
Chemical Engineering Journal 445 (2022) 136653

Available online 4 May 2022
1385-8947/© 2022 Elsevier B.V. All rights reserved.

Drag correlations for flow past monodisperse arrays of spheres and porous 
spheres based on symbolic regression: Effects of permeability 

Likun Ma a,b, Qiang Guo c, Xue Li d, Shuliang Xu a, Jibin Zhou a, Mao Ye a,*, Zhongmin Liu a,b 

a Dalian National Laboratory for Clean Energy and National Engineering Laboratory for MTO, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 
116023, China 
b University of Chinese Academy of Sciences, Beijing 100049, China 
c Department of Chemical Engineering, Columbia University, New York 10027, United States 
d State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China   

A R T I C L E  I N F O   

Keywords: 
Drag correlation 
Permeability 
Symbolic regression 
Porous sphere 
Monodisperse arrays of spheres 

A B S T R A C T   

An accurate drag correlation accounting for multiscale heterogeneous porous structures is a prerequisite for 
reliable CFD simulation of fluidized beds. Though particle clusters in fluidized beds are usually modeled as 
porous particles, particle-resolved direct numerical simulation (PR-DNS), in which monodisperse arrays of 
spheres are taken as model systems, has been widely used as a first-principle approach to derive drag correla
tions. This work is to bridge the gap of drag correlations for monodisperse arrays of spheres and porous spheres 
by considering permeability effects and derive new drag correlations using symbolic regression (SR) methods. 
Firstly, experimental porous spheres settling data were utilized to identify the most important features affecting 
drag force using Support Vector Machine (SVM), in which the permeability β was packed up in addition to the 
solid fraction ϕ and Reynolds numbers Re. A new drag correlation for porous spheres based on ϕ,Re, and β, which 
has physical terms, high prediction accuracy and correct limiting cases, is automatically generated using SR 
method. Then, PR-DNS data from open sources were used to distill drag correlations for monodisperse arrays of 
spheres by incorporating the extra permeability parameter by SR method, demonstrating solid physical basis 
with high accuracy. It is further shown the SR based on drag correlations for porous spheres and monodisperse 
arrays of spheres can be reduced to limiting cases of a single solid sphere and Stokes flow. The proposed new drag 
correlations not only provide a way to use permeability as a simple yet physically sounded parameter to quantify 
heterogeneous structures in fluidized beds, but also open a venue for directly validating drag correlations ob
tained purely from PR-DNS simulations with experimental data of flow around porous spheres.   

1. Introduction 

Porous structures are widely encountered in industrial processes and 
two particular and essential examples are fixed/packed bed reactors 
[1–3] and particle clusters or agglomerates in fluidization systems [4,5]. 
Fixed bed reactors, defined as an assembly of particles, are usually 
regular/random packings of uniformly sized spheres [1]. Particle clus
ters or agglomerates in fluidization systems are usually modeled as 
porous spheres [6,7]. To gain a better design and optimal control of 
these industrial processes which manifests porous structures, it is 
essential to accurately describe the hydrodynamics therein [8]. CFD 
simulations are playing an increasingly important role in this regard. At 
industrial scale, CFD simulations are mainly based on the Euler–Euler or 

Euler-Lagrange models, both of which require in prior drag correlations 
as input to account for the gas-particle interactions [9]. An accurate drag 
correlation derived via either well-designed experiments or first- 
principle simulations, is a prerequisite in obtaining reliable CFD simu
lation results [10–13]. Essentially, the choice of drag correlations, 
especially the formula forms used, can significantly affect the numerical 
simulation results [14–17]. Thus, it’s necessary to obtain accurate drag 
correlations for above porous systems. 

It should be noted that in this work, drag force Fd due to the friction 
between particle and fluid phase was used by converting all collected 
total force Fg→s that the fluid exerts on the solid particles to Fd [18]. In 
addition, Fd is normalized by the Stokes drag force for an isolated par
ticle [19], which is written as dimensionless drag force F(ϕ,Re) =
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Fd/3πμdu. 
For monodisperse arrays of spheres systems, at the limit of Re ∼ 0, 

the most representative drag correlation is Carman-Kozeny (CK) rela
tion, which is written as F = 2k × ϕ/(1 − ϕ)2 and can be theoretically 
derived based on the assumption of stokes flow through a monodisperse 
dense random array of spheres [20]. The Carman theoretical term 2k ×

ϕ/(1 − ϕ)2 was considered as a basic term in the subsequent develop
ment of drag correlations. For instance, assuming k = 5 can reduce the 
CK relation to the Carman equation [21] and assuming k = 4.167 can 
further reduce it to the Ergun equation [21]. In the work by van der Hoef 
et al. [21], they added an extra term (1 − ϕ)2

(1+1.5
̅̅̅̅
ϕ

√
) into the Car

man equation to obtain the correct limit of F→1 at ϕ→0. Up to now, F =

10ϕ/(1 − ϕ)2
+(1 − ϕ)2

(1+1.5
̅̅̅̅
ϕ

√
) proposed by van der Hoef et al. [21] 

is still the most accurate drag correlation for flows of Re ∼ 0 which 
indicates drag force F is solely related to solid fractions ϕ for Re ∼ 0, 
making them ‘‘one-maker” drag models. For flows with finite Reynolds 
number (Re > 0), there are two commonly used formula forms [9]. The 
first one is the Ergun-type equation F(ϕ,Re) = F(ϕ, 0)+αRe which is 
based on drag force of Stokes flow F(ϕ,0) at Re = 0 with an addition 
linear term α on Re to account for the effects of inertia at Re > 0. The 
second one is the Wen & Yu-type equation F(ϕ,Re) = F(0,Re)(1 − ϕ)− β 

which is based on drag force F(0,Re) of a single particle with an addition 
term β to correct the effects of neighboring particles. For Ergun-type 
equation, the parameter α was initially suggested as a function of ϕ in 
the form of α(ϕ) = b/18(1 − ϕ)2, [9] with b being 1.75 as suggested by 
Ergun [22]. Later on, it has been realized that F should be optimized in 
terms of both ϕ and Re, such as the bivariate function of α(ϕ,Re) used by 
Hill et al. [23] and Beetstra et al. [18]. For Wen & Yu-type equation, the 
corrected term β was initially assumed to be a constant, for example, β =

3.7 following Wen & Yu [24]. Afterwards, Felice [25] found β is not a 
constant but has a weak dependency on Re. In fact, Tenneti et al. [26] 
showed that β can also be estimated via a bivariate functional form β(ϕ,
Re). To sum up, both the Ergun-type and Wen & Yu-type drag formulas 
can be represented as bivariate functions of ϕ and Re, making them 
‘‘two-marker” drag models, which means F is essentially associated with 
ϕ and Re in the homogeneous fluidization systems. 

In fact, the effects of closure markers on the performance of drag 
closures have been investigated by many researchers [27,28]. Except the 
direct modifications made to the Ergun-type and Wen & Yu-type drag 
correlations, considering the difference of drag force between a complex 
fluidized beds system (such as the solids mobility [29–34], heteroge
neity [15,35,36], particle inertia [19,37] and so on) and the simple static 
monodisperse random array system, some researchers have attempted to 
use a third parameter, in addition to the typical two parameters ϕ and 
Re, to derive a more accurate drag correlation. The parameters used 
include granular temperature or solid concentration fluctuation 
[29–34], particle cluster forming parameter Ha [35], scalar variance of 

the particle volume fraction (ϕ’)
2 and normalized drift flux vd, [15] 

heterogeneity index Hi [36], and ratio of the particle relaxation time to 
fluid relaxation time St [37]. 

Generally, in fluidized beds, the complex interaction between fluid 
and particles makes the flow unstable, which can produce the non- 
uniform multiscale structures [36]. It’s very common that individual 
particles are brought close to each other to form local denser regions of 
particles [35], especially the particles clusters. These non-uniform 
multiscale structures can alter the interactions between particles and 
the fluid and the interactions will differ from that of homogeneous 
fluidization systems which have been commonly assumed in most CFD 
modeling works [38]. It’s difficult for TFM to achieve grid size 
convergence with traditional homogeneous drag models due to the ex
istence of heterogeneous structures [39,40], unless a fine enough grid 
and a small enough time step are used [41], which usually means an 
expensive computational cost. Especially, for fluidized beds of Geldart A 
particles in presence of heterogeneous structures, the prediction of flow 

hydrodynamics using coarse-grid TFM coupling a homogeneous drag 
model [36] remains a challenge. This issue has become increasingly 
conspicuous in especially the high-velocity fluidization systems due to 
the failure of using homogeneous drag models to resolve the mesoscale 
structures [42]. Although finer grids and smaller time steps can be used 
to resolve these heterogeneous mesoscale structures, it boosts the 
computational cost significantly even for lab-scale reactor simulations. 
So, in large-scale reactor simulations including non-uniform multiscale 
structures, some heterogeneous drag models have been recently pro
posed by introducing an extra third parameter based on the traditional 
“two-marker” homogeneous drag models F = f(ϕ,Re). Rubinstein et al. 
[15] found F can decrease significantly as the extent of inhomogeneities 
increases over a range of length scales. The extent of inhomogeneities is 
quantified by the scalar variance of the particle volume fraction or the 
drift flux which was introduced into drag models as the third parameter. 
Mehrabadi et al. [35] found the mean drag on clustered configurations 
decreased compared to that of uniform configurations and proposed a 
drag model accounting for clusters by introducing the new parameter 
Ha. Chen et al. [43] found four markers, including the scalar variance of 
solid volume fraction, the gas drift velocity, the solid drift velocity and a 
third-order moment, can affect the filtered drag force significantly, and 
they proposed modified drag models including different combinations of 
the above four markers. Thus, new parameters accounting for particle 
concentration configurations are constantly introduced into the tradi
tional “two-marker” homogeneous drag models F = f(ϕ,Re) to improve 
the prediction performance. 

Meanwhile, for porous sphere systems, compared with F = f(Re) for 
solid spheres, permeability which can quantify distributions of particle 
concentration configurations to some extent is introduced into drag 
correlations to account for porous structures [7,44,45]. The flow phe
nomena for flow past these porous structures, are not only depended on 
the solid fraction, but also related to the detailed internal porous 
structures [46,47]. Errors occur if the flow is described by porosity alone 
due to the difference of some related parameters in controlling flow, 
such as pore size, relative surface area and the space connectivity [48]. 
So, permeability which is used to correlate the porosity ε (ε = 1 − ϕ) 
with associated porous structures [47] is a vital parameter in drag cor
relations of porous spheres that can quantify with ease for fluid flow past 
the porous domain [46]. Note that there are similarities in the config
urations (such as porosity, monomer sizes and packing ways) between 
the above two porous systems: monodisperse arrays of spheres and 
porous spheres. Therefore, drag correlations of them should also be 
analog and permeability parameters should also have effects on drag 
correlations of monodisperse arrays of spheres. However, as the authors 
known, no work has been done to link drag correlations between them. 

Meanwhile, it is hard to derive a theoretical expression of drag cor
relations for either fluidized bed systems or porous spheres at Re > 0 due 
to the existence of theoretical derivation gaps. The rapid development of 
computer science in recent years makes it now possible to analyze the 
complex data with theoretical derivation gaps via machine learning 
methods. One of the effective methods is symbolic regression (SR), 
which is an advanced computational method for automatically deriving 
the mathematical expressions by searching both the specific function 
forms and detailed parameter values simultaneously based on given 
input–output data. In recent years, SR has been successfully applied to 
some scenarios in chemical engineering, for example, studying settling 
velocity of non-cohesive particles [49], predicting voidage distribution 
in liquid–solid fluidized beds [50], and the establishment of drag cor
relations for Geldart B particles [8] and for a single solid sphere [51]. 
However, there is still a gap for considering physical terms of drag 
correlations in monodisperse arrays of spheres and porous spheres based 
on SR method. 

Support Vector Machine (SVM) is an algorithm for classification 
based on statistical learning theory [52] to score subsets of variables 
[53], and can also be an excellent method for feature selection [54]. 

Therefore, the purpose of our current work is twofold. First, we 
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intend to bridge the gap of drag correlations for monodisperse arrays of 
spheres and porous spheres by considering permeability effects in 
traditional drag models F = f(ϕ,Re). Second, we try to derive new drag 
correlations accounting for the effects of permeability with physical 
meanings for flow past monodisperse arrays of spheres and porous 
spheres using the SR method. The paper is organized as following. We 
first briefly introduced the SR methodology. Then we used the Support 
Vector Machine (SVM) to identify the top three important features for 
drag correlations of porous spheres based on our settling experimental 
data, followed by the derivation of a drag correlation for porous spheres 
accounting for the permeability. After that, we analyzed the PR-DNS 
drag data for flow past random arrays of spheres at small Re to 
confirm the role of permeability in drag correlations. We further ob
tained a drag correlation for monodisperse arrays of spheres using SR 
method, which are followed by some discussions and conclusions. 

2. Symbolic regression method 

Symbolic regression, a supervised machine learning algorithm, is an 
advanced computational technique that can be used to simultaneously 
search both specific function forms and optimal parameter values using 
the available data sets, which allows the derivation of data-fitting 
function expression forms and parameters with no in prior knowledge 
[8]. 

Fig. 1 shows the flowchart of SR approach used in this study. Firstly, 
a set of data are collected. Secondly, the numerical partial derivatives for 
each pair of variables are calculated and candidate symbolic functions 
are generated. Symbolic partial derivatives for candidate functions are 
compared with numerical partial derivatives based on error metrics. 
Then further optimizations by crossover and mutations are carried out 
until sufficient accuracy is reached. Therefore, at the final step, best 
solutions are selected based on the balance of accuracy, complexity and 
physical meanings. The SR was carried out in this work by use of the 
software package Eureqa developed by Schmidt et al. [55]. All input data 
sets were split randomly into training data sets and validation data sets, 
which account for 75% and 25% of whole datasets, respectively, to 
improve the generality of target equations and avoid overfitting in SR 
operations [49]. All solutions were evaluated against the Mean Squared 
Error (MSE), which is the average squared difference between outputs 
and targets, as defined in Eq. (1), and the Normalized Root Mean 
Squared Error (NRMSE) as defined in Eq. (2). NRMSE is the normalized 
MSE, which can eliminate the effect of original data and provide a 

quantitative criterion for the prediction ability of different correlations: 

MSE =
1
n
∑n

t=1
(bt − pt)

2 (1)  

NRMSE =
̅̅̅̅̅̅̅̅̅̅
MSE

√
/b (2) 

where n is the size of the sample, p the predicted value, b the 
observed value, and b the average of observed values [49]. 

Formula building blocks used in this study include constants, integer 
constant, variables and mathematical operators such as addition, sub
traction, multiplication, division, exponential, natural logarithm, power 
and square root. For each formula building block, a specific value was 
set to examine the complexity of the formula forms [55]. SR was then 
carried out by finally reaching a trade-off between complexity and ac
curacy in searching for an optimal solution for formula forms of drag 
correlations. The total complexity of a solution can be quantified and 
compared by calculating the sum of complexity for all formula building- 
blocks in the solution. The search algorithm compares partial derivatives 
for pairs of variables Δx/Δy (x and y indicating F, Re and ϕ) obtained 
from training dataset with symbolic partial derivatives of pairs of vari
ables δx/δy calculated from each candidate symbolic function f(x, y) to 
evaluate the prediction ability of intrinsic relations between variables 
and data, which is detailed in Schmidt et al [55]. The partial-derivative- 
pairs search criteria can generate a few analytical expressions directly 
from training data. Some of candidate solutions that can minimize MSE 
based on validation dataset are reserved while poor performing candi
date solutions are discarded [49]. Reserved solutions will have a further 
evolution and optimization by crossover and mutations and the detailed 
description can be found in Sonolikar et al [8]. 

In this study, the termination of SR operation was set as 1011 for
mulas had been generated and evaluated, ensuring the candidate solu
tions captured as many as possible the key features of data sets. The final 
output was a series of best solutions with the least error metric and 
reasonable complexity, and the best correlation was picked manually 
from the best solutions based on the balance of complexity, accuracy and 
physical meaning [56]. 

3. Results and discussions 

3.1. Drag correlations for porous spheres 

In order to investigate drag correlations of fluidized beds with 

Fig. 1. Flowchart of the symbolic regression approach for generations of drag correlations.  
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spherical clusters existing in a direct experimental way, porous spheres 
settling experiments were carried out and the details can be found in our 
previous work [7]. Without incorporating any in prior information, 36 
experimental drag data sets for porous spheres with Re = 1 ∼ 110 were 
used to distill drag correlations of porous spheres. In doing so, the top 
three most important variables dominating the drag correlations of 
porous spheres were first selected by SVM method. Then the drag cor
relations were distilled based on these three variables using SR method. 

Many researches have been conducted to link the structural features 
of a porous domain to permeability k, and thus k(ϕ) should be specified 
for the structure of any given porous solid [57–61]. The permeability 
model that is the most widely used for a dense sphere-packed swarm is 
the Carman-Kozeny model [47,59]. It can be expanded into a more 

common form of k =
(

ε3(d/2)2
)/(

9C(1 − ε)2
)

for hard monodisperse 

spheres systems of diameter d[62]. It was [47] found the empirical 
scaling factor C = 5 showed a good fit to k(ϕ) and is suitable for many 

porous structures. Thus, k =
(

ε3d2
)/(

180(1 − ε)2
)

is used to charac

terize the permeability of monodisperse random array spheres systems 
in this work. In this work, the normalized permeability β, which is a 
function of not only the solid concentration ϕ but also the relative 
dimension d/D, is used to represent permeability property [44,63]. β is 
calculated by. 

β = D/
(

2
̅̅̅
k

√ )
= D/

(

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(d2ε3)/(180(1 − ε)2
)

√ )

(3) 

where D is the characteristic length of porous domain. 
Here, eight input variables of porous spheres, including number of 

monomers N, porosity ε (ε = 1 − ϕ), permeability k, dimensionless 
permeability β, correction factor Ω [64], relative surface area S’ [65], 
diameter of monomers d and the Reynolds numbers Re (The definition is 
based on the diameter of the whole porous sphere), together with one 
output variable, i.e. the drag coefficient CD, are used to learn feature 
weights in kernel spaces based on SVM [54]. All features are ranked in 
Fig. 2 and the results show that ε, Re and β are the top three most 
important variables which suggests that the normalized permeability 
should be included in the drag correlations in addition to ε and Re. 

Thus, ϕ, Re and β are used as input variables to distill symbolic 
regression drag correlations of porous spheres and one candidate from 
the list of Best Solutions is shown as. 

F = 1.305+
1.226Re

24
−

21.06ε
24Re

−
17.85Re

24β
(4) 

As is well known, for a single solid sphere, the common functional 
form of drag correlations is F = 1 + f(Rem), with 1 being the Stokes term 
and f(Rem) being the additional correction terms for inertial effect at 
high Re. It is interesting to note that Eq.(4) approximately satisfies the 
functional form F = 1 + f(Rem) + f(Re,ϕ, β), in which the first term 
1.305 denotes the Stokes solution for Re = 0 and the deviation from the 
theoretical limit of 1 could be caused by the surface roughness of porous 
spheres. The second term denotes the correction of inertial effects for 
Re > 0 and the remained term f(Re,ϕ, β) is the correction term for 
porous structures. Note that CD = (24/Re)F, we can rewrote the first 
term F = 1.305 as CD ∼ 31.32/Re for the Stokes flow in the limit of 
Re ∼ 0, which is quite close to the analytical solution [66], F = 1 as well 
as CD ∼ 24/Re. The difference may be due to the nonideal sphericity of 
the porous spheres compared to that of the solid sphere. It was similarly 
found that the drag coefficient of a rising spherical bubble with de
formations may differ from that of an ideal spherical bubble [67]. 

Besides, in terms of prediction performance, Eq.(4) can cover all raw 
data points and characterize major features of raw data points. As shown 
in Fig. 3(a), most of the relative errors are within ± 15%. The error 
metrics Mean Relative Error (MRE) and NRMSE of the predicted F by Eq. 
(4) are respectively 8.83% and 0.266. 

Additionally, Eq.(4) can be reasonably reduced to the case of a single 
solid sphere. 

F = 1.305+
1.226Re

24
(5) 

Fig. 2. Weighted ranking of eight features for porous spheres.  

Fig. 3. (a) Comparison of predicted vs. observed F based on Eq.(4), (b) Drag correlations reduced to a single solid sphere for Eq.(5) and drag correlations for a single 
solid sphere in Terfous et al. [68]. 
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by assuming ε = 0 and β→ + ∞. As shown in Fig. 3(b), the com
parison of drag correlations for solid spheres proposed by Terfous et al. 
[68] with Eq.(5) obtained by SR in this work demonstrates a fairly good 
agreement, indicating that Eq.(4) can be successfully reduced to the case 
of a single solid sphere. 

3.2. Drag correlations for monodisperse arrays of spheres 

Particle-resolved direct numerical simulation (PR-DNS) [69] has 
been considered as a first principle simulation approach to derive or 
verify drag correlations for gas–solid systems, because it can calculate 
the drag force directly by imposing no-slip boundary conditions at the 
surface of solid particles [35,70]. In most of the PR-DNS simulations, the 
monodisperse arrays of spheres were taken as the model system for 
calculating the drag force acting on single particle in presence of sur
rounding particles with a regular and/or random arrangement. The 
monodisperse arrays of spheres, to certain extend, manifest similarity to 
the porous sphere in terms of porous structure. In this work, drag data 
for monodisperse arrays of spheres from PR-DNS were collected from the 
literature, which were first used to validate the reasonability of SR 
method to distill drag correlations underlying discrete drag data points. 
We then used SR method to develop a new drag correlation by including 
the permeability for calculating the drag force acting on a single particle 
in the monodisperse arrays of spheres for a wide range of Re. 

3.2.1. Validation of SR method for monodisperse arrays of spheres 
In this work, 43 drag data points F = f(ϕ,Re) directly obtained by 

PR-DNS for Re = 0 from 4 open sources, including van der Hoef et al. 
[21], Hill et al. [71], Tenneti et al. [26] and Sheikh et al. [72], have been 

used to automatically derive drag correlations for monodisperse arrays 
of spheres for Stokes flow via SR method. In SR methods, it is possible to 
use the prior knowledge to seed equation searching by initializing the 
search space of candidate formula forms with terms based on known 
physical information. Two different cases were studied using SR method 
with or without prior physical information as initial inputs constraining 
the search space of formula forms. The results are listed in Table 1. 
Target expressions stated in Table 1 are formula forms used for initial 
search settings: “without prior form” means that there was no restriction 
on target expressions and search results were entirely driven by data 
without any prior knowledge; “prior form” means that a known 
expression was given in prior and algorithms would obtain remaining 
forms based on the training data. The prior form is Carman equation, 
which is theoretically derived for Re = 0 [21]. 

Final best solutions for two cases, as well as their range of applica
bility, accuracy evaluation indexes (MSE, NRMSE, R2, CC), the number 
of fitting coefficients and complexity values for formula building-blocks, 
are listed in Table 2. Note that R2 is the goodness of fit and CC is the 
correlation coefficient, both being evaluated against validation data. 
Nfitting and C are respectively the number of fitting coefficients and the 
complexity, which are statistical values based on the searched forms 
excluding the pre-defined forms. 

As shown in Table 2, without incorporating any in prior knowledge, 
the best solution for Case 1 includes the same theoretical term F = 2k ×

ϕ/(1 − ϕ)2 derived by Carman [20], which illustrates that the intrinsic 
relationship between F and ϕ underlying the collected data sets can be 
captured. 

SR regression equations can also satisfy reasonable limiting values. 
For case 2, incorporated in prior information in SR operation, the Car
man equation F = 10ϕ/(1 − ϕ)2 was assumed as a feature term and the 
Best Solution 2 can reduce to F = 1 as ϕ approaches 0, which reflects 
drag force of a single solid sphere in Stokes flow. Due to the nonideality 
of collected data sets, the Best Solution 1, which was derived without 
any in prior information, have a slight bias with F(ϕ = 0,Re = 0) = 1. 
The existence of such small deviation is probably due to the pathological 
nature in mathematics for fitting nonideal data points with noises. 

Besides, as shown in Fig. 4(a), NRMSE for both the Best Solutions 1 
and 2 are smaller than that of the correlation in van der Hoef et al [21], 
which is the “most accurate” drag correlation for Re = 0 system for static 
monodisperse random arrays so far. It indicates that SR has the better 
prediction accuracy for obtaining drag correlations, even when the size 

Table 1 
Summary of two SR cases for drag correlations at Re = 0  

No. Application 
range 

Target expression Type 

Case 
1 

Re = 0 F = f(ϕ,Re) Without prior form 

Case 
2 

Re = 0 F =
10ϕ

(1 − ϕ)2 +

f(ϕ)

With prior form: Carman 
theoretical term  

Table 2 
Best solutions of two SR cases for drag correlations at Re = 0  

Case Best Solution Application 
range 

MSE & NRMSE R2&CC Nfitting&C 

1 F =
12.3ϕ

(1 − ϕ)2 −
6.9

1 − ϕ
+ 8.62 Re = 0, ϕ = [0,0.71] 0.846 

0.049 
R2 = 0.995 
CC = 0.998 

3 
13 

2 F =
10ϕ

(1 − ϕ)2 + (1 − ϕ)
̅̅̅̅̅̅̅̅̅̅̅̅
1 − ϕ

√ Re = 0, ϕ = [0,0.71] 1.969 
0.074 

R2 = 0.992 
CC = 0.996 

0 
7  

Fig. 4. (a) Comparison of NRMSE for Best Solutions 1, 2 and van der Hoef et al [21], (b) predicted vs. observed F for Best Solutions 1 and 2.  
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of data set is as small as only 43 data points. In addition, the predicted F 
versus the observed one for the Best Solutions 1 and 2 are plotted in 
Fig. 4(b). The relative errors for SR derived correlations are within  ±
5%. 

All assessed SR correlations, without any negative or other abnormal 
values (outliers or mutant values), manifest a consistent trend with 
existing correlations (Carman [20], Kim & Russel [73], Ergun [22], Wen 
& Yu [24], van der Hoef et al. [21], Tang et al. [9], Tenneti et al. [26], 
Beetstra et al. [18], Hill et al. [23], Brinkman [21], Koch & Sangani 
[74]) and data points (van der Hoef et al. [21], Hill et al. [23], Tenneti 
et al. [26], Sheikn & Qiu [72]) in the literature. Thus, the output F can be 
a good approximation in the parameters space if the input ϕ and Re are 
reasonably chosen. 

Additionally, one of the most important applications of drag corre
lations is to calculate the interphase momentum transfer in CFD simu
lations for solid–gas two-phase flows. Therefore, the continuity of the 
first and second derivatives of F over ϕ are quite essential to ensure the 
numerical stability of CFD simulations. The first derivative ∂F/∂ϕ and 
the second derivative ∂2F/∂2ϕ for Best Solutions 1 and 2 are continuous, 
smooth and nonconstant over the whole range of ϕ, which indicates 
them can be potentially used in CFD simulations. 

Thus, after the successfully validation, it can be regarded that SR can 
distill the physics and relationships underlying discrete drag data points. 
The permeability parameter will be introduced into drag correlations for 
monodisperse arrays of spheres in the following section. 

3.2.2. New drag correlations with β for monodisperse arrays of spheres 
DNS for flow past monodisperse random array spheres of diameter d 

in fluidization system are usually carried out in a box of nx × ny × nz 

lattice sites with a specific number of particles N [9,18,21,71]. So, the 
correlation between solid fraction, particle number and box size is 
written as Eq.(6). 

ϕ = Nπd3/
(
6nxnynz

)
(6) 

The cubic box is transformed to an equivalent diameter D of a sphere 
and when ϕ and N are given, d/D can be obtained by Eq.(6). Then, the 
dimensionless permeability β can be calculated based on Eq.(3) with a 
given ϕ. 

For Re = 0, in Hill et al. [71], simulation parameters used for sim
ulations of Stokes flow in monodisperse random array spheres are given 
and we calculated the dimensionless permeability β based on each ϕ. 
Hill et al. [71] found F is inversely proportional to N which is the 
number of spheres in their computational domain. A prior equation form 
F = k1(ϕ)+k2N− 1 was given for Re = 0 and fitted to plots based on two 

markers ϕ and N in their work, written as F = 1 +
(
3/

̅̅̅
2

√ )
ϕ1/2 +

0.667N− 1. In this work, β was further calculated by us based on N, ϕ and 
Eq.(6) and it was found that F decreased with β increasing at a same 
porosity, as Fig. 5(a) shown, which indicated that permeability indeed 
has effects on the simulated drag force F for Re = 0. 

For Re > 0, as can be seen from Fig. 5(b), when ϕ and Re are the 
same, it is clear that there is a difference among the simulated F for 
different authors [9,18,72] due to the different permeability depended 
on their computational domain settings. According to the β that are 
calculated based on parameters of computational domains in the liter
ature [9,18,72], it can be found that F are also inversely proportional to 
β for Re > 0. 

Thus, in this section, based on ϕ,Re as well as β, we further explore 
the feasibility of using SR to obtain a new three-parameter drag corre
lations accounting for the effect of permeability for monodisperse arrays 
of spheres. Following the SR method in Section 2, without incorporating 
any prior information or prior formula forms, we distilled 221 PR-DNS 
data for 0 ≤ Re < 1050 for monodisperse arrays of spheres in Hill 
et al. [71], Beetstra et al. [18], Tang et al. [9] and Sheikh and Qiu [72] in 
which parameters of computational domain to calculate permeability 
were provided. One correlation from the list of Best Solutions is shown 
here: 

F =
8.44ϕ

(1 − ϕ)2 +
8.44ϕ
(1 − ϕ)

+
0.889

(1 − ϕ)2 +
0.03842Re − 6.494 × 10− 6Re2

(1 − ϕ)2

+

(
0.0001212Re × β

(1 − ϕ)2 +
0.214β

(1 − ϕ)
̅̅̅̅̅̅
Re

√
− 32.1(1 − ϕ)

) (7) 

It is interesting to note that Eq.(7) satisfies the functional form F =

2k× ϕ/(1 − ϕ)2
+ f(ϕ) + f(ϕ,Re) + f(ϕ,Re, β), in which the first term 

2k × ϕ/(1 − ϕ)2
= 8.44ϕ/(1 − ϕ)2 denotes the theoretical term derived 

by Carman [20] for Re = 0, the second term 
f(ϕ) = 8.44ϕ/(1 − ϕ)+0.889/(1 − ϕ)2 represents the correction for 
stokes limiting case F(ϕ = 0,Re = 0) = 1 and the third term 
f(ϕ,Re) =

(
0.03842Re − 6.494 × 10− 6Re2)/(1 − ϕ)2 is the correction 

term for inertial effects for high Re regime. The remained term 
f(ϕ,Re, β) = 0.0001212Re × β/(1 − ϕ)2

+0.214β/
(
(1 − ϕ)

̅̅̅̅̅̅
Re

√
− 32.1 

(1 − ϕ)
)

is the correction term for permeability effects. It should be 
stressed that, the CK relation will reduce to Carman equation for k = 5 
and Ergun equation for k = 4.167. We argued that the reasonable range 
of empirical coefficients 2k is 8.334 ∼ 10 which covers the coefficient 
8.44 in the first term in Eq.(7), indicating the reasonability of the first 
fitting term. For stokes limiting case, Eq.(7) comes to F(ϕ = 0,Re = 0) =

Fig. 5. Variation of F along β at different porosity ε for Re = 0 in Hill et al. [71] (left), (b) The difference of simulated F as a function of Re for different authors in the 
literature for 0 ≤ Re < 1050 (right): (a)ϕ = 0.1, (b)ϕ = 0.2, (c)ϕ = 0.3, (d)ϕ = 0.4, (e)ϕ = 0.5, (f)ϕ = 0.6.
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0.889 which is very close to the theoretical value 1, which also proves 
the SR method can unveil the underlying physics reasonably. Eq.(7) can 
cover all raw data points and characterize major features of raw data 
points with a low error metrics MRE = 14.1% and NRMSE = 0.182, 
indicating a good prediction performance. As shown in Fig. 6(a), most of 
the relative errors are within ± 30%. 

Eq.(7) can be reduced to a reasonable bivariate functional form F =

f(ϕ, β) for stokes flow at the limit of Re = 0: 

F = f (ϕ, β) =
8.44ϕ + 0.889

(1 − ϕ)2 +
8.44 ∗ ϕ
(1 − ϕ)

−
0.214β

32.1(1 − ϕ)
(8) 

In Hill et al [71], as mentioned above, for Re = 0, it was found that F 
is inversely proportional to N, which is the number of spheres in the 
computational domain and a fitting correlation F = f(ϕ,N) was given as 
Eq.(9) shown. 

F = 1+
(

3/
̅̅̅
2

√ )
ϕ0.5 + 0.667N − 1 (9) 

Eq.(9) can be further written as F = f(ϕ, β), as shown in Eq.(10), in 
order to be compared with our results in Eq.(8). 

F = 1+
(

3/
̅̅̅
2

√ )
ϕ0.5 + 0.667

⎛

⎝6ϕ
π ×

(
45ϕ2

β2(1 − ϕ)3

)− 1.5
⎞

⎠

− 1

(10) 

It can be found that the error metric of the predicted F by Eq.(8) is 
MRE = 23.7% and NRMSE = 0.540 which are still much lower than that 
(MRE = 40.0%, NRMSE = 1.545 based on Eq.(10)) in Hill et al [71], 
which indicates the prediction accuracy is improved significantly even 
when Eq.(7) is reduced to Stokes flow. 

Additionally, Eq.(7) can also correctly reduce to a single solid sphere 
case when β→0 by assuming ϕ→0 and k→ + ∞, i.e. in case of the void. 
Eq.(7) can be written as Eq.(11). 

F = 0.889+ 0.03842Re − 6.494 × 10− 6Re2 (11) 

As shown in Fig. 6(b), the proposed drag correlation Eq.(7) can also 
reduce to a single solid sphere successfully. The agreement of Eq.(5), Eq. 
(11) and drag correlations for a single solid sphere in Terfous et al. [68] 
in Fig. 6(b) indicates when it is reduced to a single solid sphere, drag 
correlations for monodisperse arrays of spheres and porous spheres can 
achieve approximately the same results. 

Note that it is a common practice to give a prior equation form by 
manual interferences to satisfy the physics considerations/limiting cases 
and to fit the remained terms using experiments/simulations data in 
deriving drag correlations. As can be found here, without any prior 
knowledge or expression forms, drag correlation Eq.(7) obtained by SR 
method based on the open sources PR-DNS data can automatically 

account for the effect of permeability with physical basis. Additionally, 
it can both correctly reduce to drag correlations for a single solid sphere 
and/or stokes flow at the limit of Re = 0. Owing to the data-driven 
nature, Eq.(7) agrees satisfactorily with original data points with a 
low error metrics MRE and NRMSE, which suggests that the data-driven 
drag correlation derived using SR method is robust and generic. 

4. Conclusions 

This work provides a way to bridge the gap of drag correlations for 
monodisperse arrays of spheres in fixed beds and porous spheres in 
fluidized beds by introducing parameters of permeability into drag 
correlations. New drag correlations are generated by data driven based 
on symbolic regression method without any prior target expression. 

For porous spheres, the top three most important features ϕ,Re, β are 
picked up by Support Vector Machine method based on our experi
mental porous sphere drag data which verifies the importance of 
permeability effect in porous sphere systems. Then, based on the above 
three parameters, a drag correlation F = f(ϕ,Re, β) which has physics, 
high prediction accuracy and correct limiting cases, is automatically 
generated by symbolic regression. 

For monodisperse arrays of spheres, by use of the PR-DNS drag data 
points available in open sources, we found that permeability indeed has 
effects on the simulated drag force F. With 221 PR-DNS data for 0 ≤

Re < 1050 collected, we derived a new three-parameter drag correlation 
F = f(ϕ,Re, β) using SR method, which was based on the same three 
parameters as those of porous spheres, introduced the dimensionless 
permeability β as the third parameter into traditional drag correlations. 
It is shown that the derived three-parameter drag correlation has solid 
physical basis, good prediction performance and correct limiting cases 
when reduced to a single solid sphere [68] and/or Stokes flow at Re = 0. 

It is further shown that for the limiting case of reducing to a single 
solid sphere, drag correlations for monodisperse arrays of spheres and 
porous spheres can reach a state of unity. Thus, new drag correlations 
are introducing permeability parameters into traditional drag models 
F = f(ϕ,Re). On the one hand, it might be possible to use permeability as 
a simple yet physically sounded parameter for understanding the het
erogeneous structures in fluidized beds. On the other hand, it could 
provide a way to link drag correlations for monodisperse arrays of 
spheres and porous spheres, which may open a venue for directly vali
dating the drag correlations obtained purely from CFD simulations with 
experimental data of the fluid flow around porous spheres. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 

Fig. 6. (a) Comparison of predicted vs. observed F based on Eq.(7), (b) Drag correlations reduced to a single solid sphere for Eq.(5), Eq.(11) and drag correlations for 
a single solid sphere in Terfous et al. [68]. 

L. Ma et al.                                                                                                                                                                                                                                       



Chemical Engineering Journal 445 (2022) 136653

8

interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

This work is part of a research program financially supported by the 
National Natural Science Foundation of China under Grant No. 
21991093 and 91834302. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.cej.2022.136653. 

References 

[1] D.P. Haughey, G.S.G. Beveridge, Structural properties of packed beds - A review, 
The Canadian Journal of Chemical Engineering 47 (2) (1969) 130–140. 

[2] J. Wang, J. Yang, Z. Cheng, Y. Liu, Y. Chen, Q. Wang, Experimental and numerical 
study on pressure drop and heat transfer performance of grille-sphere composite 
structured packed bed, Appl. Energy 227 (2018) 719–730. 

[3] T. Claes, T.V. Gerven, M.E. Leblebici, Design considerations for photocatalytic 
structured packed bed reactors, Chem. Eng. J. 403 (2021) 126355. 

[4] A. Cahyadi, A. Anantharaman, S. Yang, S.B.R. Karri, J.G. Findlay, R.A. Cocco, J. 
W. Chew, Review of cluster characteristics in circulating fluidized bed (CFB) risers, 
Chem. Eng. Sci. 158 (2017) 70–95. 

[5] X. Wei, Experimental Investigations on the Instantaneous Flow Structure in 
Circulating Fluidized Beds, Electronic Thesis and Dissertation Repository. 6164 
(2019). https://ir.lib.uwo.ca/etd/6164. 

[6] P. Yu, Y. Zeng, T.S. Lee, X.B. Chen, H.T. Low, Numerical simulation on steady flow 
around and through a porous sphere, Int. J. Heat Fluid Flow 36 (2012) 142–152. 

[7] L. Ma, S. Xu, X. Li, Q. Guo, D. Gao, Y. Ding, M. Ye, Z. Liu, Particle tracking 
velocimetry of porous sphere settling under gravity: Preparation of the model 
porous particle and measurement of drag coefficients, Powder Technol. 360 (2020) 
241–252. 

[8] R.R. Sonolikar, M.P. Patil, R.B. Mankar, S.S. Tambe, B.D. Kulkarni, Genetic 
Programming based Drag Model with Improved Prediction Accuracy for 
Fluidization Systems, Int. J. Chem. Reactor Eng. 15 (2) (2017) 20160210. 

[9] Y. Tang, E.A.J.F. Peters, J.A.M. Kuipers, S.H.L. Kriebitzsch, M.A. van der Hoef, 
A new drag correlation from fully resolved simulations of flow past monodisperse 
static arrays of spheres, AIChE J. 61 (2) (2015) 688–698. 

[10] K. Agrawal, P.N. Loezos, M. Syamlal, S. Sundaresan, The role of meso-scale 
structures in rapid gas–solid flows, J. Fluid Mech. 445 (2001) 151–185. 

[11] B.G.M. van Wachem, J.C. Schouten, C.M. van den Bleek, R. Krishna, J.L. Sinclair, 
Comparative analysis of CFD models of dense gas–solid systems, AIChE J. 47 (5) 
(2001) 1035–1051. 

[12] X. Liu, W. Ge, L. Wang, Scale and structure dependent drag in gas–solid flows, 
AIChE J. 66 (4) (2020), e16883. 

[13] J. Wang, Continuum theory for dense gas-solid flow: A state-of-the-art review, 
Chem. Eng. Sci. 215 (2020) 115428. 

[14] D. Kandhai, J.J. Derksen, H.E.A. Van den Akker, Interphase drag coefficients in 
gas-solid flows, AIChE J. 49 (4) (2003) 1060–1065. 

[15] G.J. Rubinstein, A. Ozel, X. Yin, J.J. Derksen, S. Sundaresan, Lattice Boltzmann 
simulations of low-Reynolds-number flows past fluidized spheres: effect of 
inhomogeneities on the drag force, J. Fluid Mech. 833 (2017) 599–630. 

[16] L.T. Zhu, J.X. Tang, Z.H. Luo, Machine learning to assist filtered two-fluid model 
development for dense gas–particle flows, AIChE J. 66 (6) (2020), e16973. 

[17] L.-T. Zhu, X.-Z. Chen, Z.-H. Luo, Analysis and development of homogeneous drag 
closure for filtered mesoscale modeling of fluidized gas-particle flows, Chem. Eng. 
Sci. 229 (2021) 116147. 

[18] R. Beetstra, M.A. van der Hoef, J.A.M. Kuipers, Drag force of intermediate 
Reynolds number flow past mono- and bidisperse arrays of spheres, AIChE J. 53 (2) 
(2007) 489–501. 

[19] A.A. Zaidi, Study of particle inertia effects on drag force of finite sized particles in 
settling process, Chem. Eng. Res. Des. 132 (2018) 714–728. 

[20] P.C. Carman, Fluid flow through granular beds, Trans IChemE 15 (1937) S32–S48. 
[21] M.A.V.D. Hoef, R. Beetstra, J.A.M. Kuipers, Lattice-Boltzmann simulations of low- 

Reynolds-number flow past mono- and bidisperse arrays of spheres: results for the 
permeability and drag force, J. Fluid Mech. 528 (2005) 233–254. 

[22] S. Ergun, Fluid Flow through Packed Columns, Chem. Eng. Prog. 48 (2) (1952) 
89–94. 

[23] R.J. Hill, D.L. Koch, A.J.C. Ladd, Moderate-Reynolds-number flows in ordered and 
random arrays of spheres, J. Fluid Mech. 448 (2001) 243–278. 

[24] C.Y. Wen, Y.H. Yu, Mechanics of fluidization, AIChE J. 62 (1966) 100–111. 
[25] R. Di Felice, The voidage function for fluid-particle interaction systems, Int. J. 

Multiph. Flow 20 (1) (1994) 153–159. 
[26] S. Tenneti, R. Garg, S. Subramaniam, Drag law for monodisperse gas–solid systems 

using particle-resolved direct numerical simulation of flow past fixed assemblies of 
spheres, Int. J. Multiph. Flow 37 (9) (2011) 1072–1092. 

[27] L.T. Zhu, Y.X. Liu, J.X. Tang, Z.H. Luo, A material-property-dependent sub-grid 
drag model for coarse-grained simulation of 3D large-scale CFB risers, Chem. Eng. 
Sci. 204 (2019) 228–245. 

[28] L.T. Zhu, B. Ouyang, H. Lei, Z.H. Luo, Conventional and data-driven modeling of 
filtered drag, heat transfer, and reaction rate in gas–particle flows, AIChE J. 67 (8) 
(2021), e17299. 

[29] J.J. Wylie, D.L. Koch, A.J.C. Ladd, Rheology of suspensions with high particle 
inertia and moderate fluid inertia, J. Fluid Mech. 480 (2003) 95–118. 

[30] Y. Zhang, J.M. Reese, The drag force in two-fluid models of gas–solid flows, Chem. 
Eng. Sci. 58 (8) (2003) 1641–1644. 

[31] Y. Tang, E.A.J.F. Peters, J.A.M. Kuipers, Direct numerical simulations of dynamic 
gas-solid suspensions, AIChE J. 62 (6) (2016) 1958–1969. 

[32] Z. Huang, H. Wang, Q. Zhou, T. Li, Effects of granular temperature on inter-phase 
drag in gas-solid flows, Powder Technol. 321 (2017) 435–443. 

[33] J. Wang, Effect of granular temperature and solid concentration fluctuation on the 
gas-solid drag force: A CFD test, Chem. Eng. Sci. 168 (2017) 11–14. 

[34] W. Bian, X. Chen, J. Wang, Assessment of the interphase drag coefficients 
considering the effect of granular temperature or solid concentration fluctuation 
via comparison of DNS, DPM, TFM and experimental data, Chem. Eng. Sci. 223 
(2020) 115722. 

[35] M. Mehrabadi, E. Murphy, S. Subramaniam, Development of a gas–solid drag law 
for clustered particles using particle-resolved direct numerical simulation, Chem. 
Eng. Sci. 152 (2016) 199–212. 

[36] X. Gao, T. Li, A. Sarkar, L. Lu, W.A. Rogers, Development and validation of an 
enhanced filtered drag model for simulating gas-solid fluidization of Geldart A 
particles in all flow regimes, Chem. Eng. Sci. 184 (2018) 33–51. 

[37] G.J. Rubinstein, J.J. Derksen, S. Sundaresan, Lattice Boltzmann simulations of low- 
Reynolds-number flow past fluidized spheres: effect of Stokes number on drag 
force, J. Fluid Mech. 788 (2016) 576–601. 

[38] J. Wang, A Review of Eulerian Simulation of Geldart A Particles in Gas-Fluidized 
Beds, Ind. Eng. Chem. Res. 48 (12) (2009) 5567–5577. 

[39] Y. Igci, A.T. Andrews, S. Sundaresan, S. Pannala, T. O’Brien, Filtered two-fluid 
models for fluidized gas-particle suspensions, AIChE J. 54 (6) (2008) 1431–1448. 

[40] T. Li, A. Gel, S. Pannala, M. Shahnam, M. Syamlal, CFD simulations of circulating 
fluidized bed risers, part I: Grid study, Powder Technol. 254 (2014) 170–180. 

[41] J. Wang, M.A. van der Hoef, J.A.M. Kuipers, Why the two-fluid model fails to 
predict the bed expansion characteristics of Geldart A particles in gas-fluidized 
beds: A tentative answer, Chem. Eng. Sci. 64 (3) (2009) 622–625. 

[42] K. Hong, S. Chen, W. Wang, J. Li, Fine-grid two-fluid modeling of fluidization of 
Geldart A particles, Powder Technol. 296 (2016) 2–16. 

[43] X. Chen, N. Song, M. Jiang, Q. Zhou, Theoretical and numerical analysis of key sub- 
grid quantities’ effect on filtered Eulerian drag force, Powder Technol. 372 (2020) 
15–31. 

[44] J.H. Masliyah, M. Polikar, Terminal velocity of porous spheres, The Canadian 
Journal of Chemical Engineering 58 (3) (1980) 299–302. 

[45] A.K. Jain, S. Basu, Flow Past a Porous Permeable Sphere: Hydrodynamics and Heat- 
Transfer Studies, Ind. Eng. Chem. Res. 51 (4) (2012) 2170–2178. 

[46] R.T. Armstrong, Z. Lanetc, P. Mostaghimi, A. Zhuravljov, A. Herring, V. Robins, 
Correspondence of max-flow to the absolute permeability of porous systems, Phys. 
Rev. Fluids 6 (5) (2021), 054003. 

[47] J. Vasseur, F.B. Wadsworth, J.P. Coumans, D.B. Dingwell, Permeability of packs of 
polydisperse hard spheres, Phys. Rev. E 103 (6) (2021), 062613. 

[48] C.F. Berg, Permeability Description by Characteristic Length, Tortuosity, 
Constriction and Porosity, Transp. Porous Media 103 (3) (2014) 381–400. 

[49] E.B. Goldstein, G. Coco, A machine learning approach for the prediction of settling 
velocity, Water Resour. Res. 50 (4) (2014) 3595–3601. 

[50] O.J.I. Kramer, J.T. Padding, W.H. van Vugt, P.J. de Moel, E.T. Baars, E.S. Boek, J. 
P. van der Hoek, Improvement of voidage prediction in liquid-solid fluidized beds 
by inclusion of the Froude number in effective drag relations, Int. J. Multiph. Flow 
127 (2020) 103261. 

[51] Hasadi, Y. E.; Padding, J., On the Existence of Logarithmic Terms in the Drag 
Coefficient and Nusselt Number of a Single Sphere at High Reynolds Numbers. 
arXiv preprint arXiv:2007.10214 (2020). 

[52] C.J. Burges, A tutorial on support vector machines for pattern recognition, Data 
Min. Knowl. Disc. 2 (2) (1998) 121–167. 

[53] C. Zhang, X. Lu, X. Zhang, Significance of gene ranking for classification of 
microarray samples, IEEE/ACM Trans. Comput. Biol. Bioinf. 3 (3) (2006) 312–320. 

[54] Q. Liu, C. Chen, Y. Zhang, Z. Hu, Feature selection for support vector machines 
with RBF kernel, Artif. Intell. Rev. 36 (2) (2011) 99–115. 

[55] M. Schmidt, H. Lipson, Distilling free-form natural laws from experimental data, 
Science 324 (5923) (2009) 81–85. 

[56] M.Y. Liu, W.X. Huai, Z.H. Yang, Y.H. Zeng, A genetic programming-based model 
for drag coefficient of emergent vegetation in open channel flows, Adv. Water 
Resour. 140 (2020), 103582. 

[57] R.M. Fand, B.Y.K. Kim, A.C.C. Lam, R.T. Phan, Resistance to the Flow of Fluids 
Through Simple and Complex Porous Media Whose Matrices Are Composed of 
Randomly Packed Spheres, J. Fluids Eng. 109 (3) (1987) 268–273. 

[58] A.S. Kim, R. Yuan, Hydrodynamics of an ideal aggregate with quadratically 
increasing permeability, J Colloid Interface Sci 285 (2) (2005) 627–633. 

[59] Y. Shi, Y.T. Lee, A.S. Kim, Permeability calculation of sphere-packed porous media 
using dissipative particle dynamics, Desalin. Water Treat. 34 (1–3) (2011) 
277–283. 

[60] K. Yazdchi, S. Srivastava, S. Luding, Microstructural effects on the permeability of 
periodic fibrous porous media, Int. J. Multiph. Flow 37 (8) (2011) 956–966. 

[61] B. Markicevic, Properties of mono- and poly-disperse spheres random pack media, 
Powder Technol. 350 (2019) 154–161. 

L. Ma et al.                                                                                                                                                                                                                                       

https://doi.org/10.1016/j.cej.2022.136653
https://doi.org/10.1016/j.cej.2022.136653
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0005
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0005
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0010
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0010
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0010
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0015
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0015
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0020
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0020
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0020
https://ir.lib.uwo.ca/etd/6164
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0030
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0030
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0035
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0035
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0035
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0035
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0040
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0040
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0040
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0045
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0045
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0045
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0050
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0050
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0055
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0055
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0055
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0060
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0060
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0065
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0065
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0070
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0070
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0075
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0075
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0075
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0080
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0080
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0085
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0085
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0085
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0090
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0090
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0090
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0095
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0095
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0100
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0105
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0105
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0105
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0110
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0110
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0115
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0115
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0120
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0125
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0125
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0130
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0130
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0130
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0135
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0135
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0135
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0140
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0140
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0140
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0145
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0145
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0150
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0150
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0155
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0155
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0160
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0160
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0165
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0165
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0170
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0170
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0170
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0170
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0175
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0175
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0175
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0180
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0180
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0180
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0185
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0185
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0185
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0190
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0190
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0195
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0195
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0200
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0200
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0205
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0205
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0205
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0210
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0210
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0215
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0215
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0215
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0220
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0220
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0225
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0225
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0230
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0230
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0230
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0235
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0235
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0240
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0240
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0245
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0245
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0250
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0250
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0250
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0250
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0260
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0260
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0265
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0265
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0270
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0270
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0275
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0275
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0280
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0280
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0280
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0285
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0285
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0285
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0290
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0290
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0295
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0295
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0295
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0300
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0300
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0305
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0305


Chemical Engineering Journal 445 (2022) 136653

9

[62] B.R. Corrochano, J.R. Melrose, A.C. Bentley, P.J. Fryer, S. Bakalis, A new 
methodology to estimate the steady-state permeability of roast and ground coffee 
in packed beds, J. Food Eng. 150 (2015) 106–116. 

[63] K. Wittig, A. Golia, P.A. Nikrityuk, 3D numerical study on the influence of particle 
porosity on heat and fluid flow, Progress in Computational Fluid Dynamics, An 
International Journal 12 (2/3) (2012) 207–219. 

[64] A.S. Kim, K.D. Stolzenbach, The permeability of synthetic fractal aggregates with 
realistic three-dimensional structure, J Colloid Interface Sci 253 (2) (2002) 
315–328. 

[65] K. Wittig, P. Nikrityuk, A. Richter, Drag coefficient and Nusselt number for porous 
particles under laminar flow conditions, Int. J. Heat Mass Transf. 112 (2017) 
1005–1016. 

[66] N.S. Cheng, Comparison of formulas for drag coefficient and settling velocity of 
spherical particles, Powder Technol. 189 (3) (2009) 395–398. 

[67] D.D. Joseph, Rise velocity of a spherical cap bubble, J. Fluid Mech. 488 (2003) 
213–223. 

[68] A. Terfous, A. Hazzab, A. Ghenaim, Predicting the drag coefficient and settling 
velocity of spherical particles, Powder Technol. 239 (2013) 12–20. 

[69] S. Tenneti, S. Subramaniam, Particle-Resolved Direct Numerical Simulation for 
Gas-Solid Flow Model Development, Annu. Rev. Fluid Mech. 46 (1) (2014) 
199–230. 

[70] L.T. Zhu, Y.X. Liu, Z.H. Luo, An enhanced correlation for gas-particle heat and mass 
transfer in packed and fluidized bed reactors, Chem. Eng. J. 374 (2019) 531–544. 

[71] R.J. Hill, D.L. Koch, A.J.C. Ladd, The first effects of fluid inertia on flows in ordered 
and random arrays of spheres, J. Fluid Mech. 448 (2001) 213–241. 

[72] B. Sheikh, T. Qiu, Pore-scale simulation and statistical investigation of velocity and 
drag force distribution of flow through randomly-packed porous media under low 
and intermediate Reynolds numbers, Comput. Fluids 171 (2018) 15–28. 

[73] S. Kim, W.B. Russel, Modelling of porous media by renormalization of the Stokes 
equations, J. Fluid Mech. 154 (1985) 269–286. 

[74] D.L. Koch, A.S. Sangani, Particle pressure and marginal stability limits for a 
homogeneous monodisperse gas-fluidized bed: kinetic theory and numerical 
simulations, J. Fluid Mech. 400 (1999) 229–263. 

L. Ma et al.                                                                                                                                                                                                                                       

http://refhub.elsevier.com/S1385-8947(22)02148-9/h0310
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0310
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0310
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0315
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0315
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0315
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0320
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0320
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0320
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0325
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0325
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0325
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0330
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0330
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0335
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0335
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0340
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0340
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0345
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0345
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0345
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0350
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0350
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0355
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0355
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0360
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0360
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0360
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0365
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0365
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0370
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0370
http://refhub.elsevier.com/S1385-8947(22)02148-9/h0370

	Drag correlations for flow past monodisperse arrays of spheres and porous spheres based on symbolic regression: Effects of  ...
	1 Introduction
	2 Symbolic regression method
	3 Results and discussions
	3.1 Drag correlations for porous spheres
	3.2 Drag correlations for monodisperse arrays of spheres
	3.2.1 Validation of SR method for monodisperse arrays of spheres
	3.2.2 New drag correlations with β for monodisperse arrays of spheres


	4 Conclusions
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supplementary data
	References


