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Abstract

Despite the practical importance, 3D measurements of gas–solid distribution in

fluidized beds calls for further breakthroughs. Here an approach combing a recently

developed mobile electrical capacitance tomography (ECT) sensor with Fourier Neu-

ral Operator (FNO) is developed, in which the fluidized bed is divided into a series of

cross-sectional slices along axial direction. At any given instant, the gas–solid distri-

bution in one slice is measured by mobile ECT and the others, meantime, are pre-

dicted by FNO pre-trained using experimental data. We verified this approach via

computational fluid dynamics (CFD) simulations and experimental measurement of

static object (i.e., cone, cylinder, and sphere) in fluidized bed. Following we applied

this approach to direct measure 3D gas–solid distribution in a bubbling fluidized bed,

and found that satisfactory image correlation coefficients and solid concentration

average absolute deviation could be obtained, which indicates the proposed

approach is promising for 3D fluidized bed measurements.
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1 | INTRODUCTION

Gas–solid two-phase flow in fluidized beds, normally showing multi-

scale, dynamic, and nonlinear characteristics,1–4 poses important

effects on heat and mass transfer as well as chemical reaction in

industrial processes. Obtaining detailed gas–solid two-phase distri-

bution and understanding the underlying hydrodynamics are of prac-

tical significance in designing and optimizing industrial processes

using fluidized bed reactors.5–7 Lots of theoretical analysis and

numerical simulations have been conducted in the past decades to

study the hydrodynamics in fluidized beds. However, the verifica-

tion and validation of theoretical analysis8,9 and numerical simula-

tions10–12 rely essentially on reliable measurement data. Moreover,

the development of measurement techniques capable of capturing

three-dimensional gas–solid distributions inside fluidized beds still

remains a highly desired yet challenging task owing to the non-

transparency nature of the reactor vessels.

Basically gas–solid fluidized bed measurement methods can be

divided into three categories: intrusive methods,13–16 non-invasive

methods,17–19 and tracer methods.20–22 Among them, the non-inva-

sive measurement methods are featured as no interference with fluid

flows inside the reactors. Electrical capacitance tomography (ECT) is

one of the non-invasive measurement technologies that has been

receiving increasing attention due to the high temporal resolution,

lack of radiation, and low cost.23–27 The principle of ECT lies in that

gas and solids have different permittivity, and the change of gas–solid

distribution alters the equivalent permittivity (and thus the capaci-

tance) between each pair of electrodes in the ECT sensor. By use of

image reconstruction algorithms,28–30 the measured capacitance dis-

tribution can be inverted into the permittivity distribution of the bed,
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which will then be mapped to gas–solid distribution (or solids concen-

tration distribution).31 Traditionally the electrodes of ECT sensor

installed on the external surface of the wall of fluidized beds have

rectangular shape with regular arrangement, which are primarily used

to measure the 2D cross-sectional gas–solid distributions.32 3D ECT

represents a promising direction for fluidized bed measurements as it

can offer volumetric images, and directly visualize the complex flow

patterns as well as gas bubbles inside fluidized beds.27,33,34 Basically,

there are two ways to realize the 3D ECT in fluidized bed measure-

ments. One way is to use the time series of single-layer 2D cross-

sectional images to reconstruct 3D images,35–37 which, however, is

limited to the steady flow patterns and might suffer from the distor-

tion of 3D images due to the average effect along the axial direc-

tion.24,38 Another way is to use the specially designed multi-plane

electrodes to obtain the volumetric images,39–41 for example, the

three or four planes of rectangular electrodes arranged inline42 or

staggered irregular electrodes.43 In this way, the signal-to-noise ratio

needs to be enhanced as the measured signals between electrodes far

from each other will be very weak.44–46 Therefore, 3D ECT measure-

ment of fluidized beds is still in its infancy and calls for further break-

throughs in either sensor or reconstruction algorithms.

In recent work, we have developed a mobile ECT sensor that had

been successfully used to measure the 2D cross-sectional gas–solid distri-

butions at different axial positions in a deep fluidized bed. Though it is

possible to apply the mobile ECT to obtain the gas–solid distribution

along the axial direction, the constraint is that the measurements at differ-

ent axial positions cannot be conducted simultaneously.

It has been shown that the data-driven machine learning

(ML) methods can be effectively used to either reconstruct the miss-

ing flow field or predict the future flow field based on the measured

data.47–50 For instance, Ma et al. adopted the skip-connection convo-

lutional neural network (CNN), based on dimension reduction and fea-

ture capturing, to successfully reconstruct and predict the high

dimensional and nonlinear flows around a single particle with small

noised datasets obtained by particle image velocimetry (PIV) experi-

ments.47 Fukami et al. used CNN to reconstruct the high-resolution

flow field from grossly under-resolved turbulent flow field data.48

Eavizi et al. applied the long short-term memory (LSTM) neural net-

work to predict the velocity field of unsteady flows at future time

instants.49 Nakamura also employed LSTM to derive the temporal

evolution of a turbulent channel flow.50

Recently Li et al. proposed a Fourier neural operator (FNO) to solve

parametric partial differential equations and found that FNO manifests

superior performance in solving governing equations of fluid flows with

improved speed and zero-shot super-resolution.51 In this regard, FNO

might offer a faster and more accurate approach for fluid flow recon-

struction and prediction than traditional machine learning methods.

In this work, therefore, we intend to combine mobile ECT with

FNO based machine learning method to obtain instantaneous 3D

gas–solid distribution in fluidized beds. This paper is organized as fol-

lows: We first introduce the working scheme of mobile ECT and FNO

method, as well as the strategy of 3D gas–solid distribution measure-

ment by combining mobile ECT and FNO. Next, we verify our proposed

approach by reconstructing multi-layer gas–solid distribution in fluidized

beds based on numerical simulations. Then, we show the feasibility of our

approach through ECT measurements of static objects in an empty fluid-

ized bed. Finally, we demonstrate the effectiveness of our approach with

ECT experiments of a deep fluidized bed, focusing on the 3D gas–solid

distribution and key hydrodynamic parameters such as average solid con-

centration and equivalent bubble diameter.

2 | METHODOLOGY

2.1 | ECT sensors and fluidized beds

Two sensors were used in the experiments: one was a single-plane

eight-electrode ECT sensor, and the other was a mobile dual-plane

16-electrode ECT sensor. The former was used for measuring the

static objects and the latter was used for gas–solid distribution mea-

surement in fluidized beds. Each electrode in the eight-electrode ECT

sensor was 20 mm long and 20 mm wide, with two shaft end shield

electrodes which were respectively 8 mm far from the measuring

electrodes, protecting signals from external electromagnetic interfer-

ence. All the electrodes were directly attached to a glass tube with

wall thickness of 2.5 mm and inner diameter of 61 mm.

The mobile dual-plane 16-electrode ECT sensor was composed of

two measuring electrode sliders and three shielding sliders including

two shaft end shield electrodes and one inter-electrode shield elec-

trode, as shown in Figure 1. Shielding sliders were used to eliminate

static interference and reduce the connection of electrical signals

between electrode planes. The effective length of electrode sheet

was 30 mm with 0.1 mm thickness, and the ratio of electrode to gap

was 4:1. The main design parameters of the sensor were referred to

the work by Huang et al.38 The main difference between the mobile

ECT sensor and fixed ECT sensor was that the electrode sheet was

attached to the inner wall of the slider instead of fluidized bed tube

wall. The constraint of both, however, was that the measurements at

different axial positions could not be conducted simultaneously.

A quartz fluidized bed reactor was used in this study, which was

1000 mm long and had an inner diameter of 60 mm, and wall thick-

ness of 2.5 mm. Compressed air flowed into the bed from the bottom

through a gas-distributor with the superficial gas velocity of 20.6 mm/s.

The particles used in the experiments were Al2O3 powder with a par-

ticle density of 3900 kg/m3, a sauter mean diameter of 79.16 μm. The

minimum fluidization velocity for this powder was 14.5mm/s. The

solid fraction of the packed bed at the beginning of experiments was

0.43 with a static bed height of 600mm. In all experiments, a

16-channel AC ECT signal processing system (ECT Instruments Ltd.,

UK) was used, and the capacitance was measured via a double-plane

single-electrode excitation mode with the mobile ECT sensor under

the excitation frequency of 180 kHz and the excitation voltage of

20 Vp-p.52 It should be note that a sufficiently round quartz tube was

made as fluidized bed in this work. This ensures the slider of mobile

ECT passing the tube evenly and thereby reducing the effect of non-

uniform air gap between ECT electrodes and the outside wall of the
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tube on capacitance measurement. In order to obtain gas–solid distri-

bution along axial direction, nine different cross-sectional slices, which

were respectively located at the height of 6, 12, 18, 24, 30, 36,

42, 48, and 54 cm (marked as 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and

0.9 h correspondingly in the rest of this paper) from the bottom of

the reactor, were considered. For the measurement of gas–solid at

each slice, we will repeat the experiments five times using the

mobile ECT sensor. In each measurement, the data sampling was

carried out when the fluidized bed reached a stable fluidization after

5min. A total of 5000 frames with 200 frames per second were

recorded for each measurement with mobile ECT. One frame is

recorded for each movement based our proposed method, so it

takes 0.005 s to move to another slice. The distance between adja-

cent slices is 6 cm. Therefore, the moving speed of the mobile ECT is

12m/s. As for numerical simulation, the sampling frequency is

100 frames per second. The distance between hypothetic adjacent

slices is 5 cm for bubbling fluidization and 4 cm for turbulent fluidiza-

tion. So the moving speed is 5 and 4m/s, respectively.

During the measurement, the electric field inside the ECT sensor

can be described as Equation (1),

r εr x,yð Þrφ x,yð Þ½ � ¼0 ð1Þ

where εr x,yð Þ is the mixed permittivity distribution and φ x,yð Þ is the

potential distribution. Then we can obtain the mixed capacitance CM:

CM ¼�ε0
1
V

ð ð
εr x,yð Þrφ x,yð ÞdΓ ð2Þ

with ε0 representing the permittivity of the vacuum environment.29

Equation (2) can be rewritten as

λ¼ SG ð3Þ

where λ is the normalized capacitance defined as

λ¼CM�CL

CH�CL
ð4Þ

and G is the normalized permittivity defined as

G¼ εr x,yð Þ� εL
εH� εL

ð5Þ

From Equation (4), it is shown that CH and CL are the high capaci-

tance and low capacitance during normalization, and εH and εL are the

relative permittivity of solid particles and gas phases, respectively. S is

the normalized matrix of sensitive field,

S¼ s�ijPN
n¼1s

�
ij

ð6Þ

with

S�ij x,yð Þ¼�
ð ðrφi x,yð Þ

Vi

rφj x,yð Þ
Vj

dxdy ð7Þ

where V is the voltage. Note that the subscripts i and j present the

potential distribution rφi x,yð Þ and rφj x,yð Þ captured by the ith and

the jth electrode, respectively.

F IGURE 1 Mobile ECT
sensor: (A) electrode
arrangement, (B) actual top view
of the sensor, and (C) cross-
sectional schematic diagram.
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Thus the permittivity distribution can be obtained from the

measured capacitance by solving the inverse problem of

Equation (3):

G¼ S�1λ ð8Þ

It should be noted that there are many reconstruction algorithms

developed to solve the ill-posed problem as shown by Equation (8).30

Here we used the Landweber iteration algorithm, the most commonly

used benchmark algorithm, due to the robustness and excellence in

ECT image reconstruction. Equations (9)–(12) show the scheme of

Landweber iteration algorithm53:

bGk ¼P bGk�1þαksTek�1

� �
ð9Þ

p f xð Þ½ � ¼
0 f xð Þ<0

f xð Þ0≤ f xð Þ
1 f xð Þ>1

8><>: ≤1 ð10Þ

αk ¼
sTek�1

�� ��
SSTek�1

�� �� ð11Þ

ek�1 ¼ λ�SbGk�1 ð12Þ

where k is index of iteration number, α is a parameter (in the range of

1–2) controlling iteration step, and ek�1 is the difference between

actual capacitance and capacitance calculated by the forward problem

of the k�1th iteration. In this work, we judged the convergence end

point by pre-setting the number of iteration.

After obtaining the permittivity distribution by Equation (8), we

could then acquire the concentration distribution via concentration

model.30,54,55 The parallel model is the most widely used concentra-

tion model, as shown in the following:

bβ¼ bG ð13Þ

bϕ¼ θbβ ð14Þ

where bβ is the normalized solid phase volume fraction, θ is the solid

phase volume fraction in the fixed bed state, and bϕ is solid phase con-

centration distribution in the measurement section which can be

obtained according to Equation (14).

Following the principle described above, we can obtain the gas

solid concentration distribution based on the permittivity distribu-

tion by parallel model, with the permittivity distribution being

reconstructed from the measured capacitance by Landweber itera-

tion algorithm.

2.2 | Fourier neural operator

Machine learning (ML) methods can be effectively used to predict the

future flow field based on the measured data.49 FNO is a grid-free

solution operator that is improved over traditional CNN.51 We had

verified that prediction ability of FNO was better than CNN and

LSTM by preliminary study, seen from Figures S1–S6 in the Support-

ing Information. So we intended to develop an approach to combine

mobile ECT with FNO to obtain instantaneous gas–solid distribution

of nine cross-sectional slices at different heights aligned along the

axial direction in the fluidized beds.

The working procedure of FNO is as follows: First, upgrade

the input to a high-dimensional space through the network P

based on Equation (15). Then, apply the Fourier layer and the

activation function σ for multiple iterations through Equation (16).

Finally, use the neural network Q to map to the target dimension via

Equation (18). The detailed structure of the Fourier layer is expressed

as Equation (17), which includes the following steps: the Fourier

transform F, linear transformation R in the low Fourier modes, filtering

in the high Fourier modes, and the inverse Fourier transform F�1.

υt xð Þ≔P a xð Þð Þ,8x�D ð15Þ

υtþ1 xð Þ≔ σ Wυt xð Þþ K a;;ð Þυtð Þ xð Þð Þ,8x�D ð16Þ

K a;;ð Þυtð Þ xð Þ≔
ð
κ x,y,a xð Þ,a yð Þ;ϕð Þυt yð Þdy,8x�D

K ϕð Þυtð Þ xð Þ≔F�1 Rϕ �F υtð Þ� �
xð Þ

8<: ð17Þ

y xð Þ≔Q υtþ1 xð Þð Þ,8x�D ð18Þ

In this work, we adopted the Adam optimizer and set the hidden

Layer parameter t as 4. The input of FNO is current gas–solid distribu-

tion a xð Þ and the output y xð Þ is a future gas–solid distribution that is

updated with four iterations, which is shown in Figure 2.

F IGURE 2 Flow chart of
Fourier neural operator algorithm.
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2.3 | 3D gas–solid distribution measurement
strategy

Figure 3 shows the 3D gas–solid distribution measurement strategy

by combing 2D mobile ECT with FNO method. In this strategy, we

assumed that the 3D gas–solid distribution was in principle composed

of N slices evenly distributed along the axial direction. These slices,

following the order from the bottom to the top of the reactor, were

numbered as 1, 2, 3, …, n, …, N. Thus the axial location of the nth slices

was Zn ¼ n�0:5ð ÞΔz with Δz¼H=N the distance between two adja-

cent slices and H the height of the measurement volume. As shown in

Figure 3, the idea of this strategy is that, at any given instant t, while

the mobile ECT provides the measurement of the cross-sectional gas–

solid distribution of a specified slice n, the cross-sectional gas–solid

distributions of the rest slices are predicted using the data-driven

FNO method.

To realize our proposed strategy, it is essential to obtain a well-

trained FNO model for predicting gas–solid distributions, as shown in

Figure 4. In doing so, we first use the mobile ECT sensor to measure

capacitance between electrodes for all slices and for each slice the

sensor will stay for certain duration. Then measured capacitance will

be used to reconstruct permittivity distribution using the Landweber

iterative algorithm described by Equations (9)–(12), which will be fur-

ther used to obtain the concentration distribution based on the paral-

lel model described by Equations (13) and (14). Thus a large number

of consequent frames of images of gas–solid distribution with time

interval of Δt will be obtained for each slice. In fact, based on our

results we found that, at any slices, the FNO, after pre-trained with

these measured data, could be used to predict gas–solid distribution

in the next six time intervals based on the data over the past 24 time

intervals (The numbers of steps required for the prediction are not

fixed. In fact, we have tried different setting for these numbers, and

F IGURE 3 3D gas–solid
distribution measurement
strategy combing mobile ECT
with FNO.

F IGURE 4 Flowchart for the training FNO model with mobile ECT measurement data.
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found that more prediction steps result in lower accuracy. To balance

prediction accuracy and time step horizon, we chose to use data from

24 steps to predict the data for the next 6 steps in the rest of this

work) as illustrated in Figure S1. Here, the time intervals are typically

0.005 s. For these time intervals, FNO shows good prediction ability

for fluidization process studied in our specific cases. We argued that

the fluidization states between shorter intervals might be closely cor-

related. However, we believe that a careful examination is highly

desired concerning the correlations between the ECT images with lon-

ger time intervals. Meantime, it has been also proven that FNO

trained based on the measured data at only one slice could be well

used to predict the gas–solid distribution at all other slices as seen

from Figures S7–S13. This indicated FNO has the generalization abil-

ity for predicting the fluidization pattern at different spatial locations.

In this sense, the well-trained FNO model is able to learn the correla-

tion between data from different time and at different locations, even

though fluidization is a dynamic process.

Figure 5 illustrates the prediction procedure of the pre-trained

FNO for gas–solid distribution at different slices along the axial direc-

tion of the deep fluidized bed. It should be noted that the input of

FNO model is the concentration distribution of the first 24 steps, so

data volume m at each slice needs to exceed 24. At any instant t, we

first calculated the axial location of mobile ECT based on its moving

speed and then determined which slice the sensor was located. For

this specified slice, we could obtain the measured image of gas–solid

distribution. For all other slices, the image of gas–solid distribution

would be predicted by the well-trained FNO model. In the prediction

F IGURE 5 Procedure for
predicting of gas–solid
distribution at different slices
along axial direction of a deep
fluidized bed based on the pre-
trained FNO.

TABLE 1 Physical properties of gas and solid particles in
numerical simulations.

Gas Density, ρg , kg/m
3 1.225

Viscosity,μg , Pa�s 1.7894 � 10�5

Particles Density, ρs, kg/m
3 2500

Viscosity,μs , Pa�s 10

Diameter, dp , μm 300

TABLE 2 Some model parameters used in the numerical
simulations.

Property Parameter

Viscous model k-epsilon (2 eqn.)

Granular viscosity (kg/m3) Syamlal–O'Brien

Drag coefficient Schiller–Naumann

Gravitational acceleration (m/s2) �9.81

Pressure–velocity coupling Phase coupled SIMPLE

Discretization First order upwind

Time step(s) 0.001

6 of 16 ZHANG ET AL.
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F IGURE 6 Data division method.

F IGURE 7 Ground truth and prediction of solid concentration, along with deviation at different slices in the bubbling fluidized bed at a
specific instant.

ZHANG ET AL. 7 of 16
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of images of slice n, for example, the input was the images of gas–

solid distribution of slice n at the instants including t�24Δt, t�23Δt,

…, t�Δt and result was the first time step of FNO model output.

Finally, all different slices of deep fluidized beds could get gas–solid

distribution.

2.4 | Key hydrodynamic parameters

To further understand hydrodynamics of gas–solid two-phase flow

inside fluidized beds, here we focused on two key parameters, that is,

the Average solid concentration (ASC) and the equivalent bubble

diameter (EBD). In this work, ASC was obtained via Equation (19):

bϕ ¼

PN
i¼1

bϕiAi

PN
i¼1

Ai

ð19Þ

where bϕi was solid phase concentration of a single pixel, and Ai was

the area of a single pixel.

EBD was obtained via Equation (20)56:

d¼
ffiffiffiffiffiffiffiffiffiffiffi
4S=π

p
ð20Þ

The details for deriving EBD were as following. First, we needed

to determine a threshold for solid concentration and then separated

the bubbles and surrounding emulsion phases according to this

threshold. Then, we counted the number of pixels for each bubble to

obtain the bubble area S. So the equivalent bubble diameter could be

estimated via Equation (20). In this work, a normalized threshold (ratio

of actual solids concentration threshold to fixed bed solids concentra-

tion) of 0.9 was chosen to identify the boundaries of these quasi-

bubbles.52

3 | RESULTS AND DISCUSSION

3.1 | Measurement evaluation criteria

The measurement results were needed to evaluate and thus several

evaluation criteria were defined. First, we defined the solid concentra-

tion error Err, as shown in Equation (21).51

Err¼ bϕi�ϕi ð21Þ

F IGURE 9 Referenced ASC and regressed ASC of gas–solid distributions at different slices in the bubbling fluidized bed.

F IGURE 8 CC and AAD of gas–solid concentration distribution at
different slices in the bubbling fluidized bed.
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To evaluate the quality of ECT images, we defined image correla-

tion coefficient (CC),29,57,58 and solid concentration average absolute

deviation (AAD).30 In fact, both AAD or RMS can be used as an

evaluation indicator in reconstructing gas–solid concentration dis-

tributions. Note that RMS is the square root of the mean of

squares of the differences between the predicted and true values,

and AAD gives equal weight to all errors and RMS is more sensitive

to large errors as the square term can amplify the large errors. We

did some tests by use of either AAD or RMS as an evaluation indi-

cator, and found that the corresponding gas–solid concentration

distributions reconstructed only have minor difference. Therefore,

we selected AAD as evaluation indicator in the rest of this work.

The calculation methods for CC and AAD were given in

Equations (22) and (23), respectively.

F IGURE 10 Referenced EBD and the regressed EBD of gas–solid distribution at different slices in the bubbling fluidized bed.

F IGURE 11 Ground truth and prediction of solid concentration
at different slices in the turbulent fluidized bed at a specific instant.

F IGURE 12 CC and AAD of gas–solid concentration distribution
at different slices in turbulent fluidized bed.
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CC¼

PN
i¼1

bGi� bG� �
Gi�G
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

bGi� bG� �2PN
i¼1

Gi�G
� �2s ð22Þ

AAD¼ 1
N

XN

i¼1
bϕi�ϕi

��� ��� ð23Þ

Here G is the average actual permittivity that is obtained by aver-

aging the measured permittivityGi over all pixels, and similarly bG is the

average reconstructed permittivity that is obtained by averaging the

reconstructed bGi over all pixels. bϕi is the reconstructed solid concen-

tration of single pixel, and ϕi is the actual solid concentration of single

pixel.

3.2 | Numerical simulation verification

We first conducted 3D numerical simulations of a laboratory-scale flu-

idized bed, and used the simulation results to verify the proposed

strategy. The fluidized bed with an inner diameter of 14 cm and a

height of 1.5 m was simulated based on the Euler–Euler two-fluid

model with Fluent 6.3. In the simulations, it is assumed that the air

entered the fluidized bed with superficial gas velocity of 1.5 and

2.0 m/s, corresponding to bubbling and turbulent fluidization states

respectively, and leaved the fluidized bed with the constant pressure

condition. A grid with mesh size of Δx¼Δy¼8mm and Δz¼7:5cm

were implemented in the simulation. Thus there were a total of 3840

hexahedrons, with 192 CFD cells for each slice. For simplicity, the gas

phase used in the simulation was air and the solid phase were Geldart

B particles with a particle diameter of 300 μm. In the initial state,

particles with 0.5m height and 0.55 volume fraction were packed at

the bottom of fluid bed. Physical properties of the two phases were

listed in Table 1, and the model parameters applied were listed in

Table 2.59 In order to fully derive the bubbling characteristics in fluid-

ized bed, the physical time for CFD simulations were set as 80 s, with

100 frames of images per second and a total of 8000 frames of data

obtained.

In the bubbling state with superficial gas velocity of 1.5 m/s, we

considered gas–solid distribution in the six cross-sectional slices at the

height of 5, 10, 15, 20, 25, and 30 cm, represented by 0.05, 0.10, 0.15,

0.20, 0.25, and 0.30 h for 3D gas–solid distribution reconstruction. At

each slice, a total of 8000 frames of images were obtained and pro-

cessed to generate 7971 sample sets, as shown in Figure 6. These

images, following the sequence of time, were numbered as 1, 2, 3, …, i,

…, 8000. And the composition of the jth sample was j, jþ1,…, jþ29½ �
where the first 24 steps (corresponding to j, jþ1,…, jþ23½ �) were the

input of FNO model and the subsequent 6 steps (corresponding to

jþ24, jþ25,…, jþ29½ �) were the output of model.

We further divided the images at any given slice as training and

test set by the ratio of sample numbers of 5:1. So for each given slice,

there were 6642 samples (corresponding sample number j ranging

from 1 to 6642) in the train set and 1329 samples (corresponding j

ranging from 6643 to 7971) in the test set. At any instant t we consid-

ered the image for only one given slice as “measured image” and

images for rest slices as “predicted images.” To obtain “the predicted

images,” we need to first get a well-trained FNO. As discussed above,

the FNO can be trained based on the 6642 samples at any given slice.

Figure 7 illustrates an example in which, at the specific instant,

the “measured image” is at 0.05 h, and all other images are “predicted
images” derived from FNO. Note that here the FNO was trained with

6642 samples obtained at 0.3 h. As can be seen, FNO trained by the

F IGURE 13 Exacted and reconstructed cone, cylinder, and sphere.

10 of 16 ZHANG ET AL.
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images at 0.3 h can be well used to predict images for all slices.

The maximum absolute error of solid volume fraction is close to

0.04 at 0.3 h, while it is under 0.02 at other slices. Overall, at a given

instant, the gas–solid distributions at all six slices can be recovered

based on the proposed strategy.

We further verified the performance of the approach at continuous

instants at all different slices in the test set of 1329 samples with sample

number j ranging from 6643 to 7971. According to the proposed

approach, where the ground truth of solid concentration corresponded to

the images numbered from 6667 to 7995. We computed the CC and

F IGURE 14 Observation and
prediction of solid concentration, along
with deviation at different slices in the
actual experimental fluidized bed at a
specific instant.

ZHANG ET AL. 11 of 16
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AAD of gas–solid concentration distribution at 1329 continuous time

steps based on ground truth and prediction. In Figure 8, the CC of the

bubbling state at each slice is above 0.9 which is close to 1, the AAD of

which is below 0.01 close to 0 at all continuous 1329 time sequences. All

show the long-term good predicted performance.

Two key hydrodynamic parameters, that is, the average solid con-

centration and equivalent bubble diameter could be derived based on

the gas–solid concentration distribution. Figures 9 and 10 show the

relationships between the referenced ASC or EBD and the regressed

ASC or EBD over time at each slice. It can be found that the

regressed ASC or EBD matches the referenced ASC or EBD very well,

indicating that our proposed strategy can well predict the key parame-

ters of each slice for all continuous 1329 moments.

We also conducted simulations of turbulent fluidization with

superficial gas velocity of 2.0 m/s. Here we considered the cross-

sectional slices at the height of 4, 8, 12, 16, 20, 24, 28, 32, 36, 40,

44, 48, 52, and 60 cm, represented by 0.04, 0.08, 0.12, 0.16, 0.20,

0.24, 0.28, 0.32, 0.44, 0.48, 0.52, and 0.60 h for 3D gas–solid distribu-

tion reconstruction. Compared to that in the simulation of bubbling

fluidization, more cross-sectional slices were considered in the simula-

tion of turbulent fluidization because of a higher expansion of the flu-

idized bed. The numerical simulation parameters and data division

method were the same as bubbling state. Here, in total 6642 train

samples at 0.32 h were selected to train the model. Figure 11 depicts

an example in which, at the specified instant, the “measured image” is
F IGURE 15 CC and AAD at different slices in the actual
experimental fluidized bed.

F IGURE 16 Referenced ASC and the regressed ASC of gas–solid distribution at different slices of the fluidized bed by ECT measurements.

12 of 16 ZHANG ET AL.
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at 0.04 h, and all other sections are “predicted images” derived from

FNO model trained at 0.32 h. We can find the gas–solid distributions

at all 15 slices can be recovered. From Figure 12, in test set of 1329

continuous time sequences, for each slice the CC of gas–solid concen-

tration distribution is higher than 0.9, and AAD of which is all below

0.03 a little larger than bubbling fluidization. In the verification, similar

CC and quite different AAD were obtained for the bubbling and tur-

bulent fluidized beds. This can be attributed to the fact that the gas–

solid concentration distribution of the turbulent fluidization changes

more dramatically than that of the bubbling fluidization on the one

hand, and, compared to CC, AAD is more sensitive and can amplify

subtle differences. When the height exceeds 0.32 h, it appears as a

whole that AAD increases with height. Overall, the proposed

approach can also be applied to turbulent fluidized bed.

3.3 | Mobile ECT experiments

As shown above, our 3D CFD simulation of both bubbling and tur-

bulent fluidization demonstrates that the 3D instantaneous gas–

solid distribution could be obtained by combing mobile ECT

measurement with FNO based machine learning method. In the

following, we would further validate our approach by conducting

experimental measurements.

We first verified the feasibility of the proposed approach by

measuring some static objects using the single plane eight-

electrode ECT sensor. In our current work, three static objects

including a cone with height of 6 cm and diameter of 3 cm, a cylin-

der with height of 5 cm and diameter of 2 cm, and a sphere with

diameter of 3 cm were considered. In Figure 13, we found that the

height of cone was 6 cm based on ECT measurement results,

which was consistent with height of the actual cone mold. We also

measured the height of cylinder and sphere, and found that the

reconstructed heights were 7 and 5 cm, respectively. The differ-

ence between the measured height and the actual one for these

two molds, according to previous work,24 could be attributed to

the fact that ECT sensor has certain length, which would result in

an axial averaging effect. Anyway, combing the mobile ECT with

FNO method could provide a promising way for 3D reconstruction

of static objects such as cone, cylinder and sphere.

We then studied the fluidization with mobile dual-plane

16-electrode ECT sensor. A series of 2D cross-sectional gas–solid

F IGURE 17 Referenced EBD and the regressed EBD of gas–solid distribution at different slices of fluidized bed by ECT measurements.
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distributions at different slices had been measured using mobile ECT

sensor, and 3D reconstruction results were obtained by use of FNO

method. In ECT measurements, the Landweber iterative reconstruc-

tion algorithm and as well as the parallel concentration model were

used for deriving the gas–solid distribution from the measured capaci-

tance data. The data were divided into training set (4142 samples) and

test set (829 samples). Here train set at 0.5 h was trained to get a

well-trained model, which was then directly to be used for prediction

at different slices for 829 continuous instants.

It should be noted that the measurements at different axial posi-

tions cannot be conducted simultaneously solely by the use of the

mobile ECT. So we repeated the experimental condition five times to

obtain approximately simultaneous gas–solid distributions at all differ-

ent slices. Figure 14 depicts an example, in which, at the specified

instant, the “measured image” is at slice of 0.1 h, and all other images

are “predicted images” derived from FNO model trained at 0.5 h. The

maximum absolute errors of solid volume fraction at all slices are

under 0.02. We can find the gas–solid distributions at all nine slices

can be recovered in the actual experimental fluidized bed.

We further verified the performance of the approach at continu-

ous instants across all different slices in the actual experimental fluid-

ized bed. Figure 15 shows the CC and AAD of gas–solid

concentration distribution at each slice for 829 continuous moments

in the actual experimental fluidized bed. All the CC values are above

0.9. Except for the AAD at 0.1 h, which is 0.012, the AAD for other

slices is below 0.01.

From Figures 16 and 17, which are the relationship between refer-

enced ASC or EBD of gas–solid concentration distribution and the

regressed ASC or EBD over time at each slice for 829 continuous time

sequences in the actual experimental fluidized bed, it can be found that at

all slices referenced scatters match the regressed lines except 0.1 h.

Experiments with cone, cylinder and sphere proved that the mea-

surement strategy, combining mobile ECT with FNO could be suc-

cessfully applied to 3D reconstruction of static molds. Our

experiments of fluidization further showed that the strategy could

also be used to measure gas–solid distribution at different cross-

sectional slices of the fluidized bed, which was evidenced by the

regressed ASC and EBD of gas–solid distribution well matched

the referenced ASC and EBD for the ground truth case.

4 | CONCLUSION

In this paper, we proposed to measure 3D instantaneous gas–solid

distribution measurement by combining mobile ECT with Fourier neu-

ral operator based on the machine learning method. Especially two

key hydrodynamic parameters, that is, the average solid concentration

and equivalent bubble diameter, could be derived from the gas–solid

distribution. This strategy was validated by both numerical simulations

and experimental measurements of static molds.

For numerical simulations, both bubbling and turbulent fluidiza-

tion were tested. In the bubbling state, six cross-sectional slices, along

axial direction were selected for multi-plane prediction. In the

turbulent fluidization state, due to the higher expansion of the fluid-

ized bed, 12 cross-sectional slices at heights of 0.04, 0.08, 0.12, 0.16,

0.20, 0.24, 0.28, 0.32, 0.44, 0.48, 0.52 and 0.60 h were considered. In

both cases, the image correlation coefficient CC values at all slices

were also higher than 0.9 and the solid concentration average abso-

lute deviation AAD was less than 0.03, showing that the proposed

approach is promising.

The measurements of cone, cylinder, and sphere, in the mean-

time, illustrate that the current approach could be successfully applied

to reconstruct 3D static objects in experiments with mobile ECT.

Finally, mobile ECT combined with the FNO method, was used to

obtain 3D gas–solid distribution in fluidized bed. In the experiments,

4142 samples at the height of 0.5 h were used to train the FNO

model, which was then applied to predict gas–solid concentration dis-

tribution simultaneously at nine different cross-sections along axial

direction. It was shown that the CC of gas–solid distribution at all

slices was higher than 0.9, and the AAD, except at 0.1 h was below

0.01. Both the regressed averaged solid concentration ASC and equiv-

alent bubble diameter EBD matched the referenced values in ground

truth cases very well. This demonstrated the feasibility of realizing 3D

gas–solid distribution measurement in fluidized beds by combining 2D

mobile ECT with FNO based on the machine learning method.
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Furthermore, numerical simulation data in the turbulent fluidized bed
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