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Electrical capacitance tomography (ECT) provides a non-intrusive means to visualize cross-sectional material distribu-
tion of gas–solid bubbling fluidized beds. Successful application of ECT strongly depends on the image reconstruction
algorithm used. For on-line measurements of bubbling fluidized beds, employing an algorithm that can produce high-
quality images without extensive computation is necessary. Using the conventional Tikhonov regularization algorithm,
image quality in the central area is basically satisfied but suffers from artifacts in the near-wall region. To solve this
problem, a similar division operation learned from linear back projection was introduced to modify the conventional
Tikhonov algorithm. Both numerical simulations and experiments were performed to evaluate the modified technique.
The results indicate that the artifacts can be effectively removed and the reconstructed image quality is similar to Land-
weber method with dozens of iterations. Furthermore, the modified Tikhonov technique shows high accuracy when
obtaining important hydrodynamic parameters in gas–solid bubbling fluidized beds. VC 2017 American Institute of Chem-

ical Engineers AIChE J, 64: 29–41, 2018

Keywords: gas–solid bubbling fluidized bed, electrical capacitance tomography, image reconstruction algorithm, Tikho-
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Introduction

Gas–solid bubbling fluidized bed reactors are used in many

industrial processes, such as coal gasification, power genera-

tion, granulation, and polymerization. To measure hydrody-

namic characteristics of gas–solid bubbling fluidized beds,

numerous intrusive and non-intrusive experimental techniques

have been developed.1–6 The intrusive methods like optical

probe,2,5 capacitance probe,1,2,5 and pressure measurement2,4

are easy to implement but only capable of providing local

information concerning the fluid flow. While the non-intrusive

techniques such as tomography3 can be used to visualize the

entire flow field without causing any disturbance to the flow.

Compared to other industrial process tomography techniques,

electrical capacitance tomography (ECT) shows advantages in

terms of fast imaging speed, no radiation, robustness, and low

cost.7 Moreover, considering the non-conductive nature of

materials in gas–solid bubbling fluidized beds, ECT is a suit-

able measuring technique for hydrodynamic investigation of

these reactors.6,8–13

In ECT, the sensing electronics measure variations in capac-

itance between pairs of electrodes, which are placed around

the periphery of a pipe or vessel under investigation. These

measurements are then used to reconstruct cross-sectional per-

mittivity distribution as a presentation of material distribution

inside the sensing area via a sensitivity theory-based image

reconstruction algorithm.14–16 However, two major difficulties

are associated with the reconstruction process.15 First, the

number of measured independent capacitance data is far less

than the number of unknown image pixels, and therefore the

Additional Supporting Information may be found in the online version of this
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problem is severely under-determined. Second, due to the ill-
posed and ill-conditioned property of the reconstruction pro-
cess, the reconstructed results are sensitive to raw capacitance
measurement noise. To address these problems, different recon-
struction techniques, including single-step and iterative algo-
rithms, have been proposed and have been reviewed by Yang
and Peng15 and Cui et al.17 Among all the proposed algorithms,
linear back projection (LBP), Tikhonov regularization, and
Landweber iteration are three most popular methods,18–20 in
which the former two are single-step while the latter is iterative.

As an example, Supporting Information Figure S1 shows some

typical results reconstructed by these three algorithms. As can be

seen, the LBP method can only give qualitative images in all

cases. The results of the Tikhonov regularization are basically

satisfied in the central area, even with multiple objects like four

rods and four bubbles. However, the biggest problem associated
with the Tikhonov regularization is that some unphysical arti-

facts appear in the near-wall region,15,21,22 especially in the case

of low-permittivity materials presenting in a high-permittivity

background, which is exactly the case in a gas–solid bubbling

fluidized bed, where discrete bubbles are dispersed in a continu-

ous emulsion phase with a shell of solid particles in which solid

concentration increases continuously.23 When the Landweber

iteration is used, the best images can be obtained in almost all

cases15; however, it can only be applied as an off-line recon-
struction method due to its slow reconstruction speed.

Allowing for the dynamics of gas–solid bubbling fluidized

bed reactors, a non-iterative algorithm has to be used for

on-line measurements. Owing to its simplicity and fast

speed,6,12,24 the LBP method is always the first choice. How-

ever, image quality reconstructed by the LBP is relatively

poor. For the Tikhonov regularization, even though it is a well-

established technique to solve ill-posed problems25 and has

been extensively used in ECT image reconstruction,19,21,26 the

severe problem of artifacts restricts its practical application.
In general, a generic sensitivity matrix calculated based on a

vacuum permittivity distribution is used for both single-step and
iterative algorithms,15,22,27 while it will change with different per-

mittivity distributions because of the “soft-field” nature of

ECT.7,15 Using a sensitivity matrix updated by the actual permittiv-

ity distribution, Xue et al.22 found that image quality reconstructed

using the Tikhonov regularization could be improved and that the

artifacts in the reconstructed images could be reduced. However,

updating the sensitivity matrix is not practical for on-line image

reconstruction. The reasons are twofold: (1) the true distribution is

unknown in real applications and (2) updating the sensitivity
matrix would take much more time.24,25 Therefore, the method of

Xue et al.22 is not feasible for on-line ECT measurements.
By relating sensitivity distribution in the generic sensitivity

matrix to images reconstructed by the conventional Tikhonov

regularization method, we found that the non-uniform sensitiv-

ity distribution, which results from the “soft-field” nature of

ECT,14 is responsible for the artifacts appearing in the near-

wall region. However, previous efforts that have been devoted

to improving the conventional Tikhonov regularization

method primarily focused on the modification of filter func-
tion,28,29 optimized objective function,19 and mathematical

model to obtain the optimal value of regularization parame-

ter.30,31 To date, little work has been attempted to reduce the

artifacts by considering the “soft-field” nature of ECT.
Referring back to Supporting Information Figure S1, it is impor-

tant to highlight that, even though images obtained using the LBP

method show poor quality in the central area, there are no artifacts

in the near-wall region. Peng et al.32 have also confirmed that the
LBP can provide good image quality for annular and stratified dis-
tributions. Inspired by this finding, in this work we propose a modi-
fied Tikhonov regularization method that scales each pixel gray in
the imaging area using a division operation, which was originally
used in the LBP method, to eliminate the artifacts and hence
enhance the image quality. To evaluate the applicability of the pro-
posed algorithm to ECT measurements of gas–solid bubbling flu-
idized beds, numerical simulations, in which computational fluid
dynamics (CFD) simulation results were used as permittivity distri-
bution inputs, as well as bubbling fluidized bed experiments, were
performed. In this way, the accuracy of the proposed algorithm
when obtaining some key hydrodynamic parameters in gas–solid
bubbling fluidized beds, such as overall solid concentration, bubble
size, and radial profile of solid concentration, was verified.

The results show that not only the image quality but also the
hydrodynamic parameters obtained by the modified Tikhonov
method are comparable to those obtained by the Landweber
iteration algorithm but with a significantly reduced computa-
tional time. Therefore, it is expected that the modified Tikho-
nov regularization algorithm can potentially be used as an
efficient on-line image reconstruction method for ECT meas-
urements of gas–solid bubbling fluidized beds. In fact, the pro-
posed algorithm can also be applied to ECT measurements of
bubble columns,33,34 where low-permittivity gas bubbles are
surrounded by a high-permittivity liquid phase.

ECT Model and Image Reconstruction Algorithms

ECT model

Peng et al.32 concluded that 12-electrode ECT sensors can pro-
vide the best images in most cases; therefore a circular 12-
electrode ECT sensor with an electrode covering ratio of 0.9, as
shown in Supporting Information Figure S2, was modeled. The
electrode covering ratio refers to the ratio of the arc length of all
electrodes to the circumference of the investigated bed. It has been
confirmed by Ye et al.35 that an electrode covering ratio of 0.9 for a
12-electrode ECT sensor can achieve good image quality.

There are two major computational problems involved in
the ECT model: the forward problem and the inverse problem.

The ECT forward problem is to calculate inter-electrode
capacitance from a predefined permittivity distribution and is
expressed as

CM52E0

1

V

ð ð
C

Er x; yð Þru x; yð ÞdC (1)

where E0 is the permittivity of vacuum, V is the potential dif-
ference between the calculated electrode pair, Er(x,y) and
u(x,y) are the relative permittivity and potential distributions
in the sensing domain, respectively, and C is the electrode sur-
face. The number of independent capacitance measurements
for a 12-electrode ECT sensor is 66.

Because Eq. 1 is too complicated, a simplified linear equa-
tion in a normalized form15,17,27 is always used:

k5Sg (2)

where g is the normalized permittivity and k is the normalized
capacitance defined as

k5
CM2CL

CH2CL
(3)

where CM is the measured capacitance for an arbitrary permit-
tivity distribution and CH and CL are the capacitances when
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the sensor is full of high- and low-permittivity materials,

respectively.
The parameter S in Eq. 2 represents the normalized sensitiv-

ity matrix, which refers to the change in the normalized capac-

itance of each electrode pair in response to a perturbation of

the normalized permittivity distribution. The construction of

the sensitivity matrix requires discretization for implementa-

tion. Usually, the sensing area is subdivided into n 3 n square

pixels, which results in N effective pixels in the circular imag-

ing area. The choice of n (or N) is a trade-off between image

resolution and the under-determined nature of the inverse

problem of ECT.36 Typically, N is of the order of magnitude

of 1000. In particular, for a 12-electrode ECT sensor, a discre-

tization with 64 3 64 pixels, which generates 3228 effective

pixels in an ECT image, is normally used.13,37

Equation 4 is commonly employed to calculate the sensitiv-

ity matrix22,27:

S�ij x; yð Þ52

ð ð
p x;yð Þ

rui x; yð Þ
Vi

�
ruj x; yð Þ

Vj
dxdy (4)

where S�ij defines the sensitivity between the ith and jth electro-

des at the location of the pixel p(x,y) and ui(x,y) and uj(x,y)
are the potential distributions inside the sensing domain when

the ith and jth electrodes are excited by applying voltages of

Vi and Vj, respectively.
Thereafter, S* is normalized as

Smn5
S�mnPN

n51 S�mn

(5)

where Smn and S*mn are the entries in the mth row and nth col-

umn of S and S*, respectively.
Note that, while S will change with permittivity distribution,

a generic S calculated based on a vacuum permittivity distribu-

tion22,27 is commonly used for image reconstruction.

Image reconstruction algorithms

For the ECT inverse problem, the measured capacitance

is transformed into a spatial permittivity distribution using a

specific image reconstruction algorithm. In this section, three

commonly used algorithms, i.e., LBP, conventional Tikhonov

regularization, and projected Landweber iteration, are pre-

sented, followed by the modified Tikhonov regularization

algorithm proposed in this article.
Linear Back Projection. LBP was the first algorithm

developed for ECT.14 The main principle of the LBP method

is to replace the inverse of S, which is non-existent, with the

transpose of S, as expressed by

ĝ5
STk
STuk

(6)

where ĝ is the reconstructed normalized permittivity and uk is

a vector of ones with the same dimension as k. The division

operation in the LBP method is manipulated in a one-to-one

mode.
Conventional Tikhonov Regularization. The formula of

the conventional Tikhonov regularization algorithm is

ĝ5 STS1lI
� �21

STk (7)

where l is the regularization parameter, which is a small posi-

tive number, and I is an N 3 N identity matrix with ones on

the main diagonal and zeros elsewhere.

As is well known, it is crucial to choose a suitable l to
obtain a reliable estimation of the solution. However, in the-
ory, determining l is very difficult.30,31 Therefore, this is usu-
ally done by trial and error.15

Projected Landweber Iteration. To improve the image
quality, Landweber iteration with a projection was introduced
to ECT38 and is expressed as

ĝk5P ĝk211akSTek21

� �
(8)

P f xð Þ½ �5

0 if f xð Þ < 0

f xð Þ if 0 � f xð Þ � 1

1 if f xð Þ > 1

8>><
>>:

(9)

where ek21 is the deviation between the measured capacitance
and the capacitance calculated from the (k 2 1)th recon-
structed permittivity distribution, which is defined as

ek215k2Sĝk21 (10)

The initial estimation ĝ0 in Eq. 8 is calculated by the LBP
method as formulated in Eq. 6. A drawback to the Landweber
iteration is its semi-convergence characteristic.19 To improve
the convergence speed, Liu et al.39 suggested an optimal step
length ak during the iteration:

ak5
kSTek21k
kSSTek21k

(11)

Because the Landweber iteration algorithm has been
confirmed to be capable of producing the best images in
most cases15 and is the most popular of iterative algo-
rithms,15,32,35,40 it is used as a reference to assess the new pro-
posed algorithm.

Modified Tikhonov Regularization. Figure 1 shows the sim-
ulated ECT sensor’s average sensitivity distribution, i.e., the spatial
distribution of the normalized sensitivity averaged over all elec-
trode pairs. It can be seen that, in the central area the sensitivity dis-
tribution is uniform, while in the near-wall region, a non-uniform
distribution is clearly identified. More specifically, the gaps
between two adjacent electrodes have the highest sensitivity, while
the areas close to the electrodes have the lowest sensitivity. Con-
sidering this feature together with images reconstructed by the con-
ventional Tikhonov regularization method as shown in Supporting

Figure 1. The spatial distribution of the normalized
sensitivity averaged over all electrode pairs
of the simulated ECT sensor.

The color scale represents the normalized sensitivity.

[Color figure can be viewed at wileyonlinelibrary.com]
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Information Figure S1 (and later in Figures 5 and 11 and Sup-

porting Information Animation S1), it may be concluded that

the main reason for the artifacts in the near-wall region is the

non-uniform distribution of the sensitivity. Therefore, a scal-

ing method similar to the division operation in the LBP

method is proposed to modify the conventional Tikhonov reg-

ularization to

ĝ5
STS1lIð Þ21

STk

STS1lIð Þ21STuk

(12)

Evaluation criteria

Three criteria, i.e., correlation coefficient (CC),15,35,40 aver-

age absolute deviation (AAD),16 and reconstruction speed,15

are used to compare different image reconstruction algorithms

in a quantitative manner. CC and AAD are defined, respec-

tively, by Eqs. 13 and 14:

CC5

PN
i51 ĝi2

�̂g
� �

gi2�gð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i51 ĝi2

�̂g
� �2PN

i51 gi2�gð Þ2
q (13)

AAD5
1

N

XN

i51
j/̂s2/sj (14)

where /s and /̂s are the true and reconstructed solid concen-

tration, respectively, and �g and �̂g are the mean values of g and

ĝ, respectively.
Correlation coefficient reflects the spatial similarity between

the true and reconstructed images, and AAD represents the

accuracy of an algorithm when reconstructing the solid con-

centration distribution. The best algorithm will give the maxi-

mum value of CC and the minimum value of AAD and will

take the shortest reconstruction time.

Simulation and Experimental Setup

Numerical simulations

To evaluate the performance of different image reconstruction

algorithms for ECT, it is common to carry out numerical simula-

tions and/or experiments with stationary objects.15,19–21,26,32 By

this means, only some simple permittivity distributions such as

those shown in Supporting Information Figure S1 can be tested.
However, for gas–solid bubbling fluidized beds and other multi-

phase systems, true permittivity distributions are much more

complex. In addition, the “soft-field” nature of ECT means that

the electric field inside the imaging area can be distorted by the

material present. Therefore, it is necessary to introduce the

hydrodynamic characteristics of the investigated multiphase
flow to the evaluation of an image reconstruction algorithm. Ye

et al.35,40 first reported such a framework based on a fluid-

electrostatic field coupling method, in which the two-phase flow

field and the electrostatic field are coupled by an additional elec-

tric force. However, the added electric force has no obvious
effect on the hydrodynamic characteristics for the normally used

excitation voltage, which is lower than 25 V.40 Therefore, in this

work, the coupling of the flow field and the electrostatic field is

ignored and the CFD simulation results only serve as inputs for

the image reconstruction in ECT, as suggested by Banaei et al.16

Figure 2 shows the procedure used in this work for the eval-

uation of image reconstruction algorithms using CFD simula-
tion results as the permittivity distribution inputs. At first CFD

simulation of a lab-scale bubbling fluidized bed of 14 cm in

diameter and 1.5 m in height was performed with the kinetic

theory of granular flow-based Eulerian granular model in

Fluent 6.3. The 3-D geometry of the simulated fluidized bed is

shown in Figure 3a, where gas enters the fluidized bed with a
constant superficial gas velocity of 0.9 m/s from the bottom

inlet and exits from an atmospheric pressure outlet located at

the top. The 3-D mesh for the CFD simulation, as shown in an

axial view in Figure 3b and in a cross-sectional view in Figure

3c, is composed of 1,199,900 hexahedra, which was generated
based on O-grid technique with approximately DX � DY �
1.5 mm and DZ � 4 mm. Note that the total number of CFD

cells for any given cross-sectional plane is 3380. The wall

boundary condition was defined following that by Sinclair and

Jackson,41 where a no-slip boundary condition was specified

for the gas phase and a partial-slip boundary condition was
used for the solid phase with a specularity coefficient of 0.6.

The initial bed height was set as 70 cm with an average

solid concentration of 0.42. The physical properties of the gas

phase and particles are listed in Supporting Information Table

S1. More detailed CFD simulation settings are summarized in

Figure 2. Procedure for the evaluation of image reconstruction algorithms using CFD simulation results as the
input permittivity distributions.

[Color figure can be viewed at wileyonlinelibrary.com]
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Supporting Information Table S2. To fully capture the bubble
dynamics, the CFD simulation lasted 24 s and only the results
in the last 18 s were extracted and used for the elevation of
image reconstruction algorithms.

As a general rule, 3-D ECT problem is normally reduced to
2-D by neglecting axial hydrodynamics along the vertical
height of the electrodes7 and only reconstructing 2-D cross-
section of the fluidized bed, representing the material distribu-
tion at the sensor’s mid-position. To extract the cross-sectional
solid concentration distribution from the CFD simulation
results, apparently an average of the solid concentration distri-
bution along the vertical height of the electrodes is more repre-
sentative of reality. However, in this work we use the cross-
sectional solid concentration distributions at several bed
heights but do not average them over the vertical direction.
This is because we use the simulated solid concentration dis-
tributions only as inputs to evaluate image reconstruction algo-
rithms. In addition, all the following discussions using CFD
simulation results as the input permittivity distributions are
performed in 2-D. It should be emphasized that, however, the
average of solid concentration distribution over the vertical
height of the electrodes cannot be ignored if a direct compari-
son between the CFD simulation results and ECT experiments
is desired.

As shown in Figure 2, upon completing the CFD simulation,
the 2-D cross-sectional solid concentration distributions at bed
heights of 20, 30, 40, 50, 60, 70, and 80 cm and at time points
of 6, 9, 12, 15, 18, 21, and 24 s were extracted from the slices
of the corresponding X–Y planes of the CFD simulation
results (Step 1 in Figure 2). Then, to obtain the inter-electrode
capacitance for a specified permittivity distribution, the mate-
rial distribution in each CFD cell needs to be converted to
the permittivity distribution (Step 2 in Figure 2), which was
achieved via the calculation of the relative permittivity Er, as
expressed by

Er5Es/s1Eg 12/sð Þ (15)

where Eg and Es are the relative permittivity of the gas
and solid, respectively, as listed in Supporting Information
Table S1. COMSOL Multiphysics and MATLAB were used to
solve the ECT forward problem (Step 3 in Figure 2). The high
permittivity used in the full calibration process was calculated
from Eq. 15, where /s 5 /max 5 0.63. Note that the electro-
static field simulation was performed using the CFD grid. The
grid type used at each step is also indicated in Figure 2.

As previously mentioned, image reconstruction with ECT is
sensitive to measurement noise. Previous studies42,43 show
that typical signal-to-noise ratio (SNR) for ECT systems is
higher than 60 dB. Therefore, to include the effect of noise, 60
dB white Gaussian noise was added to the capacitance data
prior to normalization, and the normalized capacitance was
then calculated by

k5
CM1dMð Þ2 CL1dLð Þ
CH1dHð Þ2 CL1dLð Þ (16)

where dM, dL, and dH are, respectively, the Gaussian distrib-
uted random noise added to CM, CL, and CH.

Once the normalized capacitance was obtained, the permit-
tivity distribution in each ECT pixel could be reconstructed by
solving the inverse problem using an image reconstruction
algorithm (Step 4 in Figure 2). Then, the reconstructed solid
concentration /̂s in each ECT pixel was obtained (Step 5 in
Figure 2) by the parallel model,16,44,45 in which the normalized
permittivity equals the normalized solid concentration, and
therefore

/̂s5/maxĝ (17)

Because any given cross-sectional plane of the CFD simula-
tion consists of 3380 CFD cells, as shown in Figure 3c, which
are different from those of the N square pixels in an ECT
image, to make a comparison of the solid concentration
between the true distributions from the CFD simulation results
and the reconstructed distributions obtained by a specific
image reconstruction algorithm, it is necessary to map the
solid concentration at CFD grid to ECT pixels (Step 6 in Fig-
ure 2). The interpolation was achieved via the following pro-
cedure. First, each ECT pixel was divided into 10 3 10 ECT
sub-pixels and, for each ECT sub-pixel, a partner CFD cell
was defined based on the shortest distance between their center
points. Then, each ECT sub-pixel was assigned a solid concen-
tration that was the same as its partner CFD cell. Subse-
quently, the solid concentration for an ECT pixel was the
average over the 10 3 10 ECT sub-pixels included in this
pixel. Next, the obtained solid concentration in all the ECT
pixels was used to construct an ECT square-pixel-style image.
The converted distributions were later treated as the true distri-
butions for comparison (Step 7 in Figure 2).

As an illustration, Supporting Information Figure S3a
shows a typical cross-sectional solid concentration distribution
obtained from the CFD simulation results. The corresponding
ECT images interpolated from the CFD grid are shown in
Supporting Information Figures S3b–S3d for image resolu-
tions of 48 3 48 pixels, 64 3 64 pixels, and 80 3 80 pixels,
respectively. Note that the numbers of effective pixels in the
circular imaging area for Supporting Information Figures
S3b–S3d are 1804, 3228, and 5024, respectively. It is clear
from Supporting Information Figure S3 that overall the three
image resolutions considered in current study can be

Figure 3. Geometry and mesh for CFD simulation of
the bubbling fluidized bed.

[Color figure can be viewed at wileyonlinelibrary.com]
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satisfactorily used to reconstruct the original distributions.

However, the images with higher resolutions, i.e., 64 3 64

and 80 3 80 pixels, can show more details on the gradual

change of solid concentration between bubble and emulsion

phases compared to that with a relatively low resolution of 48

3 48 pixels. Because the number of effective pixels in an

ECT image given by the discretization with 64 3 64 pixels is

3228, which is very close to the number of CFD cells for any

given cross-sectional plane, say 3380, the discretization with

64 3 64 pixels can give a similar resolution to the CFD simu-

lation results, which makes the comparison between the origi-

nal solid concentration distribution and the reconstructed ECT

image more straightforward. In these regards, the discretiza-

tion with 64 3 64 pixels was employed throughout this work.

In fact, it was found that the tested pixel discretization only

has a minor effect on the performance of different image

reconstruction algorithms (see Supporting Information Figure

S4); therefore, the choice of the discretization with 64 3 64

pixels will not influence the evaluation of image reconstruc-

tion algorithms.

Experimental setup

To validate the simulation results and further verify the feasi-

bility, as well as the noise immunity, of the modified Tikhonov

regularization algorithm, a cylindrical bubbling fluidized bed

equipped with a 12-electrode ECT sensor was set up, as shown

in Figure 4a. The fluidized bed was made of quartz glass and

had a height of 1 m, an inner diameter of 6.0 cm, and an outer

diameter of 6.6 cm. Airflow under ambient conditions was

introduced to the fluidized bed through a porous polypropylene

plate with a mean pore size of 10 lm. The fluidized particles

were fluid catalytic cracking (FCC) catalysts with the Sauter

mean diameter of 65 lm (the particle size distribution is shown

in Figure 4d) and particle density of 1370 kg/m3, which are typ-

ical Group A particles according to Geldart’s classification.46

Preliminary tests revealed that the minimum fluidization veloc-

ity and minimum bubbling velocity of the FCC particles were

2.75 and 9.95 mm/s, respectively.
Figure 4b shows the used 12-electrode ECT sensor whose

cross-sectional dimensions are detailed in Figure 4c. The ECT

electrodes, with a vertical height of 3 cm, were stuck onto the

outside wall of the fluidized bed. The width of the electrodes

was chosen in such a way that the covering ratio of the electro-

des was the same as that used in simulations. The mid-position

of the sensor was located 20 cm above the distributor. Hence

the measurement region encompassed a height between 18.5

and 21.5 cm above the distributor, and thus each pixel in an

ECT image represented an axial average over this measure-

ment volume. An AC-based ECT system18 was applied for

capacitance measurement. The SNR of the used ECT system

is approximately 73 dB, which is somehow higher than that

was used in simulations. Before the measurement, air and

packed bed of FCC catalyst particles with a static height of

33 cm were used to obtain CL and CH in Eq. 3, respectively, to

calibrate the ECT system. To make the bed operate in bub-

bling regime, the superficial gas velocity was controlled

between 1.17 and 12.8 cm/s with a step of 1.17 cm/s. For each

velocity, a total of 10,000 sets of capacitance data were col-

lected, which corresponds to a period of 100 s as the data

acquisition rate of the ECT system is 100 frames per second.

Results and Discussions

Evaluation by simulations

To evaluate the performance of different image reconstruc-

tion algorithms using CFD simulation results as the inputs, 78

Figure 4. Experimental setup.

[Color figure can be viewed at wileyonlinelibrary.com]
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randomly selected true distributions were used as reference

distributions for reconstruction. Animations of these 78

selected solid concentration distributions and the correspond-

ing images reconstructed by different image reconstruction

algorithms are displayed in Supporting Information Animation

S1. These 78 distributions represent the appearances of a sin-

gle bubble, two bubbles, and multiple bubbles located at dif-

ferent positions, which can reflect notable bubble dynamics in

a gas–solid bubbling fluidized bed such as bubble growth, coa-

lescence, and movement. All the following discussions are

based on these selected distributions.

Determination of the Regularization Parameter. The

quality of images reconstructed by the Tikhonov regulariza-

tion algorithm strongly depends on the regularization parame-

ter l. It is generally accepted that a small value of l can give

a good approximation to the solution but a too small value of

l may lead to a singularity. Typical values of l for the con-

ventional Tikhonov algorithm range from 0.0001 to 0.1.16,21,28

To find the optimal value of l for both the conventional and

modified Tikhonov regularization algorithms for the simulated

sensor, a wide range of l, from 1 3 1029 to 100, was tested to

explore the dependence of CC and AAD on l. The results are

shown in Supporting Information Figure S5. Note that a value

of l smaller than 1 3 1029 can make the matrix STS1lI close

to singular. In accordance with the evaluation criteria, the

most appropriate value of l for the simulated ECT sensor is

0.0001 for both Tikhonov regularization methods.
From the comparison in Supporting Information Figure S5,

it is clear that the modified Tikhonov method improves CC

and AAD with all tested values of l. In particular, a higher

value of l in the magnitude of 100, which is too large for the

conventional Tikhonov regularization method, is still accept-

able for the modified algorithm. We currently do not know the

reason for the wider range of l in the modified Tikhonov regu-

larization, which anyway deserves further research.
Image Quality Comparison. Figure 5 shows six typical

cases that are included in Supporting Information Animation

S1. By comparing the reconstructed solid concentration distri-

butions to the reference images, it can be seen that the LBP

method produces high-quality images near the wall, while

details in the central region are all blurred due to the lower

sensitivity there and eventually only simple distributions such

as the single-bubble distribution in Case 1 can be recon-

structed. Conversely, the conventional Tikhonov regulariza-

tion can produce the solid concentration distribution with

good quality except for the artifacts in the near-wall region. A

careful check suggests that the artifacts are formed with high

solid concentration displayed in the pixels between two adja-

cent electrodes, while low solid concentration in the pixels

near the electrode surface, which is akin to the sensitivity dis-

tribution in the generic sensitivity matrix, as shown in Figure

1. After the modification made by the division operation in the

conventional Tikhonov regularization algorithm, the artifacts

disappear, as shown in the fifth row of Figure 5, and the image

quality is improved for all tested cases. A further comparison

between the modified Tikhonov regularization and the Land-

weber iteration indicates that nearly all images reconstructed

by the modified Tikhonov technique are similar to those

reconstructed by the Landweber algorithm with 25 iterations

(see Supporting Information Animation S1). In the presence of

complex multi-bubble distributions, such as in Cases 2, 4, and

6 shown in Figure 5, the modified Tikhonov technique can

even produce images as good as those produced by the Land-

weber algorithm with 200 iterations.
In Figure 6, CC and AAD obtained by different image

reconstruction algorithms are compared, where CoTi and

MoTi represent the conventional and modified Tikhonov

Figure 5. Cross-sectional solid concentration distributions reconstructed by different algorithms using CFD simu-
lation results as the input permittivity distributions.

The color scale represents the solid concentration. [Color figure can be viewed at wileyonlinelibrary.com]

AIChE Journal January 2018 Vol. 64, No. 1 Published on behalf of the AIChE DOI 10.1002/aic 35

http://wileyonlinelibrary.com


regularization methods, respectively, and Lm means the Land-
weber algorithm with m iterations. Note that, for each algo-
rithm, CC and AAD are the average over the 78 randomly
selected distributions. From Figure 6, it can be seen that the
LBP and conventional Tikhonov methods give relatively low
CC due to the poor quality of reconstructed images. With the
Landweber iteration, as the number of iterations increases, CC
rises quickly in the first 100 iterations and then shows a slow
increase over the next 100 iterations. As the iteration process
continues, a decrease in CC is noticed, demonstrating the
semi-convergence characteristic of the Landweber iteration
algorithm.19 When the modified Tikhonov method is used, a
value of 0.83, which is as high as that obtained by the Land-
weber algorithm with 25 iterations, can be reached. As for
AAD, consistent with the results in Supporting Information
Figure S5, Figure 6 also shows that a higher CC always corre-
sponds to a lower AAD and vice versa.

To evaluate the stability of images reconstructed by differ-
ent algorithms, error bars calculated from the standard devia-
tions of CC and AAD over the 78 tested distributions are also
shown in Figure 6 and a lower value of standard deviation
implies the ability of an algorithm to produce images with
consistent quality. The error bars indicate that the vibration of
AAD for all algorithms is small, while the fluctuation of CC
shows differences for different algorithms and, specifically, a
remarkable fluctuation of CC occurs for the LBP, conventional
Tikhonov regularization, and Landweber algorithm with itera-
tions less than 15 and more than 300, while a less noticeable
standard deviation holds for the modified Tikhonov and Land-
weber algorithm with iterations more than 15 and less than
300. It is therefore clear from Figure 6 that the modified
Tikhonov method can improve not only the image quality but
also the stability compared to the conventional Tikhonov
method. Furthermore, the reconstruction stability obtained by
the modified Tikhonov method is similar to that obtained by
the Landweber algorithm with iterations more than 15 and less
than 300. Therefore, it can be concluded from Figures 5 and 6
that both image quality and stability produced by the modified
Tikhonov method are comparable to those produced by the
Landweber method with 25 iterations.

Elapsed Time. One of the most attractive advantages of
ECT is its high temporal resolution. With a twin-plane ECT
sensor, flow velocity47 and even velocity profile48 in a

fluidized bed can be measured. For this purpose, both a rapid

data acquisition hardware design and a high-speed algorithm

are necessary. To compare the speed of different algorithms,

the elapsed time in a reconstruction step required for different

algorithms was evaluated on a PC with an Intel Core i5

3.30 GHz, as shown in Supporting Information Figure S6.
Because the matrix STS1lIð Þ21

ST can be calculated and

stored in advance,20 both the conventional and modified Tikho-

nov regularization algorithms take the same computational time

as the LBP method, which is approximately 0.3 ms. For the

Landweber iteration, the computational time increases linearly

with the number of iterations; more specifically, the time taken

by the Landweber algorithm with 25 iterations and 200 itera-

tions is approximately 30 and 230 ms, respectively, correspond-

ing to roughly 100 and 800 times the elapsed time taken by the

non-iterative algorithms, respectively.
Accuracy of the Overall Solid Concentration Measure-

ment. Via pixel averaging, overall solid concentration can be

measured. Figure 7a shows a histogram of the relative error

associated with the measurement of the overall solid concen-

tration using different image reconstruction algorithms in the

78 selected distributions. Note that the solid concentration in

Figure 7a was calculated based on the most widely used paral-

lel model,44,45 as defined in Eq. 17. To test the effect of the

used concentration model on the measurement of the overall

Figure 6. Quantitative comparison of different image
reconstruction algorithms.

The error bars represent the standard deviation over

the 78 tested distributions. [Color figure can be viewed

at wileyonlinelibrary.com]

Figure 7. Evaluation of different image reconstruction
algorithms for the overall solid concentration
measurement: (a) histogram of the relative
error and (b) effect of the concentration
model on the average relative error over the
78 tested distributions.

[Color figure can be viewed at wileyonlinelibrary.com]
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solid concentration, Figure 7b shows the average relative error

over the 78 selected distributions for the parallel model, series

model, and Maxwell model.
As can be seen in Figure 7a, all algorithms underestimate

the overall solid concentration in all cases and, except for the

conventional Tikhonov regularization, all algorithms can give

the overall concentration at the same level: the relative error is

within 211% for all 78 cases and is approximately 25% on

average (see Figure 7b). Figure 7 given by Wei et al.20 also

indicates a lower volume fraction reconstructed by the LBP,

conventional Tikhonov regularization and Landweber iteration

methods. A possible reason for the underestimation is that the

transformation from permittivity distribution into material dis-

tribution uses the parallel model, in which the normalized per-

mittivity and the normalized solid concentration take the same

value. Some other concentration models, such as the series

model and Maxwell model, set the value of the normalized

solid concentration to be higher than the normalized permittiv-

ity.16,44 In this way, the underestimation problem can be

solved; however, a new overestimation problem emerges, as

shown in Figure 7b. It is also noteworthy from Figure 7b that

the average relative error obtained by the series model is much

higher than that obtained by the Maxwell model, inferring that

a new concentration model, which is in between the parallel

model and Maxwell model, is highly desired.

Accuracy of the Bubble Size Measurement. In a fluidized

bed, bubbles can affect fluidization quality, solid mixing, and

inter-phase mass and heat transfer.11,13,49 Therefore, accurate

quantification of bubble size is important for the design and

operation of a fluidized bed. However, in practice the defini-

tion of a bubble in gas–solid bubbling fluidized beds is ambig-

uous. As shown in Figure 5 and Supporting Information

Animation S1, there is no a clear interface between bubble and

emulsion phases and bubbles are surrounded by an extensive

shell of solid particles in which the solid concentration

increases gradually.23 Therefore, to extract the bubble proper-

ties from the solid concentration distribution measured by

ECT, a threshold is usually used to define the boundary

between bubble and emulsion phases and this threshold ranges

from 0.15 to 0.3 in literature.11,50

To evaluate different image reconstruction algorithms for
their bubble detection accuracy, Figure 8 shows three typical
bubble distributions extracted from the CFD simulation results
and the corresponding images reconstructed by different algo-
rithms, in which Case 1 represents a single-bubble distribu-
tion, Case 2 represents a two-bubble distribution, and Case 3
represents a three-bubble distribution. Note that the binary
images in Figure 8 were obtained with a threshold solid con-
centration of 0.2. That is to say, the regions with the solid con-
centration lower than 0.2 were regarded as being in the bubble
phase (the blue regions in Figure 8) and the other regions were
classified as being in the emulsion phase (the red regions in
Figure 8).

As is clear in Figure 8, the LBP method can only qualita-
tively reconstruct the single-bubble distribution in Case 1 and,
for other two cases, the reconstructed bubble distributions
show large deviations compared to the true images. For the
conventional Tikhonov method, even though bubbles in the
central area can be well reconstructed for all three cases, the
unphysical artifacts make it difficult to interpret the recon-
structed bubble distributions in a real application, because the
artifacts will result in uncertainty as to whether there are bub-
bles near the wall. When the proposed modified Tikhonov
method is used, the artifacts disappear and all the recon-
structed bubble distributions are satisfied. In particular, the
number of bubbles in all three cases is the same as that in the
true images. As for the bubble shape, for the single-bubble dis-
tribution in Case 1, the modified Tikhonov method gives a
similar result to the Landweber method with 25 iterations and,
for multi-bubble distributions in Cases 2 and 3, the recon-
structed bubble distributions are comparable to those by the
Landweber method with 200 iterations.

To quantitatively evaluate different algorithms for the
accuracy of bubble size measurement, Figure 9 compares
equivalent bubble diameters calculated by different image
reconstruction algorithms from the three cases shown in Fig-
ure 8. The equivalent bubble diameter was calculated follow-
ing Verma et al.51 First, the number of bubbles in an ECT
image was detected using an edge detection method. Then, the
area of each bubble was calculated as the surface area of the
corresponding continuous region where the solid concentration

Figure 8. Cross-sectional bubble distributions reconstructed by different algorithms using CFD simulation results
as the input permittivity distributions.

The red regions and blue regions represent emulsion and bubble phases, respectively. [Color figure can be viewed at wileyonlineli-

brary.com]
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is lower than 0.2. Next, the diameter of each bubble was
obtained as the diameter of a circular bubble with equivalent
cross-sectional area. Finally, the equivalent bubble diameter in
the ECT image was obtained as the number-averaged bubble
diameter. As the images reconstructed by the conventional
Tikhonov method show many artifacts in the near-wall region,
following the suggestions of Geldart46 that a clearly recogniz-
able bubble will have a diameter larger than 0.5 cm, some
small bubbles with diameters smaller than 0.5 cm were
excluded from the average.

As can be seen in Figure 9, because some artifacts in the
near-wall region were included when calculating the equiva-
lent bubble diameter, the conventional Tikhonov method
underestimates the bubble size in all three cases. After the
unphysical artifacts are removed by the modification, a high-
accuracy estimation of the equivalent bubble diameter can be
obtained: the relative errors for Cases 1 and 2 are 1.06% and
21.62%, respectively, and, for the three-bubble distribution in
Case 3, the relative error also lies within 212%, say 211.3%.
For the LBP method, it can only provide a satisfactory result
for the single-bubble distribution in Case 1 with a relative
error of 7.69%; for the other two cases, the relative errors are
both beyond 225%. When the Landweber algorithm is used,
for Case 1, both 25 and 200 iterations perform worse than the
modified Tikhonov method; for Case 2, 200 iterations can pro-
vide a similar result to the modified Tikhonov method, while
25 iterations perform worse due to the poorly reconstructed
bubble shapes; and for Case 3, 200 iterations give the closest
estimation with a relative error of 27.73%, while 25 iterations
overestimate the bubble size, because the smallest bubble in
Case 3 cannot be reconstructed, as shown in Figure 8.

As the threshold solid concentration for the bubble defini-
tion ranges from 0.15 to 0.3 in literature,11,50 the sensitivity of
different algorithms to the choice of the threshold in bubble
distribution reconstruction needs to be tested. Supporting
Information Figure S7 shows a typical bubble distribution
reconstructed by different algorithms using the thresholds of
0.15, 0.25, and 0.3; the corresponding bubble distribution
using the threshold of 0.2 is shown in Figure 8 as Case 2.
Clearly, the modified Tikhonov algorithm is robust for

quantitatively extracting bubble size and bubble shape in gas–

solid bubbling fluidized beds and shows weak dependence on

the choice of the threshold. It should be stressed, however, the

choice of the threshold is a non-trivial task in real fluidized

beds. A prior calibration11,52 is necessary to obtain an optimal

threshold and thus reasonable bubble distributions.

Accuracy of the Radial Solid Concentration Profile
Measurement. Two representative distributions are shown in

Figure 10a for a multi-bubble flow and in Figure 10b for a

solid slug flow to compare the radial solid concentration pro-

files produced by different image reconstruction algorithms.

Figure 10 shows that, except for the LBP method that shows a

smoothing effect on the gradual transition between emulsion

and bubble phases, all algorithms can quantitatively recon-

struct the profile. However, for the conventional Tikhonov

method, due to the artifacts shown in Figure 5, a large devia-

tion near the wall is noted. While the curves produced by the

modified Tikhonov method and Landweber method with 25

and 200 iterations nearly coincide with each other and

approach the curve of the true profiles, showing the ability of

Figure 9. Evaluation of different image reconstruction
algorithms for the bubble size measurement
using CFD simulation results as the input
permittivity distributions.

[Color figure can be viewed at wileyonlinelibrary.com]

Figure 10. Accuracy of different image reconstruction
algorithms with respect to the radial profile
of solid concentration.

The inserted ECT images are true distributions from

the CFD simulation results. The color scales represent

the solid concentration. [Color figure can be viewed at

wileyonlinelibrary.com]
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these algorithms to provide the radial profile of solid concen-

tration in an accurate manner.

Evaluation by experiments

To verify the feasibility of the modified Tikhonov regulari-

zation method for experiments, two key aspects obtained by

different image reconstruction algorithms in experiments are

discussed. They are image quality and equivalent bubble size.

Image Quality Comparison. Figure 11 shows two sets of

typical images reconstructed by different algorithms using

experimental data. The optimized regularization parameter

from the numerical simulations, 0.0001, was used in experi-

ments for both the conventional and modified Tikhonov meth-

ods. Even though the true distributions are unknown in a real

fluidized bed, it is still clear from Figure 11 that there are arti-

facts in the near-wall region in the images reconstructed by

the conventional Tikhonov method and that the distribution of

the artifacts is the same as that in numerical simulations. With

the modified Tikhonov method, the artifacts disappear and the

images are as good as those of the Landweber method with 25

iterations (Case 1) or 200 iterations (Case 2). An additional

comparison to the images reconstructed by the LBP method

indicates that more details can be seen with the modified

Tikhonov method without extensive computation.

Bubble Size Measurement. To quantify the bubble size

determined by different image reconstruction algorithms in

experiments, Figure 12 shows the equivalent bubble diameter

calculated at each superficial gas velocity using the threshold

solid concentration of 0.2 following previous works.8,23,37

Because the studied fluidized bed had a small bed diameter of

6 cm and was operated with a large initial aspect ratio of 5.5,

in most cases, it was observed that only a single bubble could

pass through the ECT measurement region at a time. In addi-

tion, because the acquisition rate of the used AC-based ECT

system was 100 Hz, each bubble could be detected several

times when it passed through the measurement region. There-

fore, the experimental equivalent bubble diameter was

obtained as follows. First, the time series of ECT images at

each superficial gas velocity was divided into 50 segments,

with each segment corresponding to a time duration of 2 s.

Then, the maximum equivalent bubble diameter in each seg-

ment was detected. Finally, the average of the 50 maximum

equivalent bubble diameters was chosen to represent the char-

acteristic bubble size at a given superficial gas velocity. The

error bars in Figure 12 were calculated as the standard devia-
tion of the 50 maximum equivalent bubble diameters.

To compare the measured bubble size with the established
empirical correlations, the estimated bubble diameters from
the correlations of Darton et al.49 and Werther53 are shown
alongside the experimental size in Figure 12. Note that the
correlations of Darton et al.49 and Werther53 were originally
developed in beds with the diameter larger than 10 cm; there-
fore, these two correlations can only play a qualitative rather
than a quantitative role when evaluating the bubble size recon-
structed by different algorithms using experimental data.

As shown in Figure 12, the equivalent bubble diameter cal-
culated using different algorithms and the two correlations
have a similar tendency, showing an increase in bubble size
with the increase in superficial gas velocity. Excepting that the
equivalent diameters calculated by the conventional Tikhonov
method are much smaller than those of the two correlations,
the diameters calculated by the other techniques lie within the
window of the two correlations, especially when the superfi-
cial gas velocity is larger than approximately five times the

Figure 11. Cross-sectional solid concentration distributions reconstructed by different algorithms using experi-
mental data.

The color scale represents the solid concentration. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 12. Bubble size determined by different image
reconstruction algorithms in experiments
and the correlations of Darton et al.49 and
Werther.53

The error bars are calculated as the standard devia-

tion of the 50 maximum equivalent bubble diameters.

[Color figure can be viewed at wileyonlinelibrary.com]
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minimum bubbling velocity. Comparing Figure 12 to Figure

9, it can be seen that the experimental data is in good agree-

ment with the simulations. In both situations, the conventional

Tikhonov method gives the smallest measurements of the

equivalent bubble diameter due to the artifacts in the near-wall

region, while the bubble diameters calculated by the modified

Tikhonov method fall in between those calculated by the

Landweber method with 25 and 200 iterations.

Conclusion

In this work, a similar one-to-one division operation, which

was originally used in the LBP method, is introduced to mod-

ify the conventional Tikhonov method for the use of ECT in

gas–solid bubbling fluidized bed measurements. Both numeri-

cal simulations and experiments were performed to evaluate

the proposed algorithm. In particular, the simulations were

performed by comparing the reconstructed images with the

cross-sectional solid concentration distributions extracted

from CFD simulation results. In addition to the image quality,

the accuracy of the modified Tikhonov method when obtaining

some key hydrodynamic characteristics in gas–solid bubbling

fluidized beds, such as the overall solid concentration, bubble

size, and radial solid concentration profile, was systemically

evaluated. Based on this work, the conclusions can be summa-

rized as follows:
� The LBP, Tikhonov regularization, and Landweber iteration

methods are three most popular algorithms for ECT. The LBP

and Tikhonov regularization methods are good for on-line

measurements due to their fast speed. However, images recon-

structed by the LBP method are usually blurred. With the

conventional Tikhonov method, even though basically satis-

factory results can be obtained in the central area, artifacts

always occur in the near-wall region and the problem of arti-

facts is more severe in the case of low-permittivity materials

presenting in a high-permittivity background, which is exactly

the case in a gas–solid bubbling fluidized bed, where discrete

bubbles are dispersed in a continuous emulsion phase. As for

the Landweber iteration algorithm, the best images in most

cases can be produced; however, its computational cost pre-

vents it from on-line applications.
� The main reason for the artifacts shown in images recon-

structed by the conventional Tikhonov method is the non-

uniform distribution of the sensitivity in the generic sensitivity

matrix. The division operation introduced to modify the con-

ventional Tikhonov method can rescale the gray level in each

pixel, and therefore the artifacts can be effectively removed.
� The regularization parameter in both the conventional and

modified Tikhonov methods can be determined by obtaining

the highest value of CC and the lowest value of AAD.
� The quality of images reconstructed by the modified

Tikhonov method is comparable to that reconstructed by the

Landweber iteration method with dozens of iterations, while

the computational cost of the modified Tikhonov method is

only one percent or less of that of the Landweber iteration.
� The modified Tikhonov method shows high accuracy or

the same accuracy as the Landweber iteration algorithm

when obtaining the overall solid concentration, bubble

size, and profile of radial solid concentration in gas–solid

bubbling fluidized beds. Therefore, the modified Tikhonov

method has the potential to become an efficient on-line

image reconstruction method for ECT measurements of gas–

solid bubbling fluidized beds.

� The overall solid concentration is underestimated by the
parallel model for all test algorithms in this article. If the con-
centration model is changed to the series or Maxwell models,
a new overestimation problem emerges. Furthermore, the rela-
tive error obtained by the series model is much higher than
that obtained by the Maxwell model. This suggests that a new
concentration model, which is in between the parallel model
and Maxwell model, is needed.
� It is reasonable to speculate that the proposed modified
Tikhonov method can also be applied to ECT measurements
of bubble columns with high accuracy, because bubble col-
umns are similar to gas–solid bubbling fluidized beds in
terms of a low-permittivity bubble phase dispersing in a
high-permittivity background.
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Notation

Roman letters

C = capacitance, pF
V = potential difference, V
S = normalized sensitivity matrix
N = the number of pixels in an ECT image
I = identity matrix (ones on the main diagonal and zeros elsewhere)
e = capacitance residual
g = normalized permittivity

Greek letters

Er = relative permittivity
u = potential distribution, V
k = normalized capacitance

uk = identity vector (a vector of ones)
l = regularization parameter
a = step length
/ = concentration
D = characteristic grid width, mm
d = Gaussian distributed random noise

Subscripts

g = air phase
s = solid phase
L = low calibration
H = high calibration
M = measurement

Superscript

– = average value
^= reconstructed value

Abbreviations

ECT = electrical capacitance tomography
LBP = linear back projection
CFD = computational fluid dynamics

CC = correlation coefficient
AAD = average absolute deviation
FCC = fluid catalytic cracking
SNR = signal-to-noise ratio, dB
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