fect on the yields of DMTO, indicating that the fluctuation cycle is about
4 hours when considering all the variables. In cluster studies, when we
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consider fewer independent variables and the optimal window lengths
become more prominent, the 32 independent variables are all necessary
in this study to provide sufficient information for forecasting. Compared
with the previous DMTO forecasting studies using train-test split data
approaches, this paper’s optimal rolling time window can achieve effi-
cient forecasting and increase the practicability of the research content.
Moreover, it can provide researchers with data to support the develop-
ment of more efficient MTO catalysts and processes.

(4) The significant clusters of variables can be effectively screened by
the single cluster and mixed cluster studies. In particular, temperature is
the most influential factor in ethylene forecasting; pressure and refining
of heavy olefins are also consequential. In addition, the combination
of temperature and pressure produces better results for ethylene yield
forecasting. The refining of heavy olefins is most vital for propylene
forecasting, and pressure and temperature are also significant, but the
combination of clusters does not have a greater impact on propylene
yield forecasts.

It is worth noting that temperature and pressure have the most sig-
nificant impact on the prediction of ethylene and propylene yields, with
ethylene being more sensitive to temperature and propylene being more
affected by pressure. In future applications, researchers optimize the
MTO process by making timely adjustments to the dosages of these im-
portant variables to increase ethylene and propylene yields.
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