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ABSTRACT: Minimum fluidization velocity (Umf) is of fundamental importance in gas fluidization. Lots of empirical correlations
have so far been reported in the literature to calculate Umf. However, Umf is affected by numerous factors, including, among others,
the operation conditions and physical properties of both solids and gases. The applicability of empirical correlations relies essentially
on the experiments upon which they were developed, and in practice, the choice of Umf is a matter of the knowledge and experience
of chemical engineers. In this work, we proposed to establish a database by extracting experimental data of Umf from open literature
using the text mining technique. We first presented a pipeline of natural language processing to identify and extract the functional
parameters related to Umf with 83% accuracy from ∼40 000 papers. A database of Umf containing eight impacting factors, i.e., particle
diameter, particle density, particle sphericity, bed voidage at minimum fluidization, gas density, gas viscosity, operating temperature,
and pressure, was created. We then used a data-driven machine learning method with the extracting data to predict Umf, which is
shown superior over the empirical correlations by achieving higher accuracy for a much wider range of gas−solid systems. We expect
this work illustrates a potential and promising approach to make use of the huge amount of experimental data in the literature and
replace the empirical correlations in practical chemical engineering design and operations.

1. INTRODUCTION

Due to the excellent performance of mass and heat transfer,
fluidized beds have been widely employed in industrial
processes.1,2 The design and operation of industrial fluidized
beds rely heavily on the understanding of particulate two-phase
flows and demand well-established methods to calculate key
parameters describing critical hydrodynamic characteristics.3

The superficial velocity at incipient fluidization, namely, the
minimum fluidization velocity (Umf), is one of the most
fundamental parameters required in fluidized bed design and
operation.4,5 It defines the moment when the drag force acting
on the particles balances the total gravitational force and hence
constitutes a reference for the evaluation of fluidization
intensity at higher superficial velocities.6 Umf is normally
determined by plotting pressure drop across the bed against
the superficial velocity via experiments in a fluidized bed for a
particular solid−fluid system.7 This is, however, rather time-
consuming and costly, especially considering the fact that real
industrial fluidized beds always operate under elevated
temperatures and pressures. Chemical engineers always fitted
the measured Umf with the properties of particles and gases and

established corresponding empirical correlations for conven-
ience.5,8−10 However, the accuracy and consistency of
empirical correlations are impaired since most of these
correlations were developed based on the data with limited
experiments, which are only applicable for the situations with
the same solid−fluid system under similar experimental
conditions.5,8,9,11,12 For example, Gupta et al. investigated the
suitability of 79 correlations for fine tailings materials and
found that most correlations underestimate the values of Umf.

13

Anantharaman et al. also found that most correlations are
highly empirical and system-specified, which hinders their
applicability if tested on systems outside their scope.5 Actually,
it is hard to reach the consensus on which correlation of Umf
exhibits the best performance owing to the widespread of
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solid−fluid systems encountered in practices. The performance
and scope of a given empirical correlation are considerably
constrained by the limited experimental data employed in
developing the correlation. To address this issue, enlarging the
population of the dataset is highly desired. Recently, data-
driven models based on machine learning can accelerate the
development of new materials and aid in learning new complex
relationships.14,15 Therefore, it may be feasible to develop new
correlations to predict the value of Umf with machine learning,
the bottleneck of which, however, is also the lack of a reliable
database.
Fortunately, with decades of development of fluidization

technology, abundant experimental data on Umf have been
recorded and published in open literature. But it is impractical
to manually collate and extract the fragmented experimental
data from the large volume of literature.16,17 It is shown in
recent years that text mining based on natural language
processing (NLP) offers a quite efficient way of extracting
valuable data from scientific articles.18 In fact, NLP, as efficient
computer technology, has been widely used to understand
human natural language and transform the unstructured text
into normalized and structured data.19 For example, Jensen et
al. developed a new structural descriptor for the topology of
zeolite with machine learning based on a zeolite synthesis
database extracted by the NLP technique.15 So far, several
well-established NLP open-source tools have been developed
for automatically extracting the information from scientific
publications.20−22 Among them, ChemDataExtractor,22 a
toolkit for mapping the unstructured text of scientific articles
onto a structured format using the NLP and machine learning
techniques, has drawn wide attention. ChemDataExtractor
provides an effective means to extract information with high
precision from scientific articles in physics, chemistry, and
materials science.23−25 Court et al. used ChemDataExtractor to
successfully autogenerate the material database of Curie and
Neél temperatures, which provides a basis for the discovery of
magnetic materials.23 Huang et al. presented a database of

battery material using the ChemDataExtractor, which can be
used for the design and prediction of battery materials.25

Herein, we proposed an automatic extraction framework (as
shown in Figure 1) based on the modified ChemDataExtractor,
which consists of five steps: (1) article retrieval and download
to build a relevant article corpus; (2) document processing to
convert raw articles into a document structure; (3) NLP
pipeline to convert the document structure into individual
tokens; (4) phrase parsing to extract information from the text
and table; and (5) data cleaning to remove the invalid data.
In this work, we aim at extracting Umf and functional

properties related to Umf from vast scientific publications using
the automatic extraction framework based on the modified
ChemDataExtractor. We first built a database consisting of
∼1400 effective data records from a total of ∼40 000 articles
by automatically extracting Umf and eight parameters (i.e.,
particle diameter, particle density, particle sphericity, voidage
at minimum fluidization, gas density, gas viscosity, operating
temperature, and pressure) that significantly affect Umf.

26,27

With this database, we then evaluate the performances of
Ergun and Wen−Yu correlations. Moreover, machine learning
models based on the artificial neural network (ANN) are also
implemented to predict the Umf. It shows that this data-driven
method based on machine learning is superior over the
empirical correlations in terms of higher prediction accuracy.

2. METHODS

In this section, methods used to identify and automatically
extract the relevant information from the text and table
embedded in the scientific literature will be discussed. In
particular, modifications made to the original version of
ChemDataExtractor22 will be emphasized.

2.1. Article Retrieval and Download. Articles considered
in this work are published in Elsevier (https://dev.elsevier.
com/) and Wiley (https://onlinelibrary.wiley.com/) as they
open their full paper in Xtensible Markup Language (XML)
and Hypertext Markup Language (HTML) formats for text

Figure 1. Schematic diagram of the automatic extraction framework based on the modified ChemDataExtractor used in this work.
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mining purposes.28,29 Article retrieval and download can be
completed by the following three steps:

(1) Building the relevant Digital Object Identifiers (DOIs)
by searching with the keyword “minimum fluidization
velocity”: To construct the article corpus, DOIs, serving
as the unique article identifier, are obtained using the
CrossRef search Application Programming Interface
(API).29 It yields the DOIs of almost ∼100 000
publications.

(2) Filtering the irrelevant DOIs: With DOIs obtained from
the first step, we download the titles and abstracts of
articles using API with the click-through service.29 Since
this work focuses on the gas−solid system, we then
refine the DOIs by discarding the gas−liquid−solid,
liquid−solid systems when the keywords (“liquid,”
“water”, “oil”, etc.) appear in the titles or abstracts. As
a result, we create a library of ∼60 000 DOIs.

(3) Downloading the corresponding full-text papers: Most
articles published before the year 2000 are in the PDF
format, which is not conducive to parsing. Hence, only
articles published after the year 2000 in the format of
XML/HTML are selected. After this operation, the
number of DOIs further drops to ∼40 000, and the full-
text articles are also programmatically downloaded using
API with permissions.29

2.2. Document Processing. As typical markup languages,
XML and HTML provide explicit tags that can be used to
identify section and subsection headers, which makes them
easy to transform the document to title, abstract, heading,
paragraph, figure, and table elements. In this way, any article
with the XML/HTML format can be converted into a standard
structure using the “reader” package in ChemDataExtractor.22

2.3. NLP Pipeline. After document processing, an NLP
pipeline is run to convert the obtained elements (i.e., title,
abstract, heading, paragraph, and table) into single tokens via
the following steps. The first step is tokenization, where the
text is split into multiple sentences and the table is split into
cells to create the sentence-level tokens.22 In the subsequent
step, each sentence and cell are further split into words and/or
punctuation to obtain the individual word-level tokens. In the
final step, the part-of-speech (POS) tagging is applied to
identify the syntactic function (e.g., noun or verb) of the
individual tokens. For example, the sentence “The mean size of

FCC particles is found to be about 120 μm.” can be
transformed to “The (DT) mean (JJ) size (NN) of (IN)
FCC (NNP) particles (NNS) is (VBZ) found (VBN) to (TO)
be (VB) about (RB) 120 (CD) μm (NN). (.)” after the NLP
pipeline. Note that DT, JJ, NN, IN, NNP, NNS, VBZ, VBN,
VB, and CD represent the determiner, adjective, noun,
preposition, proper noun, plural nouns, verb (third-person
singular present), verb (past participle), adverb, and cardinal
number, respectively.30

2.4. Phrase Parsing. To make it suitable for this project to
extract information related to Umf, some modifications have
been made to the original version of ChemDataExtractor.22 It
is anticipated that Umf is closely related to the properties of
both particle and fluidization gas, as well as the operating
conditions (e.g., temperature and pressure).26,27 Thus, we have
tailored nine property parsers using the specific parse
expressions of ChemDataExtractor for data extraction. The
parse expressions consist of parser elements connected by
operators (e.g., “+” or “|”). In general, each property parser
contains the specifier (i.e., keywords represent the extracted
properties), value, and unit (if exists), as listed in Table 1.
Normally, the parser element “R” stands for regex, which can
match the text patterns using regular expressions. For example,
the expression of “R(“[UV]mf, re.I”)” can match the tokens of
“Umf”, “umf”, “Vmf”, “vmf”, even “Umf,exp”, and so on. “W”
matches a case-sensitive individual token, while “I” matches a
case-insensitive individual token. “+” operator can connect the
individual tokens into a sequence, and “|” operator is used
when only one of the multiple alternatives is needed.22,25 What
needs to be emphasized is that the names of property parser
for the same property that appears in text and table are
different, for example, when Umf appears in the text, it is
represented by “text_Umf”, and when it appears in the table, it
is represented by “table_Umf”. For a property parser, the
specifier is important as it is used to distinguish the attribute of
the property. Given the diversity of property definitions, a
perfect specifier requires a deal of effort. For example, particle
diameter in different articles can be represented as the surface
diameter, equivalent diameter, Sauter diameter, and even the
weighted mean diameter. Similarly, the particle density may be
written as the skeleton density, real density, apparent density,
and bulk density.

Table 1. Parse Expressions for Nine Properties

property specifier (above) and units (below) of each property

Umf R(“[UV]mf, re.I”) | (R(“[Mm]in”)+ R(“fluid”)+ R(“vel”))
R(“[cm]?m”) + (W(“/”) + W(“s”)) | (R(“[cm]?m”) + R(“[-−]”) + W(“1”))

particle diameter (R(“particle | solid, re.I”) + I(“diameter”) | I(“size”)) | R(“d[ps], re.I”)
(R(“μ”) + W(“m”)) | (R([μcm]?m))

particle density (R(“particle | solid | actual | skelet, re.I”) + I(“density”)) | R(“ρ[ps], re.I”)
R(“[Kk]?g”) + (W(“/”) + W(“c?m3”)) | (R(“c?m”) + R(“[-−]”) + W(“3”))

particle sphericity R(“spheric | roundness”) | (I(“shape”) + I(“coefficient”)) | R(“φ[ps], re.I”)
gas density (I(“gas”) | I(“air”) + I(“density”)) | R(“ρ[gf], re.I”)

R(“[Kk]?g”) + (W(“/”) + W(“c?m3”)) | (R(“c?m”) + R(“[-−]”) + W(“3”))
gas viscosity R(“viscosity | viscidity,” re.I) | R([μη]g, re.I)

R(“Pa·s”) | (I(“kg”) + W(“/”) + W(“m”) + W(“/”) + W(“s”))
bed voidage (I(“minimum”) | I(“bed”) + I(“voidage,” re.I)) | (R(“ε”) + I(“mf”))
temperature I(“particle”) | I(“bed”) + I(“temperature”)

(W(“°”) + R(“[CFK]”)) | R(“∧K$”)
pressure I(“operating”) + I(“pressure”)

R(“[km]?Pa, re.I”) | R(“bar”) | R(“atm”)
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2.4.1. Text Parsing. To accurately extract the information
embedded in the text, several property-related grammars are
defined. Following the previous study,25 we also divided the
parsing grammar into five cases according to the order of
occurrence: prefix-value-cem, prefix-cem-value, value-prefix-
cem, cem-value-prefix, and cem-prefix-value. Therein, “cem”
represents the particle name (e.g., FCC, Al2O3), “value”
contains the numerical value with units (if exists), and “prefix”
contains the specifier and the corresponding definition text
around it.25 Text parsing works at the sentence level and stores

the output data of a sentence in the form of Python dictionary
format.23,25 If none of these five cases is found within a
sentence, the parsing moves to process the next sentence.
Considering that it is almost impossible that the information of
all properties appears in a single sentence, the total data
records are restored in the form of the Python list format after
traversing through a paragraph.
Figure 2 demonstrates the example of a paragraph

containing the parsing grammar of cem-prefix-value, prefix-
cem-value, and value-prefix-cem. In Figure 2a, based on the

Figure 2. Example paragraph (a) for text parsing from the article31 and corresponding extraction result (b) based on our text parsing.

Figure 3. Table standardization (a), classification (b), and table data extraction (c). The tables are taken from the published literature.33−35
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format of cem-prefix-value, the “cem” represents the “alumina
particles” and the “prefix” represents “a mean Sauter diameter
of” where the specifier is “Sauter diameter.” “density and Umf”
are also the specifiers, and “329 μm, 3900 kg/m3, 12.5 cm/s,
20 °C, 8 cm/s, 600 °C” represent the “value”. Based on the
format of value-prefix-cem, we can identify that “for the
sphericity” represents the “prefix” and “0.55” represents the
“value”. Figure 2b shows the corresponding extracted results
based on our text parsing grammar. Obviously, the parsing
grammar works very well in extracting the data and deriving
the relations between Umf and the corresponding functional
parameters if all of the information appears in the same
paragraph. However, in some cases, the information may not
appear in a single paragraph alone. Hence, to obtain the
contextual information, data records of each paragraph are

stored. Then, the records are merged if there is a similarity
between the extracted information, e.g., records have the same
“cem”. An inherent drawback of the parser is that it is too
strict, and even a minor mismatch can cause its failure.25 This
undoubtedly leads to high accuracy and low recall (here, recall
quantifies the fraction of relevant data found by the mining
process). To improve the recall, it needs to manually collate
the information related to the specifier and prefix of each
functional property in the article and update the property
parser.25

2.4.2. Table Parsing. Compared to the information
embedded in the unstructured text, tables are another type
of highly attractive resource for information extraction due to
high data density and structured diagrams.32 The challenge is
that the complexity and diversity of table formats make table

Figure 4. Basic logic for combining the data extracted from text and table.
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parsing relatively cumbersome. Thus, we use the following
steps for table parsing:

(1) Splitting the cell spanning into individual cells: Given
that cell spanning (horizontal, vertical, or both) is
universal in tables, it needs to be standardized before the
table parsing. In the original version of ChemDataEx-
tractor,22 certain blank cells were simply added at the
end of the row or column according to the number of
cell spans, which will inevitably affect the subsequent
data extraction and reduce the accuracy. In this regard,
we have made some modifications based on the specific
formats of the table in XML/HTML. Taking the XML
format as the example, for a horizontal span, “namest” in
the “entry” element indicates the starting column name
and “namend” indicates the ending column name. For
example, in Figure 3a, the “Umf,m (cm/s)” appears in a
horizontal span that starts in column 5 and ends in
column 6. Correspondingly, “namest” is “col5” and
“namend” is “col6”. For a vertical span, “morerows” in
the format of integer indicates the number of rows that
need to be added. In Figure 3a, “Biomass” occurs in a
vertical span and “morerows” is 1, which means that it
should span downward by one additional row. With
these modifications, the cell spans are well split into
several individual cells with the same tokens and further
standardized into the format shown in Figure 3a.

(2) Identifying the category of the table: In general, a table
can be divided into two categories: (1) specifiers locate
in the first row, and their values are arranged in the same

column below; (2) specifiers locate in the first column
and their values are arranged in the next column right.
The original version of ChemDataExtractor can only
work for the first type of table.22 However, the second
type of table is also quite frequently used in scientific
literature. Therefore, in this work, we developed a simple
method to handle this type of table. As a single cell is
regarded as a separate text domain, cells of the first row
(heading) are first scanned. If both the specifiers of Umf
and other functional properties are identified, the table is
classified into the first type. Then, it extracts the data
from the cells of the column below. Otherwise, it
belongs to the second type, and the data extraction
begins from the cells on the right (Figure 3b).

(3) Extracting the data: After the type of table is identified,
the cells of the heading or first column are first parsed to
determine the type of properties, followed by further
processing the subsequent row or column to derive the
values. All of the data extracted from a table is stored in a
Python dictionary, where the data for each functional
property is stored in a Python list, as shown in Figure 3c.
Besides, the information stored in the table captions and
footnotes is also extracted through text parsing.

2.5. Data Combination. After text and table parsing, it is
necessary to resolve the data interdependency and combine the
data accurately into a single intact data record. The data
combination processing is schematically shown in Figure 4.
It should be emphasized that since the purpose of this work

is to establish a database of Umf, the data record that does not

Figure 5. Examples of data combinations. Data were selected from open literature.36,37
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contain the information of Umf or only contain Umf but with no
other functional properties will be discarded. Therefore, at the
beginning of the combination, we need to determine if Umf is
extracted from the text or table; if not, the combination will be
exited and a new combination starts. If Umf exits, the program
then starts to search the other properties (i.e., particle
property, gas property, and operating conditions). For
example, if particle diameter is found, the data record will be
temporarily combined and recorded. Otherwise, the program
will be exited again. Then, we need to judge whether the
combined data records are reasonable. Here, if one of the
following four conditions is satisfied, the data record will be
retained: (a) the number of text_Umf is equal to the number
of text_particle_diameter; (b) the number of text_Umf is
equal to that of table_particle_diameter; (c) the number of
table_Umf is equal to that of table_particle_diameter; and (d)
the number of table_Umf is equal to that of text_particle_-
diameter. If the number of Umf is smaller than that of particle
diameter, the data record will be discarded. However, if the
number of Umf is larger than the number of particle diameter, it
needs to further count the numbers of other properties (e.g.,
particle density, gas property, operating temperature, or
pressure) and then compare them with the number of Umf.
If they are equal, the data record is also recorded. If not, the
combination ends and the data record is discarded, and a new
program of combination starts again.
Figure 5 shows an example of data combination. In Figure

5a, the information of particle diameter and Umf are embedded
in the table but the information of particle density and particle
diameter appears in the text. Therefore, according to the
combination method, the particle density from text is directly
assigned to the data extracted from the table. In Figure 5b, the
number of Umf extracted from the table is 5, which is larger
than the number of particle diameter (only 1) extracted from
another table but equals to the number of operating
temperatures extracted from the same table. Therefore, all of
the data extracted can also be well merged. In some cases
where the “cem” appears in both table captions and tables, we
need to make an additional comparison to check whether the
“cem” is consistent.
2.6. Data Cleaning. The combined database may contain a

range of invalid data and duplicated data, which makes it
impossible to directly available for large-scale analysis.
Therefore, a data cleaning process is applied to remove the
invalid and duplicated data.
2.6.1. Removing the Obviously Abnormal Data. Although

table parsing can work well for most tables in scientific articles,
there are still some atypical tables whose data cannot be
accurately extracted. In this case, the invalid data are removed
by limiting the values of properties to a reasonable range, i.e.,
particle diameter in the range of 10 μm to 15 mm, Umf in the
range of 0−5 m/s, and particle sphericity in the range of 0.2−
1. Besides, some semiempirical correlations stored in the tables
may also be incorrectly extracted as the values.38 These data
are also removed by applying some predefined regular rules.
2.6.2. Removing the Non-numeric Data. In some articles,

the values are problematic, such as a range or order of
magnitude for the property rather than a specific value (e.g., dp
< 0.05, Umf ≫ 139). The data extracted from this uncertain
expression are also removed. However, it needs to be pointed
that the data extracted from such expression, e.g., “420 < dp <
800”,40 is retained selectively. In subsequent data analysis, the
value of dp (610) is taken as the average of the two values.

There is no doubt that the accuracy of the extracted datasets
can be improved through the data combination and cleaning.
Given that there may be inconsistencies between units of each
property in different articles, a data standardization process is
performed on the cleaned data to convert them to the same
unit. The standardized units of diameter, density, viscosity,
temperature, pressure, and Umf are μm, kg/m3, Pa·s, K, kPa,
and cm/s, respectively.
In total, the automatic extraction processes yield a final set of

∼1425 effective data records, including Umf, particle diameter,
and particle density, from a small set of only 765 articles,
showing that in the majority of the articles, either information
is not available or our code could not identify them. Table 2

depicts the total number of extracted data for each property.
The data size of each property is different. A smaller number of
gas properties and operating conditions may be due to the fact
that most experiments are carried out at room temperature and
pressure, and air or nitrogen is used as the fluidizing gas, so no
specific values are available. At the same time, due to the
difficulty in measuring particle sphericity and bed voidage
experimentally, their data sizes are also smaller.

3. RESULTS AND DISCUSSION
3.1. Technical Validation. Manually check the extracted

data versus the embedded data and evaluate the performance
by calculating the precision, recall, and F-score, which are
defined as follows:22

precision
TP

TP FP
=

+ (1)

recall
TP

TP FN
=

+ (2)

F score 2
precision recall
precision recall

− = ×
×
+ (3)

where TP represents true positive, FP represents false positive,
and FN represents false negative. More specifically, precision
indicates the ability to extract the correct data out of the
database. Recall quantifies the fraction of relevant data found
by the mining process. F-score provides a score that balances
both the concerns of precision and recall. The validated results
are depicted in Table 3 and the overall scores, as well as the
scores for each property, are included. Overall, we achieved a
high precision (83%), with precision on each property ranging
from 77 to 87%. The lower precisions of particle and gas
density may be due to the fact that the specifiers of gas and
particle density are the same in some tables, resulting in
confusion between gas and particle density. The overall recall
of 74.7% may indicate that a small amount of data is cleaned
due to the strict criteria applied to the data combination and
cleaning processes.
In the end, the database of Umf is obtained, and Figure 6

shows the data distribution for the nine properties. As seen in

Table 2. Total Number of Extracted Data for Each Property

property number property number property number

particle
diameter

1781 particle
density

1425 gas density 146

particle
sphericity

163 bed voidage 239 gas
viscosity

139

temperature 190 pressure 121 Umf 1781

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.1c02307
Ind. Eng. Chem. Res. 2021, 60, 13727−13739

13733

pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.1c02307?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 6a, the particle diameter can be up to 10 mm, although
mainly distributed below 2 mm. There is also a wide
distribution of particle density, shown in Figure 6b.
Correspondingly, the coverage of Umf is wide, with a maximum
of nearly 3 m/s (Figure 6i). To the best of our knowledge, we
have created the most extensive collection of particle and gas
properties and Umf, which allows us to conduct more in-depth
analyses.

3.2. Performances of Empirical Correlations. In this
section, we will evaluate the correlations of Ergun41 and Wen−
Yu26 with the extracted database. Ergun correlation, which is
present as a function of the Archimedes number (Ar) and
Reynolds number (Remf) at the minimum fluidization, provides
a conventional approach to determine Umf based on the
pressure drop in a packed bed41

Re Re Ar
1.75 150(1 )

mf
3 mf

2 mf

mf
3 2 mfε φ

ε
ε φ

+
−

=
(4)

where

Ar
d g( )g p

3
p g

2

ρ ρ ρ

μ
=

−

(5)

Re
U d

mf
g mf pρ

μ
=

(6)

Wen et al. simplified the expressions by assigning values to
the two groups in eqs 7 and 826

1
14

mf
3ε φ

≈
(7)

Table 3. Performance for Data Extraction in View of
Precision, Recall, and F-Score

property precision (%) recall (%) F-score (%)

particle diameter 86.2 72.6 78.8
particle density 80.2 69.6 74.5
particle sphericity 90.5 76.0 82.6
bed voidage 84.1 74.5 79.0
gas density 81.4 72.3 76.6
gas viscosity 85.7 73.4 79.1
temperature 76.8 76.9 76.8
pressure 77.4 79.2 78.3
Umf 87.3 77.8 82.3
overall 83.3 74.7 78.8

Figure 6. Autoextracted data distribution of the nine properties. (a) Particle diameter, (b) particle density, (c) particle sphericity, (d) gas density,
(e) gas viscosity, (f) bed voidage, (g) operating temperature, (h) operating pressure, and (i) Umf.
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(1 )
11mf

mf
3 2

ε
ε φ
−

≈
(8)

Then, Wen−Yu correlation is obtained:

Re Ar(33.7 0.0408 ) 33.7mf
2 0.5= + − (9)

Considering that the operating temperature and pressure
mainly affect the gas density and viscosity, in this work, the
effects of temperature and pressure are implicitly reflected on
the gas density and viscosity by the following formula:8

T
P

1.2
293

0.1gρ = × ×
(10)

T
T

1.46 10
120g

6
1.504

μ = × ×
+

−
(11)

After checking the extracted database, we found that there
were 21 sets of data in which both the gas properties (density
and viscosity) and operation temperature or pressure are
included, as depicted in Table S1. Then, we first calculated the
values of gas density and viscosity according to eqs 10 and 11.
As shown in Table S1, the differences between the calculated
and the extracted values of gas density and viscosity are very
small. In other words, it is reasonable to reflect the influences
of temperature and pressure on gas density and viscosity
according to eqs 10 and 11. In addition, for those data records
in which the gas properties, particle sphericity, and bed voidage
cannot be extracted through analysis of the experimental part
in the corresponding articles, we found that most of them
contain the keywords “air”, “nitrogen”, and “atmospheric”.
Therefore, for simplicity, the gas density and viscosity are
considered to be 1.2 kg/m3 and 0.000018 Pa·s, respectively,
and the particle sphericity is designated as 1, while the bed
voidage is the average of the available values.
To compare the performances of different correlations, three

commonly used evaluation metrics are considered, namely,
root-mean-squared error (RMSE), mean absolute error
(MAE), and determination coefficient (R2). Thereinto, MAE
uses the absolute operator to explain how the model fared
among the median values. RMSE uses the square root to assess
the model’s ability to predict the larger values. For RMSE and
MAE, the lower the better. R2 is utilized to judge the fitting
effect of the model. The larger the value of R2, the better the
fitting effect.

N
y yRMSE

1
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N
i i

1
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= (12)
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∑ − ̅
=
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where yi and y̌i are the extracted value and predicted value,
respectively. y̅ is the mean value of the extracted values. N is
the total number of samples.
Figure 7 shows the performances of the Ergun correlation

and the Wen−Yu correlation between the calculated and the
extracted Umf with the boundaries corresponding to ±10%
error. Table 4 depicts the quantitative evaluation of the

performance of these two correlations. For the Ergun
correlation, the RMSE, MAE, and R2 are 15.110, 8.721, and
0.797, respectively. For the Wen−Yu correlation, the RMSE
and MAE decrease to 10.406 and 4.445, respectively, and the
R2 increases to 0.904. This result manifests that the Wen−Yu
correlation shows a slightly better performance. To further
illustrate the difference between these two correlations in more
detail, a comparison result is depicted in Figure S1 and S2 and
Table S2 in view of Geldart group A, B, and D particles
according to the Geldart classification.12 As shown in Table S2,
for the Geldart group A particle, the Ergun correlation has the
lower RMSE, MAE, and the higher R2, indicating that when
used to predict the Umf of the Geldart group A particle, the
Ergun correlation has a better performance than the Wen−Yu
correlation. However, for Geldart group B and D particles, the
Wen−Yu correlation shows a better performance than the
Ergun correlation due to the lower RMSE, MAE, and the

Figure 7. Comparison between the predicted and extracted values of Umf for the Ergun correlation (a) and the Wen−Yu correlation (b).

Table 4. Performances of Different Empirical Correlations
and ANN Models

RMSE MAE R2

Ergun correlation 15.110 8.721 0.797
Wen−Yu correlation 10.406 4.445 0.904
ANN mode with six parameters 9.144 2.357 0.918
ANN mode with four parameters 7.989 2.181 0.937
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higher R2. This result once again illustrates that empirical
correlations always are system-specified and have their own
scope of applicability.
3.3. Performances of ANN Models. Artificial neural

network (ANN), as a universal approximator, is capable of
modeling complex problems.42 Especially, it can map a set of
inputs to the correct output by training a large amount of data.
A typical ANN model consists of an input layer, one or more
hidden layers, and an output layer. The input layer is used to
receive the data, the hidden layer performs nonlinear
operations, and the output layer produces the results. The
units in hidden layers represent nonlinear functions, which
contain the parameters (i.e., weights, biases) and activation
function. In this work, the inputs of the ANN model have six
parameters (e.g., particle property (diameter, density, and
sphericity), gas property (density and viscosity), and bed
voidage, shown in Figure 8a) or four parameters (particle
property (diameter and density) and gas property (density and
viscosity), shown in Figure 8b); the Umf is determined as the
output. MAE, RMSE, and R2 are also used to evaluate the

performances of the ANN models. Rectified linear units
(ReLU)43 is selected as the activation function. The back-
propagation algorithm is used to train the network due to its
self-organizing, adaptive, and self-learning function.44 To train
the ANN model, data are always divided into the training set
and testing set, in which the training set is used to train and
optimize the model, and the test set is used to evaluate the
model. By studying the influence of the number of hidden
layers and neurons, as well as the proportion of test set, the
numbers of the hidden layer, neurons, and proportion of test
set are determined to be 1, 16, and 0.3 (Table S3),
respectively. That is, in this work, 70% of the data are
randomly selected as the training set and the rest as the test set.
Figure 9 shows the performances of the two ANN models by

comparing the predicted values with the extracted values of
Umf. It can be seen that most of the data fall within the
satisfactory confidence intervals (±90%). As shown in Table 4,
the RMSE, MAE, and R2 are 9.144, 2.357, and 0.918 for the
ANN model with six parameters, respectively. However, for the
ANN model with four parameters, the RMSE and MAE

Figure 8. Schematic of the ANN models with inputs of six parameters (a) and four parameters (b).

Figure 9. Comparison between the predicted and extracted values of Umf for the ANN models with inputs of six parameters (a) and four
parameters (b).
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decrease to 7.989 and 2.181, respectively, and the R2 increases
to 0.937. This result indicates that the ANN model is superior
to the empirical correlations; especially, the ANN model with
four parameters is better than the ANN model with six
parameters. That is, to calculate the Umf with the trained ANN
model, we only need to know the properties of particles and
gases. Actually, since it is difficult to measure the particle
sphericity and bed voidage experimentally, especially when
dealing with the irregular beds and coarse particles,11 most
correlations have been proposed without considering the
particle sphericity and bed voidage. However, it needs to be
emphasized that reducing the number of input parameters of
the ANN model does not necessarily improve the accuracy.
Actually, for an ANN model, the performance depends not
only on the quantity of input data but also on the quality of
input data. In this work, for the ANN model with six
parameters, the numbers of particle sphericity and bed voidage
are only 163 and 239, respectively. However, to train the ANN
model, we have artificially assumed that the remaining particle
sphericity is 1 and the remaining bed voidage is the average of
the available values. To some extent, although this assumption
increases the amount of input data, it inevitably reduces the
quality of input data. Therefore, the accuracy of the ANN
model with six parameters is slightly lower than that of the
ANN model with four parameters.
With the extracted database and the trained ANN model, an

in-depth analysis is also carried out to illustrate the importance
of different variables to Umf from both the qualitative and
quantitative aspects. First, the relationships between the Umf
and different variables are depicted in Figure S3, wherein an
approximately linear trend between the particle diameter and
Umf is observed in Figure S3a. However, the relationships
between other variables and Umf are not clear or even irregular.
These results qualitatively explicate that particle diameter has
the greatest effect on Umf among all variables. Second, when
the original database is used to train the ANN model, the
permutation importance (PI)45 value of each feature for
prediction can be obtained, and the result is shown in Figure
S4. Its principle is to make predictions by shuffling the order of
each feature value in turn and then compare the performances
to that of the original database. The attenuation of perform-
ance represents the importance of the feature being shuffled.
According to the normalized PI value shown in Figure S4, the
particle diameter is the most important to Umf, followed by
particle density, particle sphericity, gas viscosity, gas density,
and bed voidage. It needs to be emphasized that the obtained
PI value largely depends on the amount of data of this feature.
That is, the results shown in Figure S4 need to be used with
caution because the amount of data for each feature in this
extracted database is different, as listed in Table 2.
Considering that the minimum fluidization has been

frequently studied with dimensionless parameters (see eq 4),
we also attempt to use the dimensionless Remf and Ar as the
inputs of the ANN model and then evaluate the performance
of the model. The results can be seen in Figure 10. The RMSE,
MAE, and R2 are 11.309, 2.674, and 0.874, respectively.
Obviously, the performance is worse than the ANN models
with inputs of dimensional variables. This may be because
when calculating the Remf and Ar, some parameters such as the
particle sphericity and bed voidage are difficult to measure. For
simplicity, some presumed values are allocated to these
variables, which may affect the data quality and thus reduces
the accuracy of the model.

4. CONCLUSIONS
In this work, we established a general database for Umf by
extracting experimental information from the open literature
using the text mining technique. We developed a pipeline to
identify and extract the functional parameters related to Umf
from ∼40 000 papers using a modified ChemDataExtractor
toolkit. A database covering a wide range of eight factors that
significantly influence Umf, i.e., particle diameter, particle
density, particle sphericity, voidage at minimum fluidization,
gas density, gas viscosity, operating temperature, and pressure,
was created. The most commonly used Ergun correlation and
Wen−Yu correlation have been evaluated against the extracted
database and show their limitations. We further showed that
this database together with ANN machine learning models
offers the better capability to predict Umf for the given
properties of particles and gases, and a more accurate
prediction of Umf could be achieved for a wide range of
gas−solid systems with a large range of temperatures and
pressures, compared to the empirical correlations. Note that
most of the correlations that are critical for chemical reactor
design and operation optimization are empirical and largely
dependent upon the experimental data; this work shows the
possibility of establishing a general database using the large
quantity of data embedded in the literature of chemical
engineering via the text mining technique. The machine
learning model driven by the data from this database is
expected to have a wider applicable range and better accuracy
than that of empirical correlations in predicting the parameter
of interest.
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■ NOTATION

d particle diameter, μm
U velocity, m/s
T temperature, K
P pressure, KPa
Re Reynolds number
Ar Archimedes number

■ SUBSCRIPTS

p particle
g gas
mf minimum fluidization

■ GREEK LETTERS

ρ density, kg/m3

μ viscosity, Pa·s
φ particle sphericity
ε bed voidage
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