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1 | INTRODUCTION

Mao Ye? |

Abstract

Despite the practical importance, 3D measurements of gas-solid distribution in
fluidized beds calls for further breakthroughs. Here an approach combing a recently
developed mobile electrical capacitance tomography (ECT) sensor with Fourier Neu-
ral Operator (FNO) is developed, in which the fluidized bed is divided into a series of
cross-sectional slices along axial direction. At any given instant, the gas-solid distri-
bution in one slice is measured by mobile ECT and the others, meantime, are pre-
dicted by FNO pre-trained using experimental data. We verified this approach via
computational fluid dynamics (CFD) simulations and experimental measurement of
static object (i.e., cone, cylinder, and sphere) in fluidized bed. Following we applied
this approach to direct measure 3D gas-solid distribution in a bubbling fluidized bed,
and found that satisfactory image correlation coefficients and solid concentration
average absolute deviation could be obtained, which indicates the proposed

approach is promising for 3D fluidized bed measurements.

KEYWORDS
3D measurement, deep fluidized bed, Fourier neural operator, mobile electrical capacitance
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remains a highly desired yet challenging task owing to the non-

transparency nature of the reactor vessels.

Gas-solid two-phase flow in fluidized beds, normally showing multi-
scale, dynamic, and nonlinear characteristics,™* poses important
effects on heat and mass transfer as well as chemical reaction in
industrial processes. Obtaining detailed gas-solid two-phase distri-
bution and understanding the underlying hydrodynamics are of prac-
tical significance in designing and optimizing industrial processes
using fluidized bed reactors.’>”” Lots of theoretical analysis and
numerical simulations have been conducted in the past decades to
study the hydrodynamics in fluidized beds. However, the verifica-
tion and validation of theoretical analysis®° and numerical simula-

10-12 rely essentially on reliable measurement data. Moreover,

tions
the development of measurement techniques capable of capturing

three-dimensional gas-solid distributions inside fluidized beds still

Basically gas-solid fluidized bed measurement methods can be

13-16

divided into three categories: intrusive methods, non-invasive

17-12 and tracer methods.?°~2? Among them, the non-inva-

methods,
sive measurement methods are featured as no interference with fluid
flows inside the reactors. Electrical capacitance tomography (ECT) is
one of the non-invasive measurement technologies that has been
receiving increasing attention due to the high temporal resolution,
lack of radiation, and low cost.2®=2” The principle of ECT lies in that
gas and solids have different permittivity, and the change of gas-solid
distribution alters the equivalent permittivity (and thus the capaci-
tance) between each pair of electrodes in the ECT sensor. By use of

28-30

image reconstruction algorithms, the measured capacitance dis-

tribution can be inverted into the permittivity distribution of the bed,
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which will then be mapped to gas-solid distribution (or solids concen-
tration distribution).3* Traditionally the electrodes of ECT sensor
installed on the external surface of the wall of fluidized beds have
rectangular shape with regular arrangement, which are primarily used
to measure the 2D cross-sectional gas-solid distributions.>? 3D ECT
represents a promising direction for fluidized bed measurements as it
can offer volumetric images, and directly visualize the complex flow
patterns as well as gas bubbles inside fluidized beds.?”-*32* Basically,
there are two ways to realize the 3D ECT in fluidized bed measure-
ments. One way is to use the time series of single-layer 2D cross-

35-37 which, however, is

sectional images to reconstruct 3D images,
limited to the steady flow patterns and might suffer from the distor-
tion of 3D images due to the average effect along the axial direc-
tion.2*%® Another way is to use the specially designed multi-plane
electrodes to obtain the volumetric images,”’41 for example, the
three or four planes of rectangular electrodes arranged inline*? or
staggered irregular electrodes.*® In this way, the signal-to-noise ratio
needs to be enhanced as the measured signals between electrodes far
from each other will be very weak.**=#¢ Therefore, 3D ECT measure-
ment of fluidized beds is still in its infancy and calls for further break-
throughs in either sensor or reconstruction algorithms.

In recent work, we have developed a mobile ECT sensor that had
been successfully used to measure the 2D cross-sectional gas-solid distri-
butions at different axial positions in a deep fluidized bed. Though it is
possible to apply the mobile ECT to obtain the gas-solid distribution
along the axial direction, the constraint is that the measurements at differ-
ent axial positions cannot be conducted simultaneously.

It has been shown that the data-driven machine learning
(ML) methods can be effectively used to either reconstruct the miss-
ing flow field or predict the future flow field based on the measured
data.*”=>° For instance, Ma et al. adopted the skip-connection convo-
lutional neural network (CNN), based on dimension reduction and fea-
ture capturing, to successfully reconstruct and predict the high
dimensional and nonlinear flows around a single particle with small
noised datasets obtained by particle image velocimetry (PIV) experi-
ments.*” Fukami et al. used CNN to reconstruct the high-resolution
flow field from grossly under-resolved turbulent flow field data.*®
Eavizi et al. applied the long short-term memory (LSTM) neural net-
work to predict the velocity field of unsteady flows at future time
instants.*’ Nakamura also employed LSTM to derive the temporal
evolution of a turbulent channel flow.*°

Recently Li et al. proposed a Fourier neural operator (FNO) to solve
parametric partial differential equations and found that FNO manifests
superior performance in solving governing equations of fluid flows with
improved speed and zero-shot super-resolution.’* In this regard, FNO
might offer a faster and more accurate approach for fluid flow recon-
struction and prediction than traditional machine learning methods.

In this work, therefore, we intend to combine mobile ECT with
FNO based machine learning method to obtain instantaneous 3D
gas-solid distribution in fluidized beds. This paper is organized as fol-
lows: We first introduce the working scheme of mobile ECT and FNO
method, as well as the strategy of 3D gas-solid distribution measure-
ment by combining mobile ECT and FNO. Next, we verify our proposed

approach by reconstructing multi-layer gas-solid distribution in fluidized
beds based on numerical simulations. Then, we show the feasibility of our
approach through ECT measurements of static objects in an empty fluid-
ized bed. Finally, we demonstrate the effectiveness of our approach with
ECT experiments of a deep fluidized bed, focusing on the 3D gas-solid
distribution and key hydrodynamic parameters such as average solid con-

centration and equivalent bubble diameter.

2 | METHODOLOGY

2.1 | ECT sensors and fluidized beds

Two sensors were used in the experiments: one was a single-plane
eight-electrode ECT sensor, and the other was a mobile dual-plane
16-electrode ECT sensor. The former was used for measuring the
static objects and the latter was used for gas-solid distribution mea-
surement in fluidized beds. Each electrode in the eight-electrode ECT
sensor was 20 mm long and 20 mm wide, with two shaft end shield
electrodes which were respectively 8 mm far from the measuring
electrodes, protecting signals from external electromagnetic interfer-
ence. All the electrodes were directly attached to a glass tube with
wall thickness of 2.5 mm and inner diameter of 61 mm.

The mobile dual-plane 16-electrode ECT sensor was composed of
two measuring electrode sliders and three shielding sliders including
two shaft end shield electrodes and one inter-electrode shield elec-
trode, as shown in Figure 1. Shielding sliders were used to eliminate
static interference and reduce the connection of electrical signals
between electrode planes. The effective length of electrode sheet
was 30 mm with 0.1 mm thickness, and the ratio of electrode to gap
was 4:1. The main design parameters of the sensor were referred to
the work by Huang et al.*® The main difference between the mobile
ECT sensor and fixed ECT sensor was that the electrode sheet was
attached to the inner wall of the slider instead of fluidized bed tube
wall. The constraint of both, however, was that the measurements at
different axial positions could not be conducted simultaneously.

A quartz fluidized bed reactor was used in this study, which was
1000 mm long and had an inner diameter of 60 mm, and wall thick-
ness of 2.5 mm. Compressed air flowed into the bed from the bottom
through a gas-distributor with the superficial gas velocity of 20.6 mm/s.
The particles used in the experiments were Al,O3; powder with a par-
ticle density of 3900 kg/m?, a sauter mean diameter of 79.16 pm. The
minimum fluidization velocity for this powder was 14.5mm/s. The
solid fraction of the packed bed at the beginning of experiments was
0.43 with a static bed height of 600mm. In all experiments, a
16-channel AC ECT signal processing system (ECT Instruments Ltd.,
UK) was used, and the capacitance was measured via a double-plane
single-electrode excitation mode with the mobile ECT sensor under
the excitation frequency of 180kHz and the excitation voltage of
20 Vp-p.>2 It should be note that a sufficiently round quartz tube was
made as fluidized bed in this work. This ensures the slider of mobile
ECT passing the tube evenly and thereby reducing the effect of non-
uniform air gap between ECT electrodes and the outside wall of the
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tube on capacitance measurement. In order to obtain gas-solid distri-
bution along axial direction, nine different cross-sectional slices, which
were respectively located at the height of 6, 12, 18, 24, 30, 36,
42, 48, and 54 cm (marked as 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and
0.9 h correspondingly in the rest of this paper) from the bottom of
the reactor, were considered. For the measurement of gas-solid at
each slice, we will repeat the experiments five times using the
mobile ECT sensor. In each measurement, the data sampling was
carried out when the fluidized bed reached a stable fluidization after
5min. A total of 5000 frames with 200 frames per second were
recorded for each measurement with mobile ECT. One frame is
recorded for each movement based our proposed method, so it
takes 0.005s to move to another slice. The distance between adja-
cent slices is 6 cm. Therefore, the moving speed of the mobile ECT is
12m/s. As for numerical simulation, the sampling frequency is
100 frames per second. The distance between hypothetic adjacent
slices is 5 cm for bubbling fluidization and 4 cm for turbulent fluidiza-
tion. So the moving speed is 5 and 4 m/s, respectively.

During the measurement, the electric field inside the ECT sensor

can be described as Equation (1),
Vier(xy)Ve(x,y)]=0 1)

where g.(x,y) is the mixed permittivity distribution and ¢(x,y) is the
potential distribution. Then we can obtain the mixed capacitance Cy:

Cu= 780%J. J'a,(x,y)w(x,y)df 2)

with eo representing the permittivity of the vacuum environment.?’

65 15

Equation (2) can be rewritten as

2=SG (3)

where 2 is the normalized capacitance defined as

w-C
o)

and G is the normalized permittivity defined as

str(XvY)feL (5)
ey —eL

From Equation (4), it is shown that C; and C; are the high capaci-
tance and low capacitance during normalization, and ey and ¢, are the
relative permittivity of solid particles and gas phases, respectively. S is

the normalized matrix of sensitive field,

st

S=— (6)
Z,n\lzisﬂ
with
N Vo (xy) Vi (XY
5j0) = | [ TS XY gy )
i )

where V is the voltage. Note that the subscripts i and j present the
potential distribution V;(x,y) and Vg;(x,y) captured by the i and
the jth electrode, respectively.
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Thus the permittivity distribution can be obtained from the
measured capacitance by solving the inverse problem of

Equation (3):
G=5"1 (8)

It should be noted that there are many reconstruction algorithms
developed to solve the ill-posed problem as shown by Equation (8).%°
Here we used the Landweber iteration algorithm, the most commonly
used benchmark algorithm, due to the robustness and excellence in
ECT image reconstruction. Equations (9)-(12) show the scheme of

Landweber iteration algorithm>3;

Gy = P(ak—l +0‘k5Tek—1) 9
0f(x) <0
plf(x)] =< f(x)0=<f(x) <1 (10)
1f(x) > 1
_ ls"e]|
" sSTeca] )
ek1=1—5Gy 1 (12)

where k is index of iteration number, a is a parameter (in the range of
1-2) controlling iteration step, and e,_4 is the difference between
actual capacitance and capacitance calculated by the forward problem
of the k — 1th iteration. In this work, we judged the convergence end
point by pre-setting the number of iteration.

After obtaining the permittivity distribution by Equation (8), we
could then acquire the concentration distribution via concentration
model.3%>455 The parallel model is the most widely used concentra-

tion model, as shown in the following:
=G (13)
¢=6p (14)
where E is the normalized solid phase volume fraction, 0 is the solid
phase volume fraction in the fixed bed state, and $ is solid phase con-

centration distribution in the measurement section which can be
obtained according to Equation (14).

Following the principle described above, we can obtain the gas
solid concentration distribution based on the permittivity distribu-
tion by parallel model, with the permittivity distribution being
reconstructed from the measured capacitance by Landweber itera-

tion algorithm.

2.2 | Fourier neural operator

Machine learning (ML) methods can be effectively used to predict the
future flow field based on the measured data.** FNO is a grid-free
solution operator that is improved over traditional CNN.>* We had
verified that prediction ability of FNO was better than CNN and
LSTM by preliminary study, seen from Figures S1-Sé in the Support-
ing Information. So we intended to develop an approach to combine
mobile ECT with FNO to obtain instantaneous gas-solid distribution
of nine cross-sectional slices at different heights aligned along the
axial direction in the fluidized beds.

The working procedure of FNO is as follows: First, upgrade
the input to a high-dimensional space through the network P
based on Equation (15). Then, apply the Fourier layer and the
activation function ¢ for multiple iterations through Equation (16).
Finally, use the neural network Q to map to the target dimension via
Equation (18). The detailed structure of the Fourier layer is expressed
as Equation (17), which includes the following steps: the Fourier
transform F, linear transformation R in the low Fourier modes, filtering

in the high Fourier modes, and the inverse Fourier transform F1.

vt(x) ==P(a(x)),Vxe D (15)

vee1(X) = 6(Wor (x) + (K(a;0)og) (X)), ¥x € D (16)

{ (K(@;0)or)(x) = V[K(nyya(x),a(y);¢)ut(y)dy, vxeD a7
(K@)o) () =F " (Ry - F(0r)) ()

y(x) = Q(ot41(x)), ¥x € D (18)

In this work, we adopted the Adam optimizer and set the hidden
Layer parameter t as 4. The input of FNO is current gas-solid distribu-
tion a(x) and the output y(x) is a future gas-solid distribution that is
updated with four iterations, which is shown in Figure 2.

FIGURE 2 Flow chart of
Fourier neural operator algorithm.
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To realize our proposed strategy, it is essential to obtain a well-

ZHANG ET AL
2.3 | 3D gas-solid distribution measurement
strategy trained FNO model for predicting gas-solid distributions, as shown in

Figure 3 shows the 3D gas-solid distribution measurement strategy
by combing 2D mobile ECT with FNO method. In this strategy, we
assumed that the 3D gas-solid distribution was in principle composed
of N slices evenly distributed along the axial direction. These slices,
following the order from the bottom to the top of the reactor, were
numbered as 1, 2, 3, ..., n, ..., N. Thus the axial location of the n slices
was Z, = (n—0.5)Az with Az=H/N the distance between two adja-
cent slices and H the height of the measurement volume. As shown in
Figure 3, the idea of this strategy is that, at any given instant t, while
the mobile ECT provides the measurement of the cross-sectional gas-
solid distribution of a specified slice n, the cross-sectional gas-solid
distributions of the rest slices are predicted using the data-driven
FNO method.

Figure 4. In doing so, we first use the mobile ECT sensor to measure
capacitance between electrodes for all slices and for each slice the
sensor will stay for certain duration. Then measured capacitance will
be used to reconstruct permittivity distribution using the Landweber
iterative algorithm described by Equations (9)-(12), which will be fur-
ther used to obtain the concentration distribution based on the paral-
lel model described by Equations (13) and (14). Thus a large number
of consequent frames of images of gas-solid distribution with time
interval of At will be obtained for each slice. In fact, based on our
results we found that, at any slices, the FNO, after pre-trained with
these measured data, could be used to predict gas-solid distribution
in the next six time intervals based on the data over the past 24 time
intervals (The numbers of steps required for the prediction are not

fixed. In fact, we have tried different setting for these numbers, and

- 1.0 P —
=) 0.9 - £
= 08 05 50
65mm § 07 & e ] —=]| 0.9h
o I
2 o3t . o o 5 <—>| 0.8h
2 g,i S 5o 5
s o1t . o o
0535352035 50 55 &0 s -_ 0.7h
Time Step
=== 14 0.6h
FNO
Prediction =>{ 0.5h
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ECT \Q 0.3h
\@ 0.2h
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Step3: Step4:
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!
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FIGURE 4 Flowchart for the training FNO model with mobile ECT measurement data.
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found that more prediction steps result in lower accuracy. To balance
prediction accuracy and time step horizon, we chose to use data from
24 steps to predict the data for the next 6 steps in the rest of this
work) as illustrated in Figure S1. Here, the time intervals are typically
0.005s. For these time intervals, FNO shows good prediction ability
for fluidization process studied in our specific cases. We argued that
the fluidization states between shorter intervals might be closely cor-
related. However, we believe that a careful examination is highly
desired concerning the correlations between the ECT images with lon-
ger time intervals. Meantime, it has been also proven that FNO
trained based on the measured data at only one slice could be well
used to predict the gas-solid distribution at all other slices as seen
from Figures S7-S13. This indicated FNO has the generalization abil-
ity for predicting the fluidization pattern at different spatial locations.
In this sense, the well-trained FNO model is able to learn the correla-
tion between data from different time and at different locations, even
though fluidization is a dynamic process.

Figure 5 illustrates the prediction procedure of the pre-trained
FNO for gas-solid distribution at different slices along the axial direc-
tion of the deep fluidized bed. It should be noted that the input of
FNO model is the concentration distribution of the first 24 steps, so
data volume m at each slice needs to exceed 24. At any instant t, we
first calculated the axial location of mobile ECT based on its moving
speed and then determined which slice the sensor was located. For

Get well trained FNO model

Mobile ECT samples cyclically at each slice

this specified slice, we could obtain the measured image of gas-solid
distribution. For all other slices, the image of gas-solid distribution

would be predicted by the well-trained FNO model. In the prediction

TABLE 1 Physical properties of gas and solid particles in
numerical simulations.

Gas Density, p,, kg/m° 1.225
Viscosity, g, Pa-s 1.7894 x 10>
Particles Density, p,, kg/m3 2500
Viscosity, i, Pa-s 10
Diameter, dp, pm 300
TABLE 2 Some model parameters used in the numerical
simulations.
Property Parameter

Viscous model k-epsilon (2 eqn.)

Granular viscosity (kg/m°) Syamlal-O'Brien
Schiller-Naumann
-9.81

Phase coupled SIMPLE

Drag coefficient

Gravitational acceleration (m/s?)
Pressure-velocity coupling
Discretization

Time step(s) 0.001

First order upwind

(i.e.0.1h,0.2h,...,0.9h) with a time interval of At

Does data volume m at
each slice exceed 247
(m>=25)

>I Make sure ECT Location

Atinstant t, is ECT a
this slide? (i.e.0.1h,
0.2h,...,0.9h)

NO

FNO model prediction (Input

[t-24At,t-23At,...,t- At])

| ECT Measured Value |

| The first time step of FNO model output

v

Mobile ECT samples cyclically at each slice

(i.e.0.1h,0.2h,...,0.9h) with a time interval of At

v

Does data volume m at
each slice exceed preset
value?

NO

Exit measurement

FIGURE 5 Procedure for
predicting of gas-solid
distribution at different slices
along axial direction of a deep
fluidized bed based on the pre-
trained FNO.
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FIGURE 6 Data division method. II:
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FIGURE 7 Ground truth and prediction of solid concentration, along with deviation at different slices in the bubbling fluidized bed at a

specific instant.
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of images of slice n, for example, the input was the images of gas-
solid distribution of slice n at the instants including t — 24At, t — 23At,
..., t— At and result was the first time step of FNO model output.
Finally, all different slices of deep fluidized beds could get gas-solid
distribution.

24 | Key hydrodynamic parameters

To further understand hydrodynamics of gas-solid two-phase flow
inside fluidized beds, here we focused on two key parameters, that is,
the Average solid concentration (ASC) and the equivalent bubble
diameter (EBD). In this work, ASC was obtained via Equation (19):

1.2 0.04
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FIGURE 8 CC and AAD of gas-solid concentration distribution at
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where (Zi was solid phase concentration of a single pixel, and A; was
the area of a single pixel.
EBD was obtained via Equation (20)°¢:
d=\/45/x (20)
The details for deriving EBD were as following. First, we needed
to determine a threshold for solid concentration and then separated
the bubbles and surrounding emulsion phases according to this
threshold. Then, we counted the number of pixels for each bubble to
obtain the bubble area S. So the equivalent bubble diameter could be
estimated via Equation (20). In this work, a normalized threshold (ratio
of actual solids concentration threshold to fixed bed solids concentra-

tion) of 0.9 was chosen to identify the boundaries of these quasi-
bubbles.>?

3 | RESULTS AND DISCUSSION

3.1 | Measurement evaluation criteria
The measurement results were needed to evaluate and thus several
evaluation criteria were defined. First, we defined the solid concentra-

tion error Err, as shown in Equation (21).>*

different slices in the bubbling fluidized bed. Err:q?, — ;i (21)
0.8 0.8 0.8
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FIGURE 9 Referenced ASC and regressed ASC of gas-solid distributions at different slices in the bubbling fluidized bed.
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FIGURE 10 Referenced EBD and the regressed EBD of gas-solid distribution at different slices in the bubbling fluidized bed.
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FIGURE 11 Ground truth and prediction of solid concentration to large errors as the square term can amplify the large errors. We

at different slices in the turbulent fluidized bed at a specific instant.

To evaluate the quality of ECT images, we defined image correla-
tion coefficient (CC),2>”°8 and solid concentration average absolute
deviation (AAD).° In fact, both AAD or RMS can be used as an

did some tests by use of either AAD or RMS as an evaluation indi-
cator, and found that the corresponding gas-solid concentration
distributions reconstructed only have minor difference. Therefore,
we selected AAD as evaluation indicator in the rest of this work.
The calculation methods for CC and AAD were given in

Equations (22) and (23), respectively.
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FIGURE 13 Exacted and reconstructed cone, cylinder, and sphere.

b~ o (23)

Here G is the average actual permittivity that is obtained by aver-
aging the measured permittivity G; over all pixels, and similarly E is the
average reconstructed permittivity that is obtained by averaging the
reconstructed (AZ, over all pixels. q?), is the reconstructed solid concen-
tration of single pixel, and ¢; is the actual solid concentration of single
pixel.

3.2 | Numerical simulation verification

We first conducted 3D numerical simulations of a laboratory-scale flu-
idized bed, and used the simulation results to verify the proposed
strategy. The fluidized bed with an inner diameter of 14 cm and a
height of 1.5 m was simulated based on the Euler-Euler two-fluid
model with Fluent 6.3. In the simulations, it is assumed that the air
entered the fluidized bed with superficial gas velocity of 1.5 and
2.0 m/s, corresponding to bubbling and turbulent fluidization states
respectively, and leaved the fluidized bed with the constant pressure
condition. A grid with mesh size of Ax=Ay=8mm and Az=7.5cm
were implemented in the simulation. Thus there were a total of 3840
hexahedrons, with 192 CFD cells for each slice. For simplicity, the gas
phase used in the simulation was air and the solid phase were Geldart
B particles with a particle diameter of 300 um. In the initial state,

1.0
0.8
0.6
0.4
0.2

0.0

particles with 0.5m height and 0.55 volume fraction were packed at
the bottom of fluid bed. Physical properties of the two phases were
listed in Table 1, and the model parameters applied were listed in
Table 2.5% In order to fully derive the bubbling characteristics in fluid-
ized bed, the physical time for CFD simulations were set as 80's, with
100 frames of images per second and a total of 8000 frames of data
obtained.

In the bubbling state with superficial gas velocity of 1.5 m/s, we
considered gas-solid distribution in the six cross-sectional slices at the
height of 5, 10, 15, 20, 25, and 30 cm, represented by 0.05, 0.10, 0.15,
0.20, 0.25, and 0.30 h for 3D gas-solid distribution reconstruction. At
each slice, a total of 8000 frames of images were obtained and pro-
cessed to generate 7971 sample sets, as shown in Figure 6. These
images, following the sequence of time, were numbered as 1, 2, 3, ..., i,
... 8000. And the composition of the j™ sample was [j,j+ 1,....j+29]
where the first 24 steps (corresponding to [j,j+ 1,...,j + 23]) were the
input of FNO model and the subsequent 6 steps (corresponding to
[i+24,j+25,...,j+ 29]) were the output of model.

We further divided the images at any given slice as training and
test set by the ratio of sample numbers of 5:1. So for each given slice,
there were 6642 samples (corresponding sample number j ranging
from 1 to 6642) in the train set and 1329 samples (corresponding j
ranging from 6643 to 7971) in the test set. At any instant t we consid-
ered the image for only one given slice as “measured image” and
images for rest slices as “predicted images.” To obtain “the predicted
images,” we need to first get a well-trained FNO. As discussed above,
the FNO can be trained based on the 6642 samples at any given slice.

Figure 7 illustrates an example in which, at the specific instant,
the “measured image” is at 0.05 h, and all other images are “predicted
images” derived from FNO. Note that here the FNO was trained with
6642 samples obtained at 0.3 h. As can be seen, FNO trained by the
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FIGURE 14 Observation and
prediction of solid concentration, along
with deviation at different slices in the
actual experimental fluidized bed at a
specific instant.
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images at 0.3 h can be well used to predict images for all slices.

The maximum absolute error of solid volume fraction is close to
0.04 at 0.3 h, while it is under 0.02 at other slices. Overall, at a given

instant, the gas-solid distributions at all six slices can be recovered

based on the proposed strategy.
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We further verified the performance of the approach at continuous

instants at all different slices in the test set of 1329 samples with sample

number j ranging from 6643 to 7971. According to the proposed

approach, where the ground truth of solid concentration corresponded to
the images numbered from 6667 to 7995. We computed the CC and
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AAD of gas-solid concentration distribution at 1329 continuous time
steps based on ground truth and prediction. In Figure 8, the CC of the
bubbling state at each slice is above 0.9 which is close to 1, the AAD of
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Height
FIGURE 15 CCand AAD at different slices in the actual

experimental fluidized bed.

which is below 0.01 close to O at all continuous 1329 time sequences. All
show the long-term good predicted performance.

Two key hydrodynamic parameters, that is, the average solid con-
centration and equivalent bubble diameter could be derived based on
the gas-solid concentration distribution. Figures 9 and 10 show the
relationships between the referenced ASC or EBD and the regressed
ASC or EBD over time at each slice. It can be found that the
regressed ASC or EBD matches the referenced ASC or EBD very well,
indicating that our proposed strategy can well predict the key parame-
ters of each slice for all continuous 1329 moments.

We also conducted simulations of turbulent fluidization with
superficial gas velocity of 2.0 m/s. Here we considered the cross-
sectional slices at the height of 4, 8, 12, 16, 20, 24, 28, 32, 36, 40,
44, 48, 52, and 60 cm, represented by 0.04, 0.08, 0.12, 0.16, 0.20,
0.24,0.28,0.32,0.44, 0.48, 0.52, and 0.60 h for 3D gas-solid distribu-
tion reconstruction. Compared to that in the simulation of bubbling
fluidization, more cross-sectional slices were considered in the simula-
tion of turbulent fluidization because of a higher expansion of the flu-
idized bed. The numerical simulation parameters and data division
method were the same as bubbling state. Here, in total 6642 train
samples at 0.32 h were selected to train the model. Figure 11 depicts

an example in which, at the specified instant, the “measured image” is
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FIGURE 16 Referenced ASC and the regressed ASC of gas-solid distribution at different slices of the fluidized bed by ECT measurements.
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at 0.04 h, and all other sections are “predicted images” derived from
FNO model trained at 0.32 h. We can find the gas-solid distributions
at all 15 slices can be recovered. From Figure 12, in test set of 1329
continuous time sequences, for each slice the CC of gas-solid concen-
tration distribution is higher than 0.9, and AAD of which is all below
0.03 a little larger than bubbling fluidization. In the verification, similar
CC and quite different AAD were obtained for the bubbling and tur-
bulent fluidized beds. This can be attributed to the fact that the gas-
solid concentration distribution of the turbulent fluidization changes
more dramatically than that of the bubbling fluidization on the one
hand, and, compared to CC, AAD is more sensitive and can amplify
subtle differences. When the height exceeds 0.32 h, it appears as a
whole that AAD increases with height. Overall, the proposed

approach can also be applied to turbulent fluidized bed.

3.3 | Mobile ECT experiments
As shown above, our 3D CFD simulation of both bubbling and tur-
bulent fluidization demonstrates that the 3D instantaneous gas-

solid distribution could be obtained by combing mobile ECT

measurement with FNO based machine learning method. In the
following, we would further validate our approach by conducting
experimental measurements.

We first verified the feasibility of the proposed approach by
measuring some static objects using the single plane eight-
electrode ECT sensor. In our current work, three static objects
including a cone with height of 6 cm and diameter of 3 cm, a cylin-
der with height of 5 cm and diameter of 2 cm, and a sphere with
diameter of 3 cm were considered. In Figure 13, we found that the
height of cone was 6 cm based on ECT measurement results,
which was consistent with height of the actual cone mold. We also
measured the height of cylinder and sphere, and found that the
reconstructed heights were 7 and 5 cm, respectively. The differ-
ence between the measured height and the actual one for these
two molds, according to previous work,?* could be attributed to
the fact that ECT sensor has certain length, which would result in
an axial averaging effect. Anyway, combing the mobile ECT with
FNO method could provide a promising way for 3D reconstruction
of static objects such as cone, cylinder and sphere.

We then studied the fluidization with mobile dual-plane

16-electrode ECT sensor. A series of 2D cross-sectional gas-solid
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FIGURE 17 Referenced EBD and the regressed EBD of gas-solid distribution at different slices of fluidized bed by ECT measurements.
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distributions at different slices had been measured using mobile ECT
sensor, and 3D reconstruction results were obtained by use of FNO
method. In ECT measurements, the Landweber iterative reconstruc-
tion algorithm and as well as the parallel concentration model were
used for deriving the gas-solid distribution from the measured capaci-
tance data. The data were divided into training set (4142 samples) and
test set (829 samples). Here train set at 0.5 h was trained to get a
well-trained model, which was then directly to be used for prediction
at different slices for 829 continuous instants.

It should be noted that the measurements at different axial posi-
tions cannot be conducted simultaneously solely by the use of the
mobile ECT. So we repeated the experimental condition five times to
obtain approximately simultaneous gas-solid distributions at all differ-
ent slices. Figure 14 depicts an example, in which, at the specified
instant, the “measured image” is at slice of 0.1 h, and all other images
are “predicted images” derived from FNO model trained at 0.5 h. The
maximum absolute errors of solid volume fraction at all slices are
under 0.02. We can find the gas-solid distributions at all nine slices
can be recovered in the actual experimental fluidized bed.

We further verified the performance of the approach at continu-
ous instants across all different slices in the actual experimental fluid-
ized bed. Figure 15 shows the CC and AAD of gas-solid
concentration distribution at each slice for 829 continuous moments
in the actual experimental fluidized bed. All the CC values are above
0.9. Except for the AAD at 0.1 h, which is 0.012, the AAD for other
slices is below 0.01.

From Figures 16 and 17, which are the relationship between refer-
enced ASC or EBD of gas-solid concentration distribution and the
regressed ASC or EBD over time at each slice for 829 continuous time
sequences in the actual experimental fluidized bed, it can be found that at
all slices referenced scatters match the regressed lines except 0.1 h.

Experiments with cone, cylinder and sphere proved that the mea-
surement strategy, combining mobile ECT with FNO could be suc-
cessfully applied to 3D reconstruction of static molds. Our
experiments of fluidization further showed that the strategy could
also be used to measure gas-solid distribution at different cross-
sectional slices of the fluidized bed, which was evidenced by the
regressed ASC and EBD of gas-solid distribution well matched
the referenced ASC and EBD for the ground truth case.

4 | CONCLUSION

In this paper, we proposed to measure 3D instantaneous gas-solid
distribution measurement by combining mobile ECT with Fourier neu-
ral operator based on the machine learning method. Especially two
key hydrodynamic parameters, that is, the average solid concentration
and equivalent bubble diameter, could be derived from the gas-solid
distribution. This strategy was validated by both numerical simulations
and experimental measurements of static molds.

For numerical simulations, both bubbling and turbulent fluidiza-
tion were tested. In the bubbling state, six cross-sectional slices, along

axial direction were selected for multi-plane prediction. In the

turbulent fluidization state, due to the higher expansion of the fluid-
ized bed, 12 cross-sectional slices at heights of 0.04, 0.08, 0.12, 0.16,
0.20, 0.24, 0.28, 0.32, 0.44, 0.48, 0.52 and 0.60 h were considered. In
both cases, the image correlation coefficient CC values at all slices
were also higher than 0.9 and the solid concentration average abso-
lute deviation AAD was less than 0.03, showing that the proposed
approach is promising.

The measurements of cone, cylinder, and sphere, in the mean-
time, illustrate that the current approach could be successfully applied
to reconstruct 3D static objects in experiments with mobile ECT.

Finally, mobile ECT combined with the FNO method, was used to
obtain 3D gas-solid distribution in fluidized bed. In the experiments,
4142 samples at the height of 0.5 h were used to train the FNO
model, which was then applied to predict gas-solid concentration dis-
tribution simultaneously at nine different cross-sections along axial
direction. It was shown that the CC of gas-solid distribution at all
slices was higher than 0.9, and the AAD, except at 0.1 h was below
0.01. Both the regressed averaged solid concentration ASC and equiv-
alent bubble diameter EBD matched the referenced values in ground
truth cases very well. This demonstrated the feasibility of realizing 3D
gas-solid distribution measurement in fluidized beds by combining 2D

mobile ECT with FNO based on the machine learning method.
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Furthermore, numerical simulation data in the turbulent fluidized bed
and the corresponding FNO model predictions are available in Data S2.
The results presented in Figure 11 can be reproduced using these data
with the script provided in Data S2. The ECT static experiment data and
corresponding FNO model predictions are available in Data S3. These
data support the results presented in Figure 13. The ECT fluidized experi-
ment data and corresponding FNO model predictions are available in
Data S4. The results presented in Figures 14, 16, and 17 can be repro-
duced using these data with three scripts provided in Data S4.

Data S1, S2, S3, and S4 can be downloaded from Google Drive at
https://drive.google.com/drive/folders/1YIShwvf5DrWIxhC7S3wql-
MowHtAsmg4?usp=sharing.
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