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ABSTRACT: Particulate two-phase flows normally manifest high dimen-
sional and complex nonlinear flow phenomena. To capture the intrinsic
characteristics of the fluid flows, dimension reduction and feature capturing
are of fundamental importance. In this work, we focused on the flow
reconstruction and prediction based on dimension reduction and feature
capturing with small noised datasets obtained by particle image velocimetry
(PIV) experiments by use of a skip-connection convolutional neural
network based on autoencoder (scCAE). We evaluated the performances of
scCAE in reconstructing and predicting the high dimensional and nonlinear
flows around a single particle for moderate Reynolds numbers (Re) of 400—
1400. It is shown that scCAE with the latent vector size of four can well
reconstruct and predict the fluid flow fields around either a sphere or cube
based on the small noised PIV datasets with the data size of several
hundreds, which suggests the robustness and generality of scCAE in
dimension reduction and feature capturing. This may be extended to wider
applications in extracting dimension-reduction latent vectors from limited
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ground truth experimental PIV data and disclosing the inherent physics.

1. INTRODUCTION

Flows around a single particle is of fundamental importance in
understanding and controlling the multiphase processes such
as catalytic reactors, coal combustors and pneumatic convey-
ing." However, such fluid flows are affected by particle shape,
Reynolds number (Re) and among many others,”’ and
manifest quite involved characteristics. For instance, a spherical
particle has a smooth and continuous surface and demonstrates
flow separation at varying locations dependent upon Re, while
a cubic particle shows flow separation at fixed points in the
leading edges due to the sharp surfaces.” Despite the significant
impacts on interphase heat and mass transfer, the character-
istics of fluid flow around a single particle of different shapes,
such as wake structures, are yet to be fully understood.
Particle image velocimetry (PIV)*™” is a nonintrusive
technique for quantitatively measuring the spatial flow velocity
distribution based on the fine tracers well seeding the fluid.”
PIV has been considered as one of the most effective methods
for studying the fluid flow around a single particle.””*'® For
example, Cate et al. used PIV to measure the flow fields around
a single sphere settling under gravity for Re ranging from 1.5 to
31.9, in which the maximal frame rate of 250 Hz was achieved
to obtain an image of 512 X 512 pixels with a total of 961
vectors per image.” Hajimirzaie et al. applied PIV with a frame
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rate of 7.2 Hz to achieve a spatial resolution of 0.55 mm in
their study on the fluid flow around a wall-mounted sphere in a
thin laminar boundary layer at Re = 17800."" Klotz et al.
investigated the flow characteristics behind a single cube with a
face normal to the flow for 100 < Re < 400 and the PIV
measurements with 15 Hz were conducted to obtain snapshots
of 1600 X 1200 pixels for each Re.” Khan et al. studied the fluid
flow around a cube placed either normal® or at an angle of
45°'° to the freestream with Re of 500—50000, in which the
PIV with a frame rate of 1 Hz was used to obtain the images of
1024 X 1392 pixels. As can be found, most of the PIV
measurements discussed above were performed at a relatively
lower frame rate in order to achieve a higher spatial resolution.
In fact, it is a challenge to get fluid flows of both a high spatial
resolution and a high frequency in PIV measurements.
Obtaining a large high-frequency time series of flow field
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data with a high spatial resolution by PIV measurements, if not
impossible, is quite costly, which causes a challenge for
obtaining a big dataset.

However, the characteristics for fluid flow around a single
particle (for instance, the wake structure evolutions) are
transient and high-dimensional, showing the chaotic and
complicated nonlinear nature. Therefore, one of the nontrivial
tasks is to capture the key structures and features embedded in
the time series of flow fields and gain insights into the
underlying mechanisms. This is particularly essential for
constructing the control equations and generalizing the
understanding of fluid dynamics of flows around single
particles under different conditions. The dimension reduction
methods that can capture the key structures and features of
flow fields have been widely used in this connection. Typical
examples include the proper orthogonal decomposition
(POD)"* and dynamic mode decomposition (DMD)"?
methods, in which the transient flow fields are decomposed
into a series of linear expansions and/or orthogonal bases.*
However, these traditional linear methods were not suitable for
dimension reduction and features capturing of the flow fields
around a single particle (especially under high Re) due to the
highly nonlinear nature of the fluid flows.

With the rapid development of computational science, the
machine learning methods have been extensively applied to
study complicated high-dimensional and nonlinear fluid
flows."> On the one hand, the machine learning methods
show a robust ability on the end-to-end fluid motion
estimation problem by extracting velocity fields from original
fluid images, acting as the role of cross-correlation
algorithms.m_19 On the other hand, the machine learning
methods also show great potential on feature extractions of
spatiotemporal-resolved flow fields based on dimension
reduction. In particular, the convolutional neural networks
(CNNs) models, which rely essentially on the availability of
big data as the input for training and can naturally take into
account the spatial structure of fluid flows, have shown huge
potential on dimension reduction and features extraction for
complicated flow fields.”> CNNs can eliminate redundant
parameters compared to the normal neural networks, because
of the inclusion of parameter-sharing with a filtering kernel
convolving across the domain to learn the correlation structure
in the dataset.”'™> Since the same parameters are reused
(shared) in convolutions across the spatial domain, the
number of parameters needed in CNNs can be orders of
magnitude fewer than that of the fully connected neural
networks. This feature makes CNN’s quite attractive in spatially
coherent information extraction”*** and dimension reduction
for complex fluid flows.'****” A CNNs-based autoencoder
(CAE) was thus proposed to reduce the dimensions in a two-
dimensional airfoil flow and the latent vector learned by CAE
was found capable reflecting the main features of flow fields
over time.”” Murata et al. showed that CAE was superior to the
proper orthogonal decomposition methods with regard to the
extraction of fluid flow around a cylinder via dimension
reduction.'*

Akin to most of the machine learning methods, the CNNss,
however, rely essentially on the availability of big data as the
input for training, in order to extract the most important
characteristics of the high-dimensional and complex nonlinear
fluid flows. Direct numerical simulation (DNS) can be used to
generate big datasets of a fluid flow at the cost of fine time
steps. But the DNS data are noise-free and lack of experimental
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validation at fine time steps. PIV experiments, on the other
hand, provide the direct measurements of the fluid flows.
However, as discussed above, PIV can only offer a small dataset
due to the high cost for both high temporal resolutions and
spatial resolutions in the measurements.

In addition, in order to broaden the adaptability of the
model in a wide variety of flow conditions, it is common to add
some extra information into the CNN; i.e., the flow conditions
and particle properties based on the noiseless numerical
simulation data, as the inputs of CNNs pipeline such that a
relatively smaller dataset is sufficient to capture the features of
the fluid flows for various flow conditions.””***’ For example,
Zhang et al. added Mach numbers, Re and attack angles for
fluid flow around a particle into the CNNs structure to
broaden the adaptability of the model under a wide variety of
flow conditions.”® However, in practice, it is not always
possible to obtain an accurate prior information such as flow
conditions and particle properties in practical PIV measure-
ments with noised data. Incorporating additional information
as inputs to the CNNs pipelines is not always reliable in
dealing with noised data in PIV measurements.

According to the previous literature,””*" the typical
convolutional neural network, CAE, was adopted and could
have good performances on flow reconstructions. However, for
noisy small PIV experimental datasets, it is hard to reconstruct
flow fields which may be due to the common loss of details of
the flow field during the encoding process of CAE. And it is
found that the residual network (reCAE) and skip-connection
network (scCAE) can solve this problem to a certain extent.
Hence, in this work, we systematically compared the
performances of these three networks in detail (CAE, reCAE
and scCAE) for reconstructing and predicting flow fields based
on small PIV experimental data with noises and study the
influence of different hyperparameters on the performances.
Eventually, a suitable network of scCAE was selected to
accurately reconstruct the time-resolved flow field with noisy
small data obtained by PIV measurements based on dimension
reduction and feature capturing for different Re, bluff body
shapes and time-evolution features. In addition, the network
also has a good performance on flow prediction for different
Re, bluff body shapes and temporal evolution features.

This article is organized as follows: The description of
experimental apparatus and data processing is provided in
Section 2 to clarify the source of data. The principle of
convolutional neural networks, autoencoder network, training
algorithm and dataset is given in Section 3 to illuminate the
detailed operations of machine learning methods. In Section 4,
the effect of the latent vector size was first investigated to
optimize the scCAE model. Then, the loss function was used to
evaluate the stability and robustness of the model. The
performances in capturing spatiotemporal features of the flow
fields of scCAE were further quantified in terms of their
reconstructed flow fields for extrapolated Re of 400, 1000, and
1400, which had a better performance than those of CAE and
reCAE. Both flow around a sphere and a cube were evaluated
to test the robustness of the scCAE model for different shapes.
Furthermore, predictions of the flow fields based on low-
dimensional vectors, which including the flow field physics for
a sphere and/or a cube were performed respectively to further
test performances of feature extractions.
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Figure 1. (a) PIV experimental setup and (b) its sideview.
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Figure 2. Typical flow fields as inputs for training and validation. (a) and (b) are instantaneous flow fields for flow around a sphere at Re = 600 and
Re = 1200, respectively; (c) and (d) are instantaneous flow fields for flow around a cube at Re = 600 and Re = 1200, respectively. (The blank in the
left of each figure represents that the flow fields in this area were not measured).

2. EXPERIMENTS

2.1. Experimental Apparatus. All inputs in the scCAE
model were vector fields obtained from our PIV experiments.
As shown in Figure la, a two-dimensional PIV setup was used
to capture the instantaneous flow fields. A double-pulsed
Nd:YAG laser source (Model Solo III-15z, New Wave) with a
nominal maximum power of 50 mJ/pulse was used to
illuminate the flow. The wavelength of the laser was 532 nm,
and a laser sheet optics and a collimator optics were used to
convert the laser beam into a relatively narrow laser sheet. A
14-bit double-frame CCD camera (Model Imager Pro X 4M,
LaVision) with 2112 X 2072 pixel resolutions was
synchronized to the laser to capture images of fluid flows
and a 50 mm SLR camera lens (Nikkor) was used. Hollow
glass spheres of size 18 ym with a density of 0.6 g/cc (Potters
Industries) were used as seeding particles. The acquisition
frequency of the camera for 2D-2C PIV vector fields was
double-frame rate of 5.05 Hz, which was sufficient to track the
dominant flow structures in this work. PIV measurements were
conducted in a water tank with a large test section of 400 mm
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X 500 mm X 1200 mm, which could ensure the elimination of
side wall effects in all X, Y, and Z directions (as shown in
Figure 1b). The model particle was connected to a traverse
(VELMEX. Inc.) moving in the horizontal direction. Two
different model particles, i.e., a solid sphere and a solid cube
with the same characteristic length of 30 mm, were used. The
traverse controlled with a controller could move with a
constant velocity to provide a certain Re. The laser sheet was
adjusted to pass through the central plane of the model particle
(sphere and/or cube). Fields of views of the camera were
extended to ~S times the characteristic length of a single
model particle to ensure that wake characteristics in freestream
directions could be sufficiently captured. Time-dependent flow
fields were recorded from the initial time of wake formations.

The commercial software (Davis 8.2, LaVision GmbH) was
used to calculate vector fields from raw fluid pictures (images
of seeding particles) and the overall data preparation
procedures were as follows. First, the collected raw images of
the seeded flow fields were enhanced by sliding minimum
subtraction and min-max filter for intensity normalization.

https://doi.org/10.1021/acs.iecr.1c04704
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Then, cross-correlation analysis was used to calculate the
vector fields from raw pictures with multiple passes on the
window sizes. The interrogation window of 64 X 64 pixels with
50% overlap was selected for the first pass and the
interrogation window with the size of 32 X 32 pixels with
50% overlap was selected for the second pass.

2.2. Train and Test Dataset. The two-dimensional vector
fields for flow around the sphere and cube were obtained for
moderate Reynolds numbers (Re = 400, 600, 800, 1000, 1200
and 1400). Some samples of vector fields are shown in Figure
2. Here, the flow velocity component along the freestream
direction x in vector fields was denoted as U and the
corresponding component along the vertical direction y was
defined as V. The frames and properties of all PIV data for
train, validation and test datasets are summarized in Table 1.

Table 1. Summary of Frames and Properties of All PIV Data

shapes of particle Reynolds number, Re number of frames

Train and Validation Datasets

sphere 600 258
800 197
1200 129
cube 600 253
800 190
1200 126
Test Datasets
sphere 400 392
1000 154
1400 113
cube 400 380
1000 150
1400 111

The datasets for flow fields at Re = 600, 800 and 1200 were
employed as the input to train the model and capture the
underlying features of spatiotemporal evolutions of the fluid
flow around a single particle. Each input data set was split
randomly into a train dataset (70% of the data in the input
dataset) and a validation dataset (30% of the data in the input
dataset). All snapshots were recorded as single images with a
spatial resolution of 128 X 128.

Typical instantaneous flow fields at Re = 600 and 1200 for
flow around a sphere and/or a cube are shown in Figure 2. As

can be seen, the fluid flow around a sphere is different from
that of a cube even at the same Re. For fluid flow around a
cube, the intense wakes can be observed, with more eddies and
shedding appearing at the downstream of the cube. Meanwhile,
the size of wakes including both wake length and wake width in
the fluid flows around both the sphere and cube varies with Re.
Thus, in order to test the extrapolated performance of our
proposed scCAE in dimension reduction and characteristics
capturing for different shapes, different Re and different time-
evolution information, the datasets of time-resolved instanta-
neous flow fields for three extrapolated Re, i.e., 400, 1000, and
1400 for both flow around the sphere and the cube were used
as test datasets, in which the quantitative comparisons of highly
nonlinear flow fields reconstructed and predicted based on the
low-dimensional latent vectors with the ground truth flow
fields were provided.

3. METHODOLOGY

3.1. Convolutional Neural Networks (CNNs). Typical
CNNs consist of three operations: the convolution, pooling
and upsampling, as shown in Figure 3. For the input X € R™¥,
with a filters W with kernel size of € R™", the convolutional
results Y can be obtained by

m n

Y;j = Z Z I/V;w"Xi—u+l,j—v+l

u=1 v=1

(1)

Based on eq 1, it can be found that different kernel sizes can
extract different features, resulting in different convolutional
layers. In Figure 3a, the input is X € R¥®, the filter is W € R¥}
and the obtained is Y € R*®. The pooling layer aims to obtain
spatially invariant features by reducing the resolution of the
teatures. As shown in Figure 3b, the data can be compressed by
(1/P)* times with max pooling which supposes that the
maximum value represents a region with a pool size of P X P.
By combining the convolutional and pooling layers, it is
possible to reduce the dimensions while retaining the features
of the input data. Similarly, the upsampling is used to enlarge
the data by copying, as shown in Figure 3c.

3.2. Autoencoder Network. As discussed above, the
challenge in dealing with the small datasets obtained in PIV
measurements is the data compression and dimension
reduction. CAE has shown good performances of data
compression and dimension reduction in the images of fluid
flows.'#*° However, because of the inevitable loss of the details
of inputs in the pooling layers in CAE, the original images

(a)

1] 1
Ky 0\1
2 11 o] ®
0-1(1]2]1
1]2(1]|1]1
(b) =

s|a]3]6

74128 Max pooling g 8

3|1 613 poolsize (2x2) 9 6

9 | 7 BaNlE2

0 0 0|2
00| = 22 -4
0 -1 1 0 0

kernel size (3 x 3)

(©

[7T7]s]s

| 7| 8 Upsampling | A = || 8
—_—

9 Bé pool size (2 x 2) ol LL

9 | 9 BcElEG

Figure 3. Operations of the CNN: (a) convolution, (b) max pooling and (c) upsampling.
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Figure 4. Architecture networks implemented in this work: (a) CAE, (b) reCAE (each gray block is a convolutional residual block with the
normalization) and (c) scCAE (the black arrows denote convolutional layers, while the orange arrows indicate skip connections).

cannot be completely recovered from the latent vector,
especially for the small train dataset. It has been argued that
a better performance could be obtained by deepening the
network, ie., increase the number of layers, which, however,
introduces other issues such as gradients vanishing and
network degradation.’’ Later on, the residual CAE (reCAE)
was proposed to improve the performance of the deeper
CNNs.>>** Motivated by the reCAE, the skip connections have
been further developed in computational image processing in
order to restore the spatial information lost during the down-
sampling. The skip connections approach can recover the
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images by passing image details forwardly on the one hand,
and achieve local minimum by passing gradient backwardly on
the other hand.”* U-Net, for example, incorporated the long
skip connections®® and was successfully applied to predict
pressure fields across different airfoils and flow conditions.*® In
this work, by modifying the convolutional, deconvolutional
layers and other hyper-parameters used in U-net, a long skip
connection based on CAE (scCAE) is proposed for dimension
reduction in fluid flow around a single particle using a small
PIV dataset. For comparison, both CAE and residual CAE are
also presented.

https://doi.org/10.1021/acs.iecr.1c04704
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3.2.1. CAE. The architecture of CAE, as illustrated in Figure
4a, consists of two parts, namely, the encoder part (¥,) and
decoder part (F). The encoder part is composed of multiple
encoding layers and can encode the input q into a lower
dimensional space, which is defined as the latent vector g.
Similarly, the decoder part is also composed of multiple
decoding layers, which can decode the latent vector to a higher
dimensional space, qgeco- If qgeco 1S identical to gq, the CAE
works perfectly and the dimensions can be successfully reduced
while the latent vector includes almost all information of the
input. I\/Izithematically, the procedure of CAE can be expressed
as eq 2:

q=%F(q)q,, ~ Fq) @)

As depicted in Figure 4a, the encoder part has six blocks, with
each consisting of a convolution layer, a batch normalization
layer, an activation function and a pooling layer. The
convolutional layer is the key of CAE, which can extract the
main features of the input using a certain number of filters. In
this work, the filter size was set as 3 X 3 for all layers. To
accelerate the learning and avoid the overfitting, the batch
normalization,”” which normalized the output of each unit
based on the mean and variance, was adopted. Considering the
fast converge speed without the complicated mathematics as
well as the function of stable weight update, the nonlinear
activation function or rectified linear unit (ReLu), was
normally used.*® For pooling layer, two pooling schemes, i.e.,
average pooling and max pooling, were commonly used.’” In
current work, max pooling was chosen in which the pooling
was achieved by selecting the maximum value from the feature
maps covered by the corresponding filter (Figure 3b). The
decoder part was similar to the encoder part and also consisted
of six blocks, with each block including the upsampling layer
(Upsampling2D), the transposed convolutional layer
(Conv2DT), the BarchNorm layer and the ReLu layer, in
order. The unsampling layer was utilized to gradually expand
the size of dimensionality and transform the data in the lower-
dimensional space to that in the higher-dimensional space.
3.2.2. Residual CAE (reCAE). In residual network, the
residual of unit ! must be calculated by egs 3 and 4:*

y=x+ F(x;, wy) ()

Xip1 = f(yl) 4)

where F is the residual function, f is the ReLu function, and x,
and «x,; are input and output of the Ith unit, respectively. As
shown in Figure 4b, each of the residual blocks (gray block)
consists of a convolutional layer, a batch normalization layer,
an activation function, a convolutional layer, a batch
normalization layer and a shortcut connection. The encoder
part of the reCAE differs from that in the CAE. In the reCAE,
the image size was progressively down-sampled by a factor of 2
with stridden convolutions instead of the max pooling layer.
This allows the network to increasingly extract more abstract
information at a larger scale with the growing number of
feature map channels.”' After a series of successive stridden
convolutions, the size of feature maps becomes smaller and
smaller compared to that of the input images, and eventually
the latent vector can be obtained. The input first goes through
an up-sampling layer to be reshaped to a tensor of size 128 X
128 X 128, then five residual blocks are used to derive the
latent vector. The decoder part comprises six blocks, which is
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same as the decoder in the CAE network, as shown in Figure
4a.

3.2.3. Skip Connections CAE (scCAE). In the scCAE
developed in this work, the long skip connections were
implemented and the connections were not cropped before
being copied. By doing so, the entire information on inputs in
the decoder layers was preserved, in which a prior addition of
parameters reflecting key features was not desired. As shown in
Figure 4c, the scCAE proposed in this work consists of a series
of symmetric encoding layers and decoding layers. The
encoding layers act as the feature extractor and the decoding
layers decode the latent vector to restore the image details.
And the skip connections are added from the convolutional
layers to their corresponding mirrored deconvolutional layers.
Using the skip connections, the passed convolutional feature
maps are summed to the deconvolutional feature maps by
elements.

As shown in Figure 4, for all three CAEs, the raw inputs used
in this work were vector fields obtained from PIV experiments,
which could be expressed as a 3D matrix of size 128 X 128 X 2.
Then, a 3X 3 convolution layer was performed with a fixed
map channel [128, 64, 32, 16, 8, 4], respectively. The decoder
could be used to reconstruct the vector fields from the latent
vector, which represented the most important features of the
fluid flows. In the decoder part, another 6 symmetric layers
were used, with the kernel size of 3 X 3 and the feature map
channel of [4, 8, 16, 32, 64, 128]. The eventual output would
have the same size as that of the original input using a
convolution with 2 channels and a sigmoid function.

3.3. Training Algorithm. To achieve the satisfactory
performance, it normally needs data preprocessing. In this
work, a common min—max normalization was implemented by
eq S:

x = 7@ —

xmin)
(xmax - X

(8)

where x’ is the normalized data, and x,,, and x,, are,
respectively, the maximal and minimal values. The model
performance was evaluated against MSE defined in eq 6:

1 n
MSE = ;Z(bt -p)
t=1

min )

(6)

where n is the size of the sample, p is the predicted value and b
is the observed value. The loss function MSE, as defined in eq
6, was minimized during the training process to obtain the
optimal parameters. The backpropagation method which
involves the calculation of the gradients of loss function,
with resfect to learnable parameters was implemented for
training.~ The adaptive moment estimation (Adam) was
employed as the optimization algorithm.”> The total epoch of
1000 was assumed and the early stopping was implemented to
avoid overfitting. The training process had been executed in
sequence for each time step unless the maximum epoch (1000)
or early stop (200) was first reached. The in-house code for
our proposed method has been written based on the
Tensorflow 2.4.3 and Keras 2.6.0 libraries on Python 3.8.

4. RESULTS AND DISCUSSIONS

4.1. Size of the Latent Vector. In this section, the
influence of latent vector size in scCAE was discussed. It has
been previously shown that the characteristics of the high-
dimensional flow fields could be well-captured and recon-
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structed using CAE based on the latent vector obtained by
dimension reduction.””** Murata et al. further showed that the
periodic change of the latent vector could reflect the vortex
shedding.'* Therefore, the latent vector is critical in capturing
the characteristics of high-dimensional and nonlinear flow
fields. Thus, the dependence of RMSE on the latent vector size
in scCAE was investigated. Four latent vector sizes, i.e., 2, 4, 8
and 16, were examined. Normally a smaller latent vector size
allows the lower computational cost for scCAE. However, if the
latent vector size is too small, some key features might be lost.
Our results suggest that the lowest RMSE was achieved with
the latent vector size of 4 for different Re. Figure S shows the

2.0

1‘5-.
l.ﬂ—-
0.5—-
0.0 |
2 4 8 16

Size of latent vector

Figure 5. Effect of the latent vector size on RMSE in scCAE for fluid
flow around a sphere at Re = 600.

typical results of RMSE for fluid flows around a sphere at Re =
600. Thus, in this work, the latent vector size was set as 4 and
the corresponding compression ratio, which was defined as the
ratio between the dimension of input and that of the latent
vector, was 1.2 X 107

4.2. Training of the Models. In order to test the
performance of the proposed scCAE in dimension reduction
and flow characteristics capturing, the reconstructions of flow

fields based on the latent vector were conducted. For
comparison, the reconstruction performances of CAE and
reCAE were also evaluated. Note that the loss is an important
indicator for assessing whether the steady and robust results
could be achieved, so the loss for the train and validation
datasets, as a function of the epoch for CAE, reCAE, and
scCAE, were performed first, as shown in Figure 6. Here, an
epoch refers to the process of sending the data into the
network to complete a forward calculation and back-
propagation. The training loss, which was represented by the
mean square error (MSE) between vector fields reconstructed
and those obtained by the corresponding PIV experimental
datasets, was used to evaluate the convergence during the
training process. And the validation loss was used to verify the
ability of generalization and decide whether the training was
needed to be stopped in advance.

For CAE, as shown in Figure 6a, the loss curve first
demonstrates a spike, which is as high as 0.03S, and then
gradually approaches ~0.0018 with small fluctuations. The loss
for reCAE starts at 0.038, moves downward during training and
finally oscillates near 0.0016. The loss of scCAE shows the best
performance: the training loss converges very quickly and
barely descends after 50 epochs, eventually remaining at
0.00014. This indicates that the skip connections in scCAE
could accelerate the convergence during the learning process.
The loss on the validation dataset was also computed and the
results are depicted in Figure 6b. In this case, the final loss of
CAE is 0.002, oscillating near 0.0018 and 0.0023 after 600
epochs. The final loss of reCAE is 0.0018, oscillating near
0.0017 and 0.0022 after 600 epochs. The final loss of scCAE is
0.00019, which is one order of magnitude smaller than that of
others two models, which again emphasizes the generality and
robustness of scCAE. In other words, both the training and
validation loss in scCAE can converge with no overfitting,
which indicates that our proposed model could achieve steady
and robust reconstruction results after proper training.

For train and validation datasets for Re = 600, 800 and 1200,
the error metrics RMSE for the vector fields reconstructed for
flow around a sphere and a cube are shown in Figure 7. As can
be seen, the RMSEs of both U and V obtained by scCAE are
much lower than those of CAE and reCAE for all cases,
illustrating the proposed scCAE has better performances on
reconstruction of the time-series flow fields for different Re and
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S 0024 i
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Figure 6. Loss on the train datasets (a) and validation datasets (b) for different models.
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Figure 7. Root mean square error (RMSE) values of U ((a) sphere and (c) cube) and V ((b) sphere and (d) cube) for different training Re of

different models.

geometrical shapes. So, the proposed scCAE can well capture
the underlying flow characteristics based on a small input
dataset of PIV experiments.

4.3. Flow around a Sphere. The performances of
spatiotemporal feature extractions for CAE, reCAE and
scCAE were first investigated in terms of their performances
in reconstructing flow fields around a sphere for extrapolated
Re of 400, 1000 and 1400 and time-evolution information. In
this section, the time-series PIV vector fields from the initial
instance of wake formations to the fully developed states,
covering various status of the high dimensional and nonlinear
characteristics in flow fields, for the sphere were reconstructed
for each Re.

Instantaneous vector fields obtained directly from the
original PIV measurements were compared with the
corresponding reconstructed vector fields. Figure 8 shows
typical snapshots of instantaneous vector fields of frame 90 at
Re = 400 and Re = 1400 obtained by different models. As can
be seen, flow fields reconstructed by CAE (Figures 8b, 8f, 8j
and 8n) and reCAE (Figures 8¢, 8g, 8k and 80) included the
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dominant flow structures near the rear region of the sphere for
U, but missed detailed flow patterns appearing far away from
the sphere for U. And it failed to capture flow features for V for
all regions at Re = 400. Meantime, vector fields reconstructed
using the scCAE (Figures 8d, 8h, 8l and 8p) can well recover
the results of ground truth obtained directly from PIV datasets
(Figures 8a, 8e, 8i and 8m). Furthermore, a close check shows
that all eddies and flow details far from the sphere were also
satisfactorily captured by the scCAE. Thus, the scCAE
proposed in this work was able to reconstruct vector fields
around a single sphere at moderate Re using limited PIV
experimental data as inputs. In addition, the streamlines
reconstructed by the scCAE, as well as the original streamlines
obtained by PIV experiments for instantaneous flow field of
frame 90 for flow around a sphere at Re = 1400 are shown in
Figure 9, which shows a pretty good reconstruction perform-
ance on the capture of flow details.

Then, the component velocity U and V varying with time at
specified positions for flow around a single sphere for various
Re were quantitatively assessed. Typical results at two positions

https://doi.org/10.1021/acs.iecr.1c04704
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Figure 8. Typical snapshots of vector fields around a sphere for original fields and those reconstructed by CAE, reCAE and scCAE: (a—d) U-
velocity at Re = 400, (e—h) V-velocity at Re = 400, (i—1) U-velocity at Re = 1400, (m—p) V-velocity at Re = 1400.

D (-) XD (-)

Figure 9. Typical snapshots of the streamlines around a sphere at Re = 1400 for frame 90: (a) PIV experimental results, (b) reconstructed by
scCAE. (The blank in the left figure indicates that the flow fields in this area were not measured.)
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Figure 10. Comparisons of time series of flow velocity components at Re = 1400 between the three models reconstruction results and the ground
truth PIV measurement results: (a) U at (X/d = 1.5, Y= 0), (b) Vat (X/d = 1.5, Y=10), (c) Uat (X/d =2.5,Y=0), (d) Vat (X/d =2.5,Y=0).

(X/d=1.5,Y=0) and (X/d = 2.5, Y = 0) for Re = 1400 are and V reconstructed by scCAE for both (X/d = 1.5, Y = 0) and

shown in Figure 10. Here, X is the distance from the sphere (X/d = 2.5, Y = 0) well match that obtained directly from the
center to the monitoring point and d is the diameter of the ground truth data set measured by PIV. This means that
sphere. As can be seen, the time series of the components U scCAE can well capture the time-evolution flow structures in
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Figure 12. Typical snapshots of vector fields around a cube for original fields and those reconstructed by CAE, reCAE and scCAE: (a—d) U-
velocity at Re = 400, (e—h) V-velocity at Re = 400, (i—1) U-velocity at Re = 1400, (m—p) V-velocity at Re = 1400.

the whole flow fields. Besides, the scCAE manifests much
better performances than CAE and reCAE in reconstructing
flow fields because the other two models show considerable
deviations from the PIV results. Thus, scCAE can not only
capture the evolution process with time of the flow fields
around a sphere, which demonstrated complex vortex
phenomena, but also quantitatively reproduce the spatial
velocity distributions for the whole flow fields.

Error metrics RMSE for vector fields reconstructed using
different models under test datasets Re = 400, 1000, and 1400
were evaluated in Figure 11. As can be seen, RMSEs of both U
and V obtained by scCAE are much lower than those of CAE
and reCAE for all extrapolated Re, indicating the proposed
scCAE was robust in reconstructing the time-series flow fields
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for extrapolated Re. In addition, as shown in Figure 11, low
RMSE values of U and V obtained by scCAE for the test
datasets reveal the proposed scCAE has a good extrapolation
performance on reconstruction the spatiotemporal evolution of
moderate-Re flows around a sphere.

4.4. Flow around a Cube. In this section, the proposed
scCAE was further tested by reconstructing flow fields around a
cube using limited PIV experimental data. For comparisons,
the performances of flow field reconstructions for CAE and
reCAE were also assessed.

Our results show that the vector fields reconstructed by
scCAE were in good accordance with the results obtained via
PIV measurements for extrapolated Re = 400, 1000, and 1400.
Figure 12 shows the typical results of reconstructed vector
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Figure 13. Typical snapshots of the streamlines around a cube at Re = 1400 for frame 90: (a) PIV experimental results, (b) reconstructed by
scCAE. (The blank in the left figure indicates that the flow fields in this area were not measured.)
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Figure 14. Comparisons of time series of flow velocity components at Re = 1400 between the three models reconstruction results and the ground
truth PIV measurement results: (a) U at (X/d = 1.5, Y =0), (b) Vat (X/d = 1.5, Y=10), (c) Uat (X/d =2.5,Y=0), (d) Vat (X/d =2.5,Y=0).
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Figure 15. RMSE of (a) U and (b) V for different testing Re of different models.

fields at Re = 400 and Re = 1400 respectively. The original PIV and V of the ground truth based on PIV experimental data
datasets were taken from the frame 90 for all Re in Figure 12. (Figures. 12a, 12e, 12i, and 12m), indicating that the scCAE
As can be seen, the components U and V reconstructed using can capture the details of flow fields around the cube. Flow
scCAE (Figures 12d, 12h, 121, and 12p) are consistent with U fields reconstructed by CAE (Figures 12b, 12f, 12j, and 12n)
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Figure 16. Comparisons of temporal evolutions along the four latent components between the original data (red) and the scCAE prediction (blue)
for flow around a sphere at Re = 600: (a) the first latent component z1, (b) the second latent component z2, (c) the third latent component 23, (d)

the fourth latent component z4.

and reCAE (Figures 12c, 12g, 12k, and 120), however, only
capture the dominant flow features for U, and fail to obtain
flow features for V. It was also provided the typical streamlines
reconstructed by the scCAE as well as the original streamlines
obtained by PIV experiments for instantaneous flow field
around a cube, as shown in Figure 13. As can be seen, scCAE
can reconstruct almost all the details, such as wakes behind the
cube.

The typical time-series U and V reconstructed for Re = 1400
at two monitoring points (X/d = 1.5, Y =0) and (X/d =2.5,Y
= 0) are respectively plotted in Figure 14. As it was known,
wakes in the fluid flow around a cube are significantly more
intense with more eddies and shedding appearing downstream
than those of the sphere. So, the flow velocities at certain
points show much more complex fluctuations than those of the
sphere. As can be seen in Figure 14, time series of U and V
reconstructed by scCAE agree well with PIV results at all
monitoring points, demonstrating better prediction accuracies
than those of CAE and reCAE for complex fluid flows around a
cube. In brief, the scCAE can not only capture the temporal
evolution process of flow fields for all stages but also achieves
an accurate reconstruction for full-field positions.

RMSEs of all instantaneous vector fields for test datasets Re
= 400, 1000 and 1400 for flow around a cube are plotted in
Figure 15. As shown in Figures 15a and 15b, RMSEs of both
component velocities U and V reconstructed for fluid flows via
scCAE are much lower than those of CAE and reCAE for all
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extrapolated Re. This reflects that the ability of scCAE on
reconstructing time-sequence flow details for the cube is also
robust. Meanwhile, low RMSEs of scCAE for test datasets also
reveal the proposed scCAE has pretty good generalizability and
extrapolation performances on feature extractions based on
dimension reduction.

Thus, scCAE proposed in this work is robust in capturing
important features of fluid flows through dimension reduction,
resulting in efficient representation of the flow characteristics
with low-dimensional latent vectors. Based on the derived
latent vectors, the time-resolved flow fields around a single
sphere and cube at extrapolated Re of 400—1400, which
typically display the high dimensional and nonlinear complex
flow phenomena, can be successfully reconstructed using small
datasets obtained via PIV measurements with noises.

4.5, Prediction of the Flow Fields. In the above sections,
it is shown that feature extractions based on scCAE perform
well in reconstructing dynamic fluid flows for different Re,
shapes and time-evolution information based on the small
datasets obtained by PIV experiments with noises. The low-
dimensional latent vectors, in which the most relevant features
of the flow fields are conserved, may also be applied to the
prediction of the evolutions of fluid flows over time based on
small PIV datasets. In this section, we will test the performance
of scCAE in predicting time-resolved fluid flows around a
single particle at various Re values.
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Figure 17. Visual prediction performances for the predicted 40th step by the scCAE in the latent low-dimensional space alongside of original plots
for flow around a sphere at Re = 600: (a) U-velocity of original field, (b) V-velocity of original field, (c) U-velocity of predicted field, (d) V-velocity
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Figure 18. Comparisons of temporal evolutions along the four latent components between the original data (red) and the scCAE prediction (blue)
for flow around a cube at Re = 400: (a) the first latent component z1, (b) the second latent component 22, (c) the third latent component z3, (d)

the fourth latent component z4.

For fluid flow around a single particle at a given Re, the time
series of latent vectors obtained by scCAE were used as the
input of predicted CNN model to predict the future latent
vectors, as was done by Agostini.30 Once the predicted model
is obtained, the latent vectors in 100 time step was used as the
input and the output was time-series latent vectors predicted
for the following 100 successive time steps. Figure 16 shows
the four latent vectors z1—z4 for fluid flow around a sphere at
Re = 600 for different time (denoted by the frames of fluid flow
velocity fields). As can be seen, the predicted latent vectors
(blue lines) can well collapse onto the actual latent vectors
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(red lines) for 40 successive time steps, illustrating that good
prediction performances on time evolutions of flow fields could
be achieved. We further showed the 40th frame of predicted
vector fields of U and V around a sphere by using the predicted
40th latent vectors and the 39th vector field as inputs, as
shown in Figure 17. The resemblance in our work represents
the likeness between the reconstruction field and the original

field measured by PIV, which is calculated via eq 7:
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A X Bl

resemblance = ——
(A” + BY)

1—[2><

where A = upry + € and B =t gicrea + € With uppy representing
U and/or V of the original PIV measured field, ugicreq the U
and/or V of the predicted flow field, € an extremely low
number to avoid (A* + B*) = 0, q the factor of the likeness. In
this work, & is set as 0.000001 and ¢q is fixed as 16. If
resemblance = 0, it means the predicted vector field is exactly
same as the vector filed obtained by PIV measurements.
Obviously, it can be seen from Figure 17c that the predicted
vector flelds of U and V are highly consistent with the original
PIV measurement results.

Then, for flow around a cube, the prediction of flow fields
was also performed. Figure 18 shows typical predicted results
of the latent vectors z1—z4 for Re = 400. As can be seen, a
fairly good prediction accuracy for the following 100 successive
time steps was achieved since the predicted latent vectors agree
well with those directly obtained from PIV measurements. The
100th predicted latent vectors remapped to high dimension-
ality for the cube are also visualized in Figure 19, which shows
a high consistency with the original PIV flow fields. This
demonstrates the latent vectors in scCAE could serve as a
general and robust tool to extract the most important features
in time-resolved flow fields of the highly nonlinear dynamic
fluid flows around a single particle with different shapes for
different Re. Most importantly, scCAE works well for small
datasets obtained by truth PIV measurements because of the
excellent capabilities of dimensional reduction and character-
istics representation.

:

7)

5. CONCLUSIONS

In this work, we systematically studied the performances of
three convolutional neural networks based autoencoders in
dimension reduction and feature capturing by evaluating their
extrapolation abilities in flow field reconstruction and
prediction based on small noised PIV datasets. It is found
that the scCAE, which was proposed by incorporating the skip-
connections to CAE, can accurately reconstruct the time-
resolved flow fields around a single sphere or a cube under
moderate Re of 400—1400. Essentially, an optimal latent vector
size of four for the proposed scCAE can well represent the
high-dimensional and nonlinear fluid flows, showing the lowest
RMSE for reconstructing vector fields. The comparison of
training loss as a function of epoch also shows that scCAE
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achieves the best stability and robustness, illustrating the latent
vector with a small size in scCAE can extract and compact the
most important information in flow fields with a meaningful
low-dimensional representation. Furthermore, it is also shown
scCAE has a good performance on flow prediction by capturing
the most important features for the time-resolved high
dimensional and nonlinear dynamic fluid flows.

In summary, the proposed scCAE can serve as a general and
robust tool to reconstruct and predict complex time-series flow
phenomena based on limited noisy PIV measurement datasets,
which may open a venue to extract the latent vectors from
limited experimental data and disclose the inherent physics.
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