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A B S T R A C T

The accurate prediction of effective thermal conductivity (ETC) of particle-filled system (PFS) is an essential but 
challenging topic due to the intricate structure and contact properties. Inspirated by fluid flow in porous media, 
we propose a strategy to obtain ETC via quantifying the heat conduction pathways. Specifically, the connectivity 
function based on spatial statistics theory is employed to derive conduction characteristic lengths from PFS 
structures. By applying these characteristic lengths to Maxwell model, a generalized connectivity model is 
developed for discrete particles filled systems, which is validated by examining the ETCs of representative 
structures through inserted layer Lattice Boltzmann simulations. In comparison to traditional models, the pro
posed method can effectively capture the influence of anisotropic structures on ETCs in absence of specific ge
ometry information of particles. We would stress, however, that our proposed method is particularly applicable 
to systems composed of irregular particles with a volume fraction lower than 25%.

1. Introduction

Particle filled systems（PFSs）are critical multiphase systems uti
lized in a variety of applications, including solid-void (or gas/fluid) 
systems in industrial packed bed reactors (van Antwerpen et al., 2010; 
Pietschak et al., 2020; Rodrigues et al., 2023), electrochemical devices 
(Fan and Wang 2011, Li, Zheng et al. 2016) and reservoirs exploration 
processes (Zhang et al., 2007), as well as solid–solid composite systems 
in material science (Ngo and Byon 2015, Rao et al., 2017). The targeted 
modulation of thermal conductivity of PFSs is a prevalent requirement 
in various applications (Pietschak et al., 2020). In this context, a 
comprehensive understanding of the underlying physical mechanisms 
and precise assessment of thermal conductivity hold significant theo
retical and practical significance. Typically, effective thermal conduc
tivity (ETC) is employed as a critical parameter for characterizing heat 
conduction capabilities. Extensive investigations have demonstrated 
that the ETC of PFS is significantly influenced by various factors, 
including the thermal conductivity of the particles and the matrix ma
terial, their respective volume fractions, the size, shape, orientation 
(Jiajun and Xiao-Su 2004, Li et al., 2016a), and arrangement(Birkholz 
et al., 2019) of filled particles, and the properties of interphase contact 
(Torquato and Rintoul 1995, Gharagozloo-Hubmann et al., 2013, 

Rodrigues et al., 2022). Experimental measurements of apparent ETCs 
are crucial (Gao et al., 2015; Zhao et al., 2020), but it is expensive to 
compressively consider all situations. Numerical methods provide the 
flexibility to treat complex structures and adjust each factor. As a result, 
methods for conduction (Florio 2018, Li et al., 2021b), coupled con
duction–convection (Fan and Wang 2011, El Mansouri et al., 2020, 
Rashid et al., 2022), and conduction-radiation (Dhaidan et al., 2022, 
Nee and Hussein 2024) processes have been developed and successfully 
applied to the field such as packed beds (Chen et al., 2019, Guo et al., 
2019, Rodrigues et al., 2023) and porous materials (Rong et al., 2014, 
Polansky et al., 2020). Based on experimental measurements and nu
merical results, an appropriate theoretical model that simultaneously 
account for all relevant factors is vital for a comprehensive under
standing of the mechanisms.

Up to now, several theoretical models have been proposed (Fan and 
Wang 2011, Ngo et al., 2016), which can be categorized into two major 
approaches: effective medium approximation (EMA) and micro
mechanics methods (Zhai et al., 2018). The Maxwell model (Maxwell 
1904), which was derived for PFSs characterized by discrete particles at 
low volume fractions, is the fundamental model of EMA. Subsequently, a 
series of studies have been conducted to extend the Maxwell model to 
accommodate specific structural characteristics. Bruggeman 
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(Bruggeman 1935) and Landauer (Landauer 2004) formulated an im
plicit expression to account for the influence of each inclusion on the 
local temperature field, thereby contributing to the development of the 
effective medium theory (EMT) model, which is applicable to PFSs with 
complex structures and moderate particle volume fractions. A compa
rable approach was proposed based on the reciprocity theorem for 
uniformly mixed systems (del Río et al., 1998). Additionally, the effects 
of particle shape (Fricke 1953, Hamilton and Crosser 1962), orientation 
(Nan et al., 1997), size and thermal contact resistance (TCR) (Benveniste 
1987, Hasselman and Johnson 1987, Xu et al., 2016b) have also been 
investigated. However, these models are constrained to particles with 
regular geometry.

The micromechanics methods include the variational principle and 
the mean field approximation. Hashin and Shtrikman (Hashin and 
Shtrikman 1962) employed variational theorems to establish the bounds 
of effective magnetic permeability, as well as electrical and thermal 
conductivity, which show the same form as the Maxwell model. Mori 
and Tanaka related the averaged stresses and strain in inclusion to those 
of matrix (Mori and Tanaka 1973). Benveniste further developed this 
method by using Eshelby’s Equivalent inclusion theory to account for 
imperfect surfaces (Benveniste 1987). Meanwhile, several semi- 
empirical models that analogize thermal conduction to electrical con
duction have been proposed. In these methods the particles and the 
matrix are regarded as elements forming a circuit network. Conse
quently, the challenge lies in assessing the conductivity of the network. 
In limiting cases, the two components can be disaggregated into layers 
that are either parallel or perpendicular to the direction of heat flux, 
thereby formulating the parallel and series models, which service as the 
upper and lower bound of the microscopic component models (Wiener 
1912, Deissler, 1958). Agari and Uno (Agari and Uno 1986) introduced 
several parameters to reconstruct the parallel/series model to present 
the variations in conductive chains. Hsu et al. (Hsu et al., 1995) pro
posed a lumped-parameter model for periodically arranged particles in 
contact with each other, which is particularly applicable to packed beds 
(van Antwerpen et al., 2010). The fractal theory has also been employed 
to characterize branched networks (Xu et al., 2006, Qin and Yin 2023). 
However, these latter models incorporate semi-empirical parameters 
that are difficult to ascertain. Various efforts have been made to acquire 
mesoscopic ensembles containing microscopic states (Lipton 1997, Xu 
et al., 2016a), nevertheless, the integration and variation processes 
remain complex. By primarily focusing on the connecting characteris
tics, the network models considering local microstructures (Liang and Li 
2014, Wang and Li 2017, Birkholz et al., 2019) can yield reasonable 
results with significantly reduced evaluation complexity, but they are 
heavily dependent on the geometry of the study field. There exists a 
notable absence of objective and robust structure parameters.

Although the aforementioned theoretical models have demonstrated 
effectiveness for various scenarios, the selection of appropriate models 
and the specific modification of corresponding parameters are indis
pensable for each practical application (Carson et al., 2005). A common 
selection principle can be referred in Fig. 1 (Carson et al., 2005), which 
shows the curves of some fundamental theoretical models (ke/km) with 
kp/km = 100 where k represents the thermal conductivity, and subscripts 
e, p, m denote the entire system, the particle (characterized by high 
thermal conductivity), and the matrix, respectively. The significant 
disparities observed in the prediction curves underscore the importance 
of a quantitative and universal description of microstructures. Intui
tively, in a particle-filled system, heat, akin to fluid in a porous medium, 
preferentially travels along pathways with higher conductivity. Conse
quently, characterization methods employed in porous media flow such 
as the spatial statistics methodology may be advantageous for the study 
of thermal conduction.

Spatial statistics is a mature methodology (Journel 1993, Mariethoz 
and Caers 2014) that provides several quantitative tools for the char
acterization of complex geometric structures based on Monte Carlo 
stochastic theory and statistics theory. These spatial statistical 

techniques have been widely applied for the accurate reconstruction of 
porous media and the characterization of their flow and transport 
properties (Klise et al., 2009). Researches have indicated that the flow 
and transport properties within porous structures are closely associated 
with realistic connectivity patterns (Journel 1993, Klise et al., 2009, Li 
et al., 2016b), which are likely to be critical parameters in heat con
duction. Connectivity has been exhaustively studies and its character
istic length can be effectively assessed by experts or numerically 
calculated with a connectivity function (Journel 1993, Mariethoz and 
Caers 2014). In systems filled with discrete particles, the connectivity 
characteristic lengths of the particle phase directly reflect the geometric 
features of the particle–matrix structures, regardless of pre-processing 
(e.g., regularization approximations of irregular particles) and the spe
cific attributes of individual particles (e.g., shape, size, orientation, and 
arrangement). Consequently, the connectivity characteristic lengths are 
more appropriate than the case-independent particle geometry param
eters to formulate a unified theoretical model. Accordingly, this study 
develops a connectivity model based on the Maxwell model for PFSs 
with non-contacting particles at low volume fractions. The proposed 
connectivity model unifies various Maxwell-type variants for different 
fillers, improving prediction accuracy and expanding applicable 
scenarios.

In the following sections, the conception and implementation of the 
connectivity function are presented. Subsequently, the connectivity- 
based model is proposed and validated using data reported in the 
literature in section 2. Section 3 introduces an insert layer Lattice 
Boltzmann method (LBM) to investigate the detailed heat conduction 
processes, taking into account thermal contact resistances (TCRs). The 
simulated ETCs will be used for comparison in subsequent analyses. In 
section 4, the proposed model is utilized to evaluate the ETCs of various 
structures filled with non-uniform and irregular particles, which are 
commonly encountered in practical applications. The evaluated results 
are compared with simulation results and those of previous models. The 
influence of particle size, shape, orientation, and arrangement is dis
cussed, and the advantages of the proposed method on the arbitrary 
shaped particles are presented. Finally, conclusions and drawn, and 
implications for futures are outlined.

2. Model description

In this section, the spatial statistical tool known as the connectivity 
function is introduced and utilized to analyze the typical structures 
assumed by each theoretical model. Subsequently, the obtained 

Fig. 1. Schematic representations of the structure assumed by each theoret
ical model.
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connectivity characteristic lengths are utilized to formulate a Maxwell- 
type model following previous analytical models. The proposed model 
is validated on PFSs with typical shaped fillers reported in the literature.

2.1. Spatial statistics theory and connectivity function

The spatial statistics theory studies spatial variables. Consider a 
particle-filled geometric structure consisting of two phases (particle and 
matrix) as a spatial field with categorical variables {s(x1), s(x2),⋯ }

taking value of si at locations x1,x2,⋯. In this manuscript, the subscript i 
denotes p for particle phase and m for matrix phase.

In a Cartesian grid, if n + 1 adjacent spatial variables along a spec
ified direction d have the same value s(x ↔ x+nd) = si, they are con
nected at the distance vector of nd. The connectivity function utilizes the 
conditional probability function to describe how one category is con
nected. By searching all spatial variable sets {s(x)↔ s(x + nd) }, the 
connectivity function depending on distance vector nd is calculated by: 

Ci(nd) = Prob{s(x ↔ x + nd) = si|s(x) = si, s(x + nd) = si} (1) 

where n is a positive integer. For further details, one can refer to some 
handbook (Goovaerts 1998) and the associated application works (Li, 
Tan et al. 2021). A simple example is presented in Fig. 2(a), which de
picts a 4 × 5 structure consisted of “white” and “gray” two phases. 
Traversing the entire domain with the condition 
{s(x) = ˝gray˝, s(x + 2d) = ˝gray˝ }, there are two sets could be found, 
of which only the set on location x1 satisfies {s(x ↔ x+2d) = ˝gray˝}. 
Then the connectivity on 2d is calculated as: Cgray(2d) = 1/2. As n 
ranges from 1 to encompass the length of the study field, the distribution 
curve of connectivity as a function of distance (nd) can be drawn, and 
the characteristic length of connectivity can be estimated. The essential 
aspects are elaborated in Fig. 2 (b)-(d).

Fig. 2(b) Is a typical pfs expressed by a 500 × 500 pixels digital 
graph. In order to study the horizontal thermal conductivity, it is 
essential to focus on the heat flux in the horizontal direction, 

necessitating the characteristic lengths of connectivity both along and 
perpendicular to this direction. This analysis aims to elucidate aniso
tropic heterogeneity of PFSs. Since the matrix is a continuous phase, its 
connectivity function maintains a constant value of 1. In contrast, for the 
particle phase, connectivity decreases gradually from 1 as distance in
creases, ultimately stabilizing at the value of 0. The trends observed in 
the connectivity distribution curves reflect the spatial structure features, 
including the shape, size, and arrangement of the particles. The length at 
which the connectivity distribution function first reaches the stable 
value of 0 can be defined as the connectivity characteristic length. 
However, this definition presents two significant issues. Firstly, the re
sults may exhibit bias. In instances if filled particles within in a PFS are 
uniform, this length is the characteristic length of the particle (e.g., the 
diameter of a circular particle). Conversely, when the filled particles 
differ, as depicted in Fig. 2(b), the length is the maximum occupied 
distance of all filled particles along the corresponding direction. Thus, 
the presence of one or several anomalous particles may yield unrea
sonable results. Secondly, this definition ignores detailed spatial struc
ture features. Numerous studies have demonstrated that different 
particle arrangements within PFSs give rise to diverse transport char
acteristics. When assessing the overall regional transport properties 
through local sampling areas, different sample regions will yield 
different outcomes. The uncertain deviation between sample results and 
the true value (Caers, 2011) poses a challenge in the study of randomly 
filled PFSs. To mitigate these issues, spatial statistics recommend fitting 
the connectivity distribution curve to eliminate outliers associated with 
abnormal particles and to incorporate the detailed spatial features rep
resented by the distribution curve (Goovaerts 1998, Caers 2011). Fig. 2
(c) and (d) displayed the calculated connectivity distribution and the 
fitted curves along and perpendicular to the heat flux direction, 
respectively. The original calculated and locally Gaussian fitted char
acteristic lengths L are indicated by dashed lines. The subscripts // and 
⊥ denote the directions along and perpendicular to the heat flux di
rection, while the superscript “o” indicates the original calculated value. 

Fig. 2. (a)Illustration of the calculation of connectivity; (b) a typical PFS structure and heat flux; connectivity distribution functions and the evaluated connectivity 
characteristic length (c) along and (d) perpendicular to the direction of heat flux.
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In this instance, the originally calculated zero-value points are 94 and 85 
pixels, whereas the Gaussian fitted value for L are 77.69 and 70.67 pixels 
at a 99 % confidence interval for each direction. By reconciling the ef
fects of individual particles and incorporating spatial distribution in
formation, the fitted results demonstrate greater statistical significance 
than the original calculated data and exhibit enhanced consistency with 
the presented structure.

2.2. Connectivity function for typical PFS structures

By applying the connectivity distribution function, the typical 
structures assumed by each theoretical model shown in Fig. 1 can be 
clearly distinguished as shown in Fig. 3.

Fig. 3 focus on heat conduction in horizontal direction. The parallel 
model assumes the two components are layers arranged in parallel to the 
heat flux direction, as illustrated in Fig. 3(a)). Consequently, the cor
responding connectivity distribution function is fixed at a value of 1 for 
both phases, as shown in Fig. 3(f). In contrast, the serial structure shown 
in Fig. 3(b) features a connectivity function that delineates the width of 
the discrete layer, as shown in Fig. 3(g). Given that the serial structure is 
a ninety-degree rotation of the parallel structure, the connectivity 
function parallel to heat flux direction in one configuration equals to the 
connectivity function perpendicular to the heat flux direction in the 
other configuration. Fig. 3(c) illustrates a structure composed of 
discretely distributed circular particles, as assumed by the classical 
Maxwell model. The corresponding connectivity distribution curve 
shown in Fig. 3(h) exhibits similarities to the results of the example 
shown in Fig. 2. The EMT model is developed for structures in which 
particles close or connecting to each other as shown in Fig. 3(d). The 
corresponding connectivity function begins with a sill of 1 representing 
the basic length, and then gradually decreases to 0, as shown in Fig. 3(i). 
A similar descending trend without the sill is observed in Fig. 3(j) for the 
homogeneous mixing structure assumed by reciprocity model.

It indicates that the connectivity function can effectively distinguish 
the geometric structures assumed by fundamental theoretical models. 
Therefore, incorporating connectivity information in the theoretical 
model for ETC evaluation has the potential to include more detailed 
structure information. The attempt to incorporate the connectivity 
characteristic lengths in Maxwell-type model is presented in the next 
subsection.

2.3. Connectivity-based model for ETC

In this section, a connectivity-based model is developed based on 
Maxwell theoretical analysis since it is the most theoretically robust and 
frequently employed framework for particle-filled systems. Several 
variants of this model have been developed to address diverse structural 
characteristics, as illustrated in Table 1.

In Table 1, Ψ denotes the sphericity which is defined as the ratio of 
the surface area of a sphere with the same volume as the particle 
considered to the surface area of the particle, D takes the value of 3 for 
three-dimensional (3D) cases and 2 for two-dimensional (2D) cases, Rc 
denotes the interfacial thermal barrier resistance or TCRs, r denotes 
particle radius, 

〈
cos2θ

〉
is the average particle orientation, L11 and β//

are the shape parameters along heat flux direction, while L33 and β⊥ are 
the shape parameters orthogonal to heat flux direction. Eq.(5) provides a 
calculation for the Kapitza radius rk, which is widely used to represent 
the effective length of TCRs within PFSs. This definition is also utilized 
in the present study.

Despite these variants aiming to the modification of derivation and 
incorporating the effects of the particle–substrate geometry, the con
straints imposed by the over-idealized assumptions persists. For 
example, Nan’s model considers the influence of the orientation of non- 
spherical particles and showed good results in cases involving typical 
shaped particles. Additionally, the flatness ratio model (Chu et al., 2013) 

deriving from Nan’s model has been successfully applied to the gra
phene nanotubes composites where the orientation is a key parameter. 
However, the parameters related to shape and orientation are chal
lenging to obtain and are limited to regular shaped particles.

Fortunately, this structure information is inherently embedded 
within the connectivity distribution curves. Consequently, following the 
framework established in Eq. (7), a connectivity model is constructed as: 

ke = km
(f − 1)km +

[
1 + (f − 1)R*

c
]
kp − (f − 1)

[
km −

(
1 − R*

c
)
kp
]

(f − 1)km +
[
1 + (f − 1)R*

c
]
kp +

[
km −

(
1 − R*

c
)
kp
] (13) 

with the dimensionless contact resistance R*
c and the morphological 

parameter f defined by the connectivity characteristic length L// and L⊥

as: 

R*
c = 2rk/L// (14) 

f = D/Ψs (15) 

Ψs =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ΨL⊥

/
L//

√

(16) 

The connectivity characteristic length along heat flux direction L//

rather than the equivalent particle radius r in Eq.(6) is utilized to mea
sure the influence of thermal resistance. This treatment is analogous to 
considering the axis length along heat flux direction as the equivalent 
diameter, which is suggested by several researchers (Nan et al., 2000, Ke 
and Duan 2019). The morphological parameter f incorporates the aspect 
ratio of the connectivity length (L⊥/L//) as well as the sphericity of the 
particle. Specifically, sphericity reflects the impact of contact area at a 
certain volume fraction, while the aspect ratio represents the combined 
effects of the enhancement with an increasing connectivity along heat 
flux and the obstruction with an increasing connectivity perpendicular 
to the heat flux as suggested by Nan’s model. Since the connectivity 
function contains spatial distribution information based on spatial sta
tistics theory, the proposed method directly conveys orientation distri
bution information of non-spherical particles, eliminating the need for 
detailed information about individual particles.

2.4. Tests for structures with typical shaped fillers

To verify the feasibility of the proposed model, the ETCs of structures 
filled with some typical shaped fillers are evaluated using the proposed 
model and compared with the reported data which has been experi
mental and numerical verified in literatures (Zhang et al., 2013, Rao 
et al., 2017; ). In these investigations, a single particle was positioned at 
the center of the two-dimensional study field, thus the connectivity 
related parameters along the major (vertical) and minor (horizontal) 
axes denoted as Ψs1 and Ψs2 can be calculated by using the particle 
length as the connectivity characteristic length as mentioned in section 
2.1. Table 2 lists the shape of these particles and the corresponding 
connectivity parameters utilized in the proposed model.

The effects of particle shape and orientation on ETCs have been 
investigated by Zhang et al. (Zhang et al., 2013) through both numerical 
and experimental methods. One set of results was selected at the filler 
volume fraction of 10 %, where thermal conductivity of filler and matrix 
is 209 W/m·K and 0.29 W/m·K, respectively, yielding a ratio of 720.7. 
The reference data and the evaluation results obtained using the 
Maxwell model, the Fricke-Hamilton-Crosser (FHC) model expressed 
with Eq.(4), and the proposed model are compared in Fig. 4. It shows 
that particle shape significantly influences ETCs, and the evaluation 
results from the proposed model are closest to the reference data for 
most cases. The FHC model using sphericity to reflect the influence of 
filler shape and obtains good results when the characteristic length of 
the particle along both axes is similar, such as square and triangle. In 
addition to sphericity, the proposed model incorporates the aspect ratio 
of the connectivity characteristic lengths along the major and minor 
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Fig. 3. Connectivity function for the typical structures assumed by each theoretical model. (a)-(e) typical structures where the yellow phase has a high thermal 
conductivity presented by p and the blue phase has a low thermal conductivity presented by m; (f)-(j) the corresponding connectivity distribution curve for each 
phase along horizonal direction.
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axes, thereby further illustrating the change trend of ETCs along 
different directions.

Note that, based on the spatial statistical theory, the connectivity 
distribution function is more appropriate for describing random distri
bution systems. Consequently, the comparison with single particle sys
tems may be regarded as a qualitative validation of the proposed model. 
More detailed and quantitative investigations will be presented in the 
subsequent sections.

3. Numerical methods

In order to demonstrate the effectiveness of the proposed model on a 
variety of structures, several digital PFS structures are numerically 
generated and numerical simulation methods are implemented to obtain 
the detailed heat transfer processes. Many numerical methods including 
the finite volume model (Vieira and Marques 2019), the finite element 
method (Tian et al., 2019), and Lattice Boltzmann method have been 
developed. In this context, the inserted layer Lattice Boltzmann Method 
proposed in our previous work (Li et al., 2021a) is utilized.

3.1. Thermal LBM model

According to Fourier’s law, the heat conduction in multi-phase sys
tems in governed by: 

∂Ti

∂t
=

ki

(ρcP)i
∇2Ti +Qi (17) 

where T is the temperature, ρcP is the volumetric heat capacity, Q is the 
source term, and the subscript i represents the matrix and particle 
components. Then the ETC can be calculated as: 

− ke = Lq/ΔT (18) 

where q is the steady flux through the computation field with a thickness 
of L and temperature difference ΔT. In the LBM, the distribution func
tion h is utilized to recover Eq.(16) with a collision and a streaming step 
as: 

ĥα(x, t) = hα(x, t) − Ω(h − heq)+wαQδt (19) 

hα(x + eαδt, t + δt) = ĥα(x, t) (20) 

where ̂h is the post-collision state, w is the weight for the α th distribution 
directions e

If two components perfectly contact with each other, continuous 
boundary conditions are satisfied for both temperature and heat flux. 
The conjugated interface can be treated as: 

hα(x, t + δt) =
(ρcP)x − (ρcP)x+eα

(ρcP)x + (ρcP)x+eα

ĥα(x, t)+
2(ρcP)x+eα

(ρcP)x + (ρcP)x+eα

ĥα(x + eαδt, t)

(21) 

where the subscript α denotes the opposite direction of the α th distri
bution directions.

When TCRs presents, a temperature discontinuous and flux contin
uous boundary condition is described according to the Kapitza model 
(Kapitza 1941). The treatment of discontinuous boundary conditions is 
difficult in numerical simulations, which may increase numerical 
instability or reduce computational efficiency. In our previous work, by 
considering the interfacial resistance as a known variable, an inserted 
layer strategy was proposed to convert discontinuous boundaries to 
continuous ones by inserting a virtual point as illustrated in Fig. 5.

In this method, the inserted TCR nodes at imperfect interface satisfies 
the continuous flux boundary as: 

k1A1
T1 − TC1

L1
= AC

TC1 − TC2

Rc
= k2A2

TC2 − T2

L2
(22) 

At the same time, the discontinuous temperature boundary conditions 
between the two objects (TC1 ∕= TC2) are concerted into the continuous 
temperature boundary conditions between the studied components and 
the inserted TCR nodes. Therefore, the interface treatment can be 
reformulated based on Eq.(21). The boundary treatment for inserted 
TCR node at xc and the relative adjacent node x = xc +eαδt at eα di
rection is derived as: 

Table 1 
The variants of Maxwell-type ETC models.

Model Formular Description

Maxwell model (Maxwell 1904)
ke = km

2km + kp − 2
(
km − kp

)
ϕ

2km + kp +
(
km − kp

)
ϕ

(2) 

ϕ denotes the volume fraction of particles

dispersed spherical particles, low 
volume fractions

Fricke(Fricke 1953) and Hamilton and Crosser(Hamilton and Crosser 
1962) model ke = km

(Λ − 1)km + kp − (Λ − 1)
(
km − kp

)
ϕ

(Λ − 1)km + kp +
(
km − kp

)
ϕ

(3) 

Λ = D/Ψ denotes the shape factor

Consider particle shapes

Hasselman and John (Hasselman and Johnson 1987) and Benvensite 
(Benveniste 1987) model ke = km

2km + (1 + 2rc)kp − 2
[
km − (1 − rc)kp

]
ϕ

2km + (1 + 2rc)kp +
[
km − (1 − rc)kp

]
ϕ

(4) 

rk = Rckm (5) 
rc = rk/r (6)

Consider TCRs

​ ke =

km
(Λ − 1)km + [1 + (Λ − 1)rc]kp − (Λ − 1)

[
km − (1 − rc)kp

]
ϕ

(Λ − 1)km + [1 + (Λ − 1)rc]kp +
[
km − (1 − rc)kp

]
ϕ

(7)

Consider both particle shapes and 
TCRs

Nan et al.(Nan, Birringer et al. 1997, Nan, Li et al. 2000) model Nan 
et al., 1997; Nan et al., 2000 k⊥

km
=

2 +
[
β⊥(1 − L11)

(
1 +

〈
cos2θ

〉)
+ 2β//L11

(
1 −

〈
cos2θ

〉)]
ϕ

2 −
[
β⊥L11(1 + 〈cos2θ〉) + β//L33(1 − 〈cos2θ〉)

]
ϕ

(8.a) 

k//
km

=
1 +

[
β⊥(1 − L11)

(
1 −

〈
cos2θ

〉)
+ 2β//L11

〈
cos2θ

〉]
ϕ

1 −
[
β⊥L11(1 − 〈cos2θ〉) + β//L33〈cos2θ〉

]
ϕ

(8.b)

Consider orientation of non-spherical 
particles

EMT model (Landauer 2004)
(1 − ϕ)

km − ke

km + 2ke
+ ϕ

kp − ke

kp + 2ke
= 0(9)

Considering the influence of particles 
on the matrix

Bruggeman model (Bruggeman 1935)
1 − ϕ =

kp − ke

kp − km

(
km

ke

)1/3
(10)

Integral form of EMT model

Every model (Every et al., 1992)
(1 − ϕ)3

=

(
(1 − rc)kp − ke

(1 − rc)kp − km

)3/(1− rc)(km

ke

)(1+2rc)/(1− rc)

(11)
consider TCRs

Wang and Yi model (Jiajun and Xiao-Su 2004)
(1 − ϕ)Λ

=

(
(1 − rc)kp − ke

(1 − rc)kp − km

)Λ/(1− rc)(km

ke

)(1− rc+Λrc )/(1− rc)

(12)
Consider TCRs and particle shape
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hα(xc, t + δt) =
1 − (ρcP)x
1 + (ρcP)x

ĥα(xc, t)+
2(ρcP)x

1 + (ρcP)x
ĥα(x, t) (23.1) 

hα(x, t + δt) =
(ρcP)x − 1
(ρcP)x + 1

ĥα(x, t)+
2

(ρcP)x + 1
ĥα(xc, t) (23.2) 

where the volumetric heat capacity of the virtual TCR nodes is settled to 
1 to keep consistence with the definition of resistance Rc. For more 
details one can refer to the algorithm work (Li et al., 2021a).

The present LBM mothed has been exhaustively tested and shows 
good numerical stability and high computational efficiency. The simu
lation results on typical structures including parallel, series and circular 
fillers provide a good agreement with analytical solutions and results 
from commonly used numerical models. In this paper, this model is 
utilized to calculated the ETCs of several typical PFS structures in 

engineering applications as the baseline for theoretical models.

3.2. Numerical parameters

In the present study, a two-dimensional (2D) study field of 250 × 250 
lattice in LBM unit is considered. The horizontal direction is defined as 
the x-axis, while the vertical direction is defined as the y-axis. Insulated 
boundaries are settled on the top and bottom, a fixed temperature of 
20 ◦C is maintained at the right boundary, and a fixed flux of 8.0 × 10− 3 

in LBM units is applied on the left boundary. It is important to note that 
the boundary conditions do not impact the evaluation results of ETCs, 
and such boundary conditions are frequently employed in numerical 
simulations since it is similar to experimental conditions utilized in the 
heat flow method (Zhang et al., 2013). Furthermore, the volumetric heat 
capacity has no significant effect on the results of ETCs, thus a value of 1 

Table 2 
Comparison of particle parameters and connectivity related parameters on typical shaped fillers (Zhang et al., 2013, Rao et al., 2017).

Filler name Shape Ψ Lmajor Lminor Ψs1 Ψs2

Circular 1 1 1 1 1

Square 0.8862 0.8862 0.8862 0.9414 0.9414

Equilateral triangular 0.7776 1.1663 1.3468 0.8206 0.9476

Rhombic

60

β = 60◦

0.8247 1.6495 0.9523 0.6900 1.1952

Elliptical

1

1

1
3

a
b

a1

b1
=

1
3

0.7619 1.7321 0.5774 0.5040 1.5118

Rectangular

1

1

1
5

a
b

a1

b1
=

1
5

0.6606 1.9817 0.3963 0.3635 1.8175

T shape

1 1

1 1

5
4

5 5

a c

b d

a1 =
5
4
c1

= 5b1 = 5d1

0.5317 1.4770 1.4770 0.7292 0.7292

I shape

1 1

1 1

5
3

5 5

a c

b d

a1 =
5
3
c1

= 5b1 = 5d1

0.4565 1.2290 1.2290 0.6756 0.6756
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is assigned to both components to simplify the calculations.
In general, the Maxwell model is recommended for systems with a 

particle volume fraction below 10 %, as evaluation errors tend to in
crease with higher particle volume fractions. However, several studies 
have indicated that the predictions mode by the Maxwell model remain 
acceptable to a certain extent at a slightly elevated volume fraction. 
Given that the present study examines spatial statistical connectivity, it 
is essential to include enough particles to ensure statistical validity. 
When addressing smaller volume fractions, a larger computational 
domain is required, which significantly increase the computational re
sources needed. Consequently, a particle volume fraction of approxi
mately 25 % is considered as a reasonable compromise (Ke and Duan 
2019). An example of a PFS filled with circular particles is presented in 
Fig. 6. The three structures denoted as C1, C2, and C3, contain circular 
fillers with different radii of 15, 26 and 34 lattices (in LBM units and the 
same in the following of the work) within the simulation grid, all of 
which have successfully passed the grid independence tests. Due to the 

lattice resolution, the actual particle volume fractions for the three 
structures is 24.5 %, 23.6 %, and 23.4 %, respectively. In the study of 
TCR’s impact on ETC, the Kapitza radius rk is crucial. It is generally 
accepted that when rk is equal to the particle radius, the overall ETC is 
equal to km, while when it is larger than the particle radius, the ETC will 
be smaller than km, and vice versa (Benveniste 1987). Therefore, for the 
three particle sizes mentioned above, this study investigates the situa
tion at Kapitza radii of 0, 7.5, 15, 26, 39 and 45 lattice. In this section, 
the conductivity ratio between the particle and the matrix is settled at 
100.

Fig. 6 presents a comparison of the simulation results with and 
without considering TCRs. In the absence of TCRs, a smaller temperature 
difference ΔT between the two boundaries is observed across all three 
structures, indicating that TCRs prevent heat conduction processes. The 
simulated ETCs are displayed in Fig. 7. When TCRs are not taken into 
account only minor variations are observed for different particle sizes, 
which may come from the small differences in the particle volume 
fractions of the three structures. Whereas the differences increase pro
gressively with the increasing of TCRs. This phenomenon matches well 
with existing experimental observations (Gao et al., 2015) and numer
ical simulations (Ke and Duan 2019). These results will be used as the 
baseline data for the studies in the subsequent section.

4. Results and discussion

In this section, the ETCs of three typical 2D PFS structures and a 3D 
PFS structures are exhaustive investigated using LBM simulations and 
the proposed model. The influence of size distribution, orientation, and 
shape of the fillers on heat transfer performance is analyzed. This section 
describes the relationship between these factors and the proposed 
connectivity-related parameters in detail, then further, discusses the 
efficacy of the proposed method in scenarios where specific information 
regarding the fillers in unavailable.

Fig. 4. ETCs along the major and minor axes for typical shaped fillers. The thermal conduct ratio of the particles and matrix is 720.7, and the volume fraction of the 
filler is 10%.

Fig. 5. The insert layer strategy for Kapitza contact resistance (Li, Gao 
et al. 2021).
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4.1. PFS structures with fillers of different size distributions

In practical applications, particles are often non-uniform with 
respect to their sizes. This section examines the influence of varying size 
distributions of fillers on ETCs. Utilizing structure C1 as the reference, 
two structures with the same mean diameter as C1 but different ranges 
of variation are generated. The particle radii are modeled according to a 

normal distribution, with the maximum range of 3 lattice and 5 lattice 
for the two structures, denoted as CR1 and CR2, respectively are 
generated. To ensure the average radius remains consistent with the 
diameter of C1 for comparison purposes, a post-processing step is 
operated to adjust the size of some particles in CR1 and CR2. The cor
responding radius distributions are shown in Fig. 8.

Two simulation results for these structures and the connectivity 
functions for each structure are displayed in Fig. 9.

In the case of isotropic distributed discrete particle structures, the 
connectivity functions in the two orthogonal directions exhibit a high 
degree of similarity. Fig. 9(e) displays the connectivity distribution 
functions along the heat flux direction (x-axis). Since the particle sizes in 
CR1 and CR2 follow a normal distribution, the connectivity character
istic length is approximately equivalent to the maximum particle 
diameter. Based on these connectivity characteristic parameters, the 
proposed model is utilized to evaluate the ETCs for each structure, and 
the evaluated results are compared with those from simulations. The 
detailed comparison is listed in Table 3, where HJB denotes the 
Hasselman-John-Benvensite model and PRT denotes the presented 
connectivity model. The relative errors are calculated by: 

err =
|kevaluated − ksim|

ksim
× 100% (24) 

In all instances, the ETCs evaluated by the proposed model exhibit 
smaller relative errors in comparison to those obtained by the HJB 
model. Furthermore, the improvement observed on CR2 is larger than 
that on CR1, if the TCRs are considered.

The results indicate that the ETCs of CR1 and CR2 are larger than that 
of C1, with CR2 exhibiting the largest value. This observation can be 
attributed to the fact that, with the same particle number and the same 

Fig. 6. Structures filled with circular particles of varying sizes and the corresponding simulations: (a)-(c) rk = 0; (d)-(f) rk = 26 (lattice).

Fig. 7. Simulated ETCs for each structure under rk = 0,7.5,15,26,39,
and45 lattice.
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mean radii, the varying particle size leads to an increased particle vol
ume fraction. It can be explained mathematically with a simple statis
tical analysis:

if 1
nb
∑nb

i=1rCR,i = rC, . 1
nb
∑nb

i=1r2
CR,i ≥ r2

c

with nb present the total number of particles. In this test, the volume 

fractions are 24.53 %, 24.61 %, and 25.16 % for samples of C1, CR1, and 
CR2, respectively. Conversely, when the particle volume fraction is the 
same, the average radius in cases with varying particle sizes is smaller 
than that of the uniform case. As discussed in section 3.2 regarding the 
influence of varying particle sizes, this phenomenon will lead to a larger 
ETC considering a larger TCR. This trend could be also identified by 

Fig. 8. Radius of randomly generated structures filled of particles with varying sizes.

Fig. 9. Structures filled with particles with different size distributions and the corresponding simulation results: (a) for CR1 with rk = 0 lattice; (b) for CR2 with rk =

0 lattice; (c) for CR1 with rk = 26 lattice; (d) for CR1 with rk = 26 lattice. (e) comparison of the connectivity distributions of each structure.

Table 3 
Comparison of ETCs evaluated by the proposed model and the HJB model.

rk C1 CR1 CR2
sim HJB err sim HJB err HJB PRT err PRT sim HJB err HJB PRT err PRT

0 1.68 1.64 2.8 % 1.69 1.64 3.5 % 1.64 3.5 % 1.72 1.65 4.0 % 1.65 4.0 %
7.5 1.25 1.17 5.8 % 1.25 1.17 5.9 % 1.22 2.2 % 1.26 1.18 6.4 % 1.25 0.5 %
15 1.07 1.00 6.7 % 1.07 1.00 6.8 % 1.04 2.6 % 1.07 1.00 7.2 % 1.07 0.3 %
26 0.94 0.88 6.4 % 0.93 0.88 6.2 % 0.91 2.1 % 0.94 0.87 7.1 % 0.94 0.5 %
39 0.85 0.80 5.5 % 0.85 0.80 6.0 % 0.83 2.4 % 0.86 0.80 6.5 % 0.85 0.6 %
45 0.82 0.78 5.1 % 0.82 0.78 5.1 % 0.81 1.6 % 0.83 0.78 6.2 % 0.82 0.6 %
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comparing the HJB evaluations and the proposed evaluations under the 
same volume fraction in Table.3.

Based on these theoretical and numerical analyses, the statistical 
maximum radius, rather than the average radius, is recommended for a 
more accurate evaluation of ETCs of structures containing particles of 
varying sizes.

4.2. PFS structures with fillers of different orientation

The elliptical fillers characterized by the same shape parameter as 
listed in Table 2 are examined in this study. The ratio of the major to 
minor axis is 3, with the length of the minor axis equals to the diameter 
of the smallest circular filler depicted in Fig. 6 (C1). Additionally, the 
equal area effective radius (r21) is equal to the radius of the medium size 
circular filler (C2). Three distinct orientation distributions, denoted as 
E1, E2, and E3, respectively, are analyzed. The particle volume fraction 
is 23.8 % for both E1 and E2 and is 23.6 % for E3. Fig. 10 shows two 
typical simulation results for these three structures with rk equals 0 and 
26 lattice.

The connectivity distribution function for the circular and elliptical 
structures is calculated for ETC evaluation with the proposed models as 
shown in Fig. 11. In scenarios where particles are arranged in the same 
orientation, the characteristic length of the connectivity is as approxi
mately equivalent to the diameter of the circular particle or the length of 
the axis along the heat flux of the elliptical particle, as explained in 
section 2.1 and 2.4. A notable distribution feature is observed for C3, 
which includes only four particles in the structure, resulting a lack of 
statistical reliability. For configuration E3 where each elliptical particle 
is oriented randomly, the connectivity function resembles a Gaussian 
distribution, thus a data fitting is utilized to assess the connectivity 

characteristic length of as illustrated in Fig. 11(a).
In order to compare the effects of particle shape and orientation on 

ETCs, the simulated and evaluated results are presented in Fig. 11(b). 
The relative errors between the ETCs predicted by different models and 
the numerical simulation results are listed in Table 4. The results indi
cate that particle shape exerts a larger influence on ETCs than particle 
size. The significant changes associated with the shape and orientation 
of fillers can be characterized by the proposed model. The predicted 
ETCs for E1 and E3 closely align with the results of numerical simula
tions. Both models have a large underestimation for E2, and the accu
racy of the predictions using the proposed method is also improved. The 
proposed model explains this phenomenon through Eq.(14) as a larger 
connectivity along the heat flux direction enhances heat transfer and 
reduces the obstruction of TCRs resulting in a larger ETC. The definition 
of dimensionless thermal barrier resistance using the connectivity length 
Eq.(14), different from the definition using an effective radius presented 
in Eq.(6), not only clears up the confusion about which kind of effective 
radius should be used, but also provides a easily accessible quantitative 
parameter for structures containing particles with varying orientations.

Furthermore, the ETCs of E1 is slightly smaller than those of C1, 
particularly when considering TCRs. Similarly, the ETCs of E3 is slightly 
smaller than those of C2. This observation can be straightforwardly 
explained by the morphological parameter proposed f in this work. As 
illustrated in in Fig. 11(a), a comparison between C1 and E1 reveals that 
their connectivity functions are almost the same along the heat flux, 
while the connectivity of E1 is larger than that of C1 in the direction 
perpendicular to the heat flux. A comparable trend is observed for C2 
and E3, where their connectivity functions are relatively similar along 
the heat flux direction, yet the connectivity of E3 is slightly larger than 
that of C2 in the direction perpendicular to the heat flux. This establishes 

Fig. 10. Structures filled with elliptical particles with different orientation distribution and corresponding simulation results: (a) for E1 withrk = 0 lattice; (b) for E2 
withrk = 0 lattice; (c) for E3 withrk = 0 lattice; (d) for E1 with rk = 26 lattice; (e) for E2 with rk = 26 lattice; (f) for E3 with rk = 26 lattice.
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a clear relationship between ETC and connectivity, indicating that the 
connectivity length along heat flux reflects the influence of TRCs and the 
ratio of connectivity length in orthogonal directions reflects the in
fluences of shape and orientation, as articulated by the proposed model 
in Eq.(14) and Eq.(16).

The impact of the connectivity-based model on various kp/km ratios 
is discussed based on structure E3. Fig. 12 compares the simulated and 
evaluated ETCs for the kp/km ratios of 10, 100, and 1000, and Table 5
compares the relative errors between the ETCs predicted by different 

models and the numerical simulation results. It shows that the evaluated 
results match well with the simulation results and the proposed con
nectivity model obtains closer results to the simulation results compared 
with the classical model expressed by Eq.(7) for all cases. The ETCs 
under the ratio of 100 and 1000 are close, but they are quite different 
from that under the ratio of 10, in both the simulation and evaluated 
results. These observations are consistent with the previous literatures 
(Zhou and Cheng 2014, Rao et al., 2017), whereas kp/km ratio of 100 is 
optimal for effectively illustrating the influence of high thermal con
ductivity particles with reasonable computational effort in numerical 
studies. Accordingly, the ratio of 100 is generally adopted in this work.

Then the effect of particle volume fraction is discussed. Two struc
tures are generated by randomly selecting several particles from struc
ture E3, as shown in Fig. 13(a) and (b). By selecting 3 and 5 particles, the 
corresponding volume fractions are 9.7 % and 16.2 % respectively. The 
simulated and evaluated ETCs are compared in Fig. 13(c). The relative 
errors between the ETCs predicted by different models and the numer
ical simulation results are listed in Table 6. As the volume fraction in
creases, the errors between simulation results and evaluated results by 
Eq.(7) increases, which consistent with the assumption of the Maxwell- 
type model that the particles should be discrete and far apart. In 
contrast, the ETCs evaluated using the proposed model demonstrate a 
strong agreement with the simulation results for all three cases.

4.3. PFS structures with fillers of irregular shape

To assess the generalizability of the proposed model, the ETCs of 
structures filled with irregular fillers, which are challenging to evaluate 
directly using other analytical models are investigated. This section fo
cuses on two typical types of irregular fillers known as the isotropic and 
the fibrous particles.

Four detailed microstructures have been reconstructed based on the 

Fig. 11. (a) Comparison of the connectivity distributions functions of structure filled with circular and elliptical particles; (b) Comparison of ETCs simulated and 
evaluated using the proposed model and Eq.(7).

Table 4 
Comparison of ETCs evaluated by the proposed model and the model Eq.(7) for structures with fillers of different orientation.

rk E1 E2 E3
Eq.(7) sim errEq.(7) PRT errPRT Sim errEq.(7) PRT errPRT Sim errEq.(7) PRT ErrPRT

0 1.78 1.42 25.4 % 1.42 0.4 % 2.31 22.9 % 2.19 5.2 % 1.65 7.9 % 1.62 1.8 %
7.5 1.32 1.14 15.8 % 1.15 0.9 % 1.81 27.1 % 1.59 12.1 % 1.36 2.9 % 1.34 1.5 %
15 1.13 0.99 14.1 % 1 1.0 % 1.57 28.0 % 1.33 15.3 % 1.19 5.0 % 1.18 0.8 %
26 0.99 0.86 15.1 % 0.87 1.1 % 1.37 27.7 % 1.15 16.1 % 1.04 4.8 % 1.04 0.2 %
39 0.91 0.76 19.7 % 0.78 2.6 % 1.23 26.0 % 1.03 16.2 % 0.93 2.2 % 0.94 1.1 %
45 0.88 0.73 20.6 % 0.75 2.7 % 1.18 25.4 % 1.00 15.3 % 0.89 1.1 % 0.91 2.2 %

Fig. 12. Comparison of ETCs simulated and evaluated using the proposed 
model under various kp/km ratio.
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work of Su et al. (Su et al., 2017). Fig. 14(a) and (b) illustrate isotropic 
cases with particle volume fraction of 19.35 % and 26.24 %, denoted as 
A1 and A2. Additionally, two fibrous structures, referred to as F1 and F2, 
exhibit particle volume fractions of 10 % and 25 % as shown in Fig. 14(c) 
and (d). These structures are randomly cut from cross-sections of the 3D 
generation displayed in Su et al.’s work, and a post-processing known as 
direct sampling (Mariethoz and Renard 2010) is applied to reconstruct 
the fibrous structures while controlling the volume fraction. The direct 
sampling method identifies a given particle-filled structure and 
randomly sampling same of the particles to generate new structures. 
This method is a widely used structure reconstruction tool in spatial 
statistics and has been proven able to keep statistical consistence. Based 
on this theory, the connectivity functions calculated based on F2 can be 
utilized for both F1 and F2 in this paper. This treatment eliminates bias 
of the directly calculating from structure F1, where the number of fillers 
is too small to satisfy the statistical demands. The calculated and fitted 
connectivity functions for these cases are displayed in Fig. 14(e).

It shows that the connectivity distribution along the x- and y-axis 
exhibits minimal variation for each isotropic structure, which is a 
distinct statistical characteristic of isotropic distributions. The different 
connectivity characteristic lengths correspond to the different structures 
A1 and A2. Consequently, the isotropic irregular particles can be 
regarded as circular particles (or as elliptical particles with a small ratio 
of major to minor axes, which yield very similar results in these two 

instances) to evaluate the ECTs by the proposed connectivity-based 
model. For fibrous structures, a higher connectivity along the x-axis is 
obtained. Since cylindrical fibers are assumed in the referenced 3D 
structure, the reconstructed 2D particles are assumed to be rectangular 
for the ETC evaluation. The proposed model is then utilized to predict 
the ETCs of the isotropic structures along the x-axis and those of the 
fibrous structures along both x- and y-axes. In contrast, due to the 
absence of prior information of the irregular particles, previous models 
have difficulties in determining the effective diameters and orientation 
distributions for the evaluation of ETCs. Thus, Fig. 15 simply compares 
the results evaluated by the proposed model with simulation results, and 
the corresponding relative errors are displayed in Table 7.

Overall, the predicted results are in agreement with the simulation 
results. The relative errors are typically in the range from 0 to 14.7 %. 
We argued that such large relative errors might be due to the highly 
complex geometry structures and the simplified approximation of the 
numerical models. The LBM model utilizes an approximation to assign 
the components within each computational grid and generate a stair-like 
interface boundary (Li et al., 2021a). This approximation may introduce 
errors at curved particle–matrix interfaces, potentially reducing the 
accuracy of simulations in systems filled with irregular particles in these 
tests, where highly complex structures are present. In addition, another 
two structures, an isotropic one with a volume fraction of 38.6 % and a 
fibrous one with a volume fraction of 35.0 %, are evaluated using the 

Table 5 
Comparison of ETCs evaluated by the proposed model and the model Eq.(7) for various kp/km ratio.

kp/km = 10 kp/km = 100 kp/km = 1000
rk sim Eq(7) errEq(7) PRT err PRT Sim Eq(7) errEq(7) PRT err PRT sim Eq(7) errEq(7) PRT err PRT

0 1.48 1.59 7.0 % 1.48 0.2 % 1.65 1.78 8.2 % 1.61 2.1 % 1.67 1.81 8.2 % 1.63 2.6 %
7.5 1.26 1.25 0.9 % 1.27 0.7 % 1.36 1.32 3.0 % 1.34 1.8 % 1.39 1.33 4.1 % 1.35 3.1 %
15 1.13 1.09 2.9 % 1.14 1.2 % 1.20 1.13 5.4 % 1.18 1.1 % 1.22 1.14 6.7 % 1.19 2.4 %
26 1.01 0.97 3.5 % 1.02 1.4 % 1.04 0.99 5.0 % 1.05 0.4 % 1.06 0.99 6.4 % 1.05 1.1 %
39 0.93 0.90 3.4 % 0.94 1.1 % 0.93 0.91 2.7 % 0.95 2.3 % 0.95 0.91 4.4 % 0.96 0.6 %
45 0.90 0.87 2.6 % 0.91 1.5 % 0.91 0.88 3.1 % 0.92 1.5 % 0.91 0.88 3.3 % 0.92 1.4 %

Fig. 13. Comparison of ETCs simulated and evaluated by the proposed model under various particle volume fraction.

Table 6 
Comparison of ETCs evaluated by the proposed model and the model Eq.(7) for various particle volume fraction.

rk Ф=9.7 % Ф=16.2 % Ф=23.6 %
sim Eq(7) errEq(7) PRT err PRT Sim Eq(7) errEq(7) PRT err PRT sim Eq(7) errEq(7) PRT err PRT

0 1.22 1.27 4.4 % 1.21 0.5 % 1.41 1.49 6.2 % 1.38 1.5 % 1.65 1.78 8.2 % 1.61 2.1 %
7.5 1.13 1.12 0.1 % 1.13 0.1 % 1.22 1.21 0.5 % 1.22 0.1 % 1.36 1.32 3.0 % 1.34 1.8 %
15 1.07 1.05 1.4 % 1.07 0.4 % 1.12 1.09 2.4 % 1.12 0.6 % 1.20 1.13 5.4 % 1.18 1.1 %
26 1.01 1.00 1.7 % 1.02 0.5 % 1.02 0.99 3.0 % 1.03 0.8 % 1.04 0.99 5.0 % 1.05 0.4 %
39 0.98 0.96 1.5 % 0.98 0.5 % 0.96 0.94 2.7 % 0.97 0.7 % 0.93 0.91 2.7 % 0.95 2.3 %
45 0.96 0.95 1.4 % 0.97 0.5 % 0.94 0.92 2.4 % 0.95 0.7 % 0.91 0.88 3.1 % 0.92 1.5 %

X. Li et al.                                                                                                                                                                                                                                        Chemical Engineering Science 306 (2025) 121259 

13 



proposed method. The relative errors observed in these two cases were 
significant, with the maximum error of 17.8 % and 22.3 %, respectively. 
The results are deemed insufficient and are not presented in this paper.

It can be concluded that the connectivity characteristic length 
effectively captures the obstruction effects of thermal resistances asso
ciated with irregular particles. For the non-isotropic structures, the 

Fig. 14. The irregular particle-filled structures and the corresponding treatment for connectivity characteristic length: (a)-(b) isotropic; (c)-(d) fibrous; (e) calculated 
and fitted connectivity distributions for each structure.

Fig. 15. Predict the ETCs of structures filled with irregular particles utilizing the proposed model and compare with simulation results.
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orientation relevant connectivity directly incorporates the influence of 
orientation. Compared to classical theoretical models, the proposed 
model provides a consistent treatment process for structures filled with a 
diverse range of fillers, including irregular ones. However, as an 
extension of the Maxwell model, the proposed model is appropriate for 
systems with a low particle volume fraction, specifically those below 
approximately 25 %.

4.4. Three dimensional applications

In this section, a three-dimensional (3D) PFS filled with randomly 
distributed ellipsoidal particles is investigated. As illustrated in Fig. 16
(a), eleven ellipsoids with semi-axes measuring 15, 25, and 45 lattice are 

randomly distributed within a 200 × 200 × 200 computational lattice. 
The particle volume fraction is 9.7 %. The ETCs along the x, y, and z axes 
under varying TCRs are simulated. The simulated temperature equiva
lent surfaces under rk = 26 lattice for each direction are displayed in 
Fig. 16(d)-(f). The connectivity characteristic lengths along these three 
directions are fitted and displayed shown in Fig. 16(b). For the ETCs 
along x-direction, the connectivity characteristic length along heat flux 
is clear, that is, 

L// = Lx 

and the connectivity perpendicular to this direction can be defined as: 

L⊥ =
̅̅̅̅̅̅̅̅̅
LyLz

√

This definition is applied to all directions. It is important to highlight 
that the complete 3D structure is not necessary for the calculation of 
connectivity distribution functions. Two arbitrarily selected slices, one 
along with the study direction and the other perpendicular to it, are 
adequate to derive the corresponding characteristic lengths for ETC 
evaluation. These attributes enable the proposed connectivity model to 
demonstrate considerable efficiency in 3D applications.

Subsequently, the predicted ETCs are compared with the simulated 
results, revealing good agreements across all directions, as illustrated in 
Fig. 16(c). The detailed relative errors are listed in Table 8. The results 
show comparable errors for the two evaluation models along x-direc
tion, and much smaller relative errors with the proposed model along y- 
and z-direction. The proposed model can accurately and efficiently 
evaluate the ETCs of 3D anisotropic structures. This is achieved through 
the connectivity distribution function, which directly captures the 
arrangement characteristics of non-spherical filled systems.

5. Conclusions

A connectivity model is developed to predict the effective thermal 

Table 7 
The relative errors between the ETCs evaluated by the proposed model and 
numerical simulations for irregular particle filled structures.

rk 0 7.5 15 26 39 45

A1 sim 1.68 1.13 0.97 0.86 0.79 0.77
PRT 1.63 1.21 1.06 0.95 0.89 0.87
err 2.8 % 7.4 % 9.0 % 10.8 % 12.8 % 13.6 %

A2 sim 2.10 1.38 1.14 0.97 0.85 0.81
PRT 2.05 1.47 1.23 1.05 0.95 0.91
err 2.4 % 6.4 % 7.6 % 8.9 % 11.1 % 12.2 %

F1-x sim 1.51 1.28 1.18 1.09 1.04 1.02
PRT 1.59 1.30 1.18 1.09 1.04 1.02
err 5.6 % 1.8 % 0.2 % 0.3 % 0.1 % 0.2 %

F1-y sim 1.21 1.02 0.95 0.89 0.84 0.82
PRT 1.22 1.09 1.03 0.97 0.94 0.92
err 0.9 % 7.3 % 8.0 % 9.5 % 11.6 % 12.5 %

F2-x sim 2.75 1.95 1.66 1.42 1.27 1.22
PRT 2.74 1.81 1.47 1.23 1.09 1.05
err 0.3 % 7.1 % 11.4 % 13.7 % 14.1 % 13.9 %

F2-y sim 1.67 1.47 1.19 0.99 0.86 0.82
PRT 1.67 1.25 1.07 0.93 0.85 0.82
err 0.0 % 14.7 % 9.9 % 5.7 % 1.7 % 0.1 %

Fig. 16. ETCs of a 3D structure filled with randomly distributed ellipsoidal particles. (a) structure; (b) connectivity distribution curve along three directions; (c) 
comparison of simulated and evaluated ETCs; (d)-(f) simulation results under kp/km = 100 and rk = 26 lattice shown by temperature equivalent-surfaces with heat 
flux along x, y, and z axes.
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conductivity of particle-filled systems considering interfacial resistance. 
By applying spatial statistics theory, the optimized heat flow path is 
obtained in terms of connectivity distribution from the geometric 
structures of PFS directly, without the necessity to consider the specific 
size, shape, and orientation of individual particles. By analyzing 
Maxwell-type models and fitting LBM simulation results across various 
PFS structures, concise connectivity characteristic lengths were utilized 
to describe PFS structures and to construct the proposed model. The 
proposed model quantitatively interprets the influence of diverse typical 
particles on the ETCs reported in the literature.

This study investigates structures commonly encountered in prac
tical applications, specifically the PFSs containing particles of varying 
sizes, random orientations, and irregular shapes in both 2D and 3D 
contexts through theoretical and numerical analyses. The ETCs pre
dicted by the proposed model demonstrate strong agreement with 
simulation results for PFS structures exhibiting a particle-to-matrix 
thermal conductivity ratio lower 1000 and a particle volume fraction 
lower than 25 %. However, we would stress that our proposed method 
should be used with caution as the particles presumably do not contact 
in the derivation of the model. In comparison to previous models, the 
proposed model provides more accurate evaluations of ETCs, as the 
connectivity characteristic lengths utilized in the model incorporate 
information about particle distribution in addition to particle shape 
factors. Furthermore, our approach generalizes the evaluation of sys
tems filled with arbitrary shaped particles, significantly simplifying and 
harmonizing applications involving nonuniform and irregular particles, 
which is ambitious in practical situations. These findings suggest that 
the underlying structural information has the potential to construct a 
unified universal model. Additionally, in the present model we do not 
consider thermal radiation. Basically, the thermal radiation can affect 
ETCs and is closely related to the geometric structure of particle filled 
systems (Luo et al., 2022, Nee and Hussein 2024). The proposed model is 
based on spatial statistical methods which in principle can be used to 
account for the thermal radiation. The establishment of a robust char
acterization method and the construction of a cohesive model including 
thermal radiation will be the subject of future work.
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Abh. Math.-Phys. Kl. Königl. Sächs. Ges. 32, 509–604.
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