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ABSTRACT: Transport resistance in microporous zeolites has an
important impact on their applications in catalysis. Relative to the
well-known intracrystalline transport resistance, the significance of
surface barriers on the catalytic performance of zeolites has not
been well recognized. Herein, we report that the DME carbon-
ylation reaction can be governed by surface barriers on zeolites,
affecting both the catalyst activity and stability. The two MOR
zeolites used for the investigation were synthesized by different
organic structure-directing agents (OSDAs). They possess similar
Si/Al ratios, diffusion lengths, Al distributions, and acidities but quite different diffusion properties. The MOR-C sample with severe
transport limitations exhibits inferior apparent activity (∼50% lower) and poor stability in comparison compared with the MOR-T
sample. Chemical etching of the outer layer of as-made MOR-C crystals has been proven to be an effective strategy to reduce surface
barriers, enhance mass transport properties, and improve the activity and stability of the MOR catalyst. The carbonylation activity of
etched MOR-C is indeed comparable to that of MOR-T. This work highlights the importance of controlling the synthetic strategy
and surface barriers on zeolite crystals for the design/development of highly efficient catalysts.
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Zeolites are important inorganic microporous materials,
which have wide applications in chemical industries as

highly efficient catalysts and adsorbents. Due to their uniform
porosity of molecular dimensions, zeolites exhibit prominent
performance as shape-selective catalysts.1 However, the
confined channels of zeolites inevitably bring about severe
diffusion limitations for guest molecules.2−7 Intracrystalline
diffusion resistance has been acknowledged as an important
factor influencing the zeolite-catalyzed reactions. Great efforts
have been dedicated to predicting the intracrystalline
diffusivities and to reducing the internal transport resist-
ance.8−11 In addition, the importance of surface resistance on
mass transport is also receiving increasing attention. By using
microimaging techniques to monitor the uptake of molecules
in SAPO-34 crystal, it was revealed that surface barriers may
govern the mass transport process, and their contribution to
the overall transport resistance depends on the guest molecules
under investigation.12 Moreover, recent results show that
surface barriers obviously increase in hierarchical or nanosized
zeolites and become an important factor affecting the transport
process, due to the change in surface properties (surface
defects, pore narrowing, or blocking).13,14

The essential role of surface barriers in mass transfer
suggests its importance for zeolite-catalyzed reactions.
However, the knowledge about the impact of surface barriers
on catalysis is limited, and only a few zeolites (ZSM-5,15

SAPO-34,16,17 and Pt/Beta18) are involved. Given that the
qualities of zeolites have been demonstrated to be heavily
dependent on the synthetic strategy, recognizing the relation
between synthesis and zeolite properties should be more
critical for controlling the surface barriers and the catalyst
performance. This knowledge is also expected to benefit the
rational design and development of zeolite catalysts.
MOR zeolite is an important member of the zeolite family,

which has attracted considerable attention in recent years due
to its excellent activity and ultrahigh product selectivity in
dimethyl ether (DME) carbonylation and syngas/methanol to
ethylene.19−23 The DME carbonylation process catalyzed by
the zeolite was industrialized in 2017, which opens a new route
for ethanol generation from coal and natural gas.24 It has been
revealed that the Brønsted acid sites located in the confined
side pockets of MOR zeolite are the unique active centers for
the DME carbonylation reaction, whereas the 12-membered
ring (12-MR) pore provides a mass transfer channel for both
reactants and products.25−27 In order to improve the activity
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and stability of MOR catalyst, many strategies have been
developed, including pyridine modification,28 acid/alkali post-
treatment,29,30 and the synthesis of nanosized MOR
zeolite.31−35 The first strategy can help avoid side reactions
by poisoning the acid sites in 12-MR, while the last two aim to
reduce the intracrystalline diffusion resistance. However, the
importance of surface barriers on this reaction has not yet
received attention as far as we know, even though they may
play a critical role in determining the catalyst performance.
In the present study, we report for the first time that surface

diffusion barriers over MOR zeolites can dominate the mass
transfer process and significantly affect the DME carbonylation
performance. Two MOR zeolites with similar Si/Al ratios were
synthesized using different OSDAs. The MOR zeolite
synthesized hydrothermally by tetraethylammonium hydroxide
(TEAOH) and trimethylamine (TMA) was denoted MOR-T,
while the sample synthesized using cyclohexylamine (CHA)
was denoted MOR-C. The texture, acidity, diffusion properties,
and catalytic performance of the zeolites were investigated in
detail, and the important role of surface barriers on the
catalytic performance was elucidated.
Figure 1 displays the structural and morphological properties

of the two samples synthesized using different OSDAs. The

XRD patterns (Figure 1a) present the characteristic peaks of a
typical MOR type structure for MOR-T and MOR-C, both of
which have similar peak intensities. The SEM images in Figure
1c,d show that MOR-T crystals have a platelike morphology
with a rough surface, while MOR-C has a relatively smooth
surface. The corresponding HRTEM images (the insets)
evidence that both samples are single crystals with good

crystallinity. The SAED patterns in Figure 1e,f reveal that the
shortest dimension of the crystals runs along the c-axis
direction for either sample, with 12-MR channel lengths of less
than 500 nm. The nitrogen adsorption/desorption isotherms
of both samples in Figure S1 could be regarded as type I
isotherms, implying negligible mesoporosity. The correspond-
ing textural information is given in Table S2. The micropore
volumes and micropore surface areas of MOR-T are larger
than those of MOR-C, but the difference is not significant.
Thermogravimetric analysis (TG) profiles in Figure S2 indicate
that the weight losses of as-synthesized MOR-T and MOR-C
are 7.8 and 6.0 wt % respectively, suggesting that MOR-T has a
higher filling degree of micropores by organic amines.
The Si/Al ratios of the as-made MOR zeolites are presented

in Table S2. Both samples possess similar bulk Si/Al ratios
(derived from XRF), being 13.4 and 13.6 for MOR-T and
MOR-C, respectively. Their surface Si/Al ratios, calculated to
be 14.5 and 15.3 on the basis of the XPS results, show only
slight deviations from the bulk ratios, indicating the relatively
uniform Al distribution for both samples. The 27Al MAS NMR
spectra in Figure 1b show only one peak around 54 ppm,
characteristic of tetracoordinated Al species, suggesting that all
of the Al atoms are in the framework.36 On the basis of the 29Si
NMR spectra (Figure S3), the amounts of Si species of the two
samples are close to each other, which implies similar
arrangements of Al atoms. In addition, Co2+ exchange was
carried out to learn the amount of Al pairs (Al−Si−Al and Al−
Si−Si−Al) in the samples. Exchange degrees (Co2+/Al) of 0.33
and 0.30 were obtained for MOR-T and MOR-C, respectively,
suggesting their similar Al pair contents.37,38

The acid properties of the protonated MOR samples are
presented in Table S3 and Figure 2. NH3-TPD results (Figure
2a) show that the total acid amounts of MOR-T and MOR-C
range from 0.85 to 0.86 mmol/g, and the NH3 desorption
peaks are centered at proximate temperatures, which implies
the similar acid strengths of the samples. An 1H MAS NMR

Figure 1. Structure and morphology of the as-made MOR samples. :
(a) XRD patterns; (b) 27Al MAS NMR spectra; (c, d) representative
SEM and HRTEM images (the arrows in the figures illustrate the
direction of 12-MR channels); (e, f) SAED patterns viewed along the
c-axis direction.

Figure 2. Acidity and Al coordination environments of the protonated
MOR samples: (a) NH3-TPD profiles; (b) 1H MAS NMR spectra;
(c) FTIR spectra and deconvoluted bands corresponding to the acid
sites in 12-MR channels (left) and 8-MR side pockets (right); (d)
27Al MAS NMR spectra (as-made samples). The values in (c) refer to
the proportion of the acid sites in 8-MR side pockets.
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analysis was further carried out to quantify the Brønsted acid
sites of the H-MOR samples (Figure 2b). On the basis of the
deconvoluted results of 1H NMR spectra (Table S2), the
amounts of BASs are calculated to be 0.64 and 0.57 mmol/g
for MOR-T and MOR-C, respectively. Moreover, the
distribution of BASs in 12-MR and 8-MR channels, which is
an important factor affecting the catalytic performance, was
also investigated by FTIR and analyzed by a previously
reported deconvolution method.39,40 According to the
deconvolution results of the bridging hydroxyl group (Figure
2c), the proportions of BASs located in the 8-MR side pocket
of MOR-T and MOR-C are 45% and 46%, respectively. The
above characterization results clearly demonstrate that the
MOR-T and MOR-C samples possess similar textural
properties, Al distributions, and acid properties.
It has been recognized that the acid sites in the 12-MR main

channels of zeolite MOR are prone to side reactions (DME to
hydrocarbons) due to the lack of a space confinement effect,
resulting in rapid carbon deposition and deactivation of the
catalysts.27,41 Pyridine adsorption has been demonstrated to be
an effective strategy for covering the acid sites in 12-MR
channels, suppressing the side reactions, and improving the
reaction stability and MAc selectivity in DME carbon-
ylation.28,42 Thus, the catalytic performances of the samples
were investigated herein with pyridine-modified H-MOR
catalysts. As indicated in Figure 3a, both MOR-T and MOR-

C show no obvious deactivation at 200 °C during a 20 h
reaction, whereas DME conversion on MOR-T (82%) is about
twice that on MOR-C (40%). When the reaction temperature
is increased to 220 °C (Figure 3b), distinct variations of both
the stability and activity can be observed for the two catalysts.
Apart from the well-preserved catalytic stability (no obvious
deactivation in 50 h), MOR-T also exhibits a higher DME
conversion of about 63% at a GHSV value of 12000 mL/(g h).
In sharp contrast, catalyst MOR-C shows inferior conversion
with worse catalyst stability. The DME conversion decreased
from 39% to 18% after a 50 h reaction. On consideration of the
similar structural, textural, and acid properties of the two
samples, it is speculated that the difference in reaction
performance may result from their mass transfer properties.
The mass transfer properties of pyridine-modified MOR

zeolites were first investigated by an intelligent gravimetric
analyzer (IGA). MAc, the predominant product of the DME
carbonylation reaction, was selected as the probe molecule for
IGA measurement. As shown in Figure 4a, the MAc uptake
rate is obviously faster in MOR-T than in MOR-C.
Quantitative analyses of the diffusion properties of the samples

were further carried out based on Fick’s second law (eq 4 in
the Supporting Information). The fitting results of mt/m∞
versus t1/2 show a good linearity (Figure 4b), and the values of
the diffusion time constant (Deff/L

2), good indicators of the
mass transfer properties, could be evaluated from the
slopes.43−45 The calculated Deff/L

2 value is 1.12 × 10−2 for
MOR-T and 1.26 × 10−3 for MOR-C. In consideration of
similar 12-MR channel lengths of the two samples, the much
lower uptake rate observed for MOR-C suggests the existence
of severe diffusion barriers.
The TG curves of the two pyridine-modified catalysts are

illustrated in Figure S4. The occluded pyridine is calculated to
be 5.9 and 4.9 wt % for MOR-T and MOR-C, respectively.
Clearly, the density difference of adsorbed pyridine in the 12-
MR channels cannot account for the distinct mass transfer
properties of the samples. Also, the possibility of an acidity-
induced variation of the mass transfer properties has been
excluded, as the two samples show high resemblance in their
acid properties (acid quantity, strength, and distribution). In
addition, although extraframework aluminol (EFAL) indeed
exists in both H-MOR samples (Figure 2d), their relative
quantities are quite similar, as revealed by the deconvoluted
analysis of 1H MAS NMR spectra (Figure 2b and Table S4).
Thus, the different diffusion properties of the samples should
stem from their intrinsic pore characteristics, rather than the
acid site distribution/density, the influence of adsorbed
pyridine molecules, the presence of EFAL, etc. To verify this
speculation, toluene was used as a probe molecule to study the
accessible volume of the samples (H-form). The toluene
uptake isotherms are illustrated in Figure 4c. MOR-T exhibits a
much higher accessible volume, whose toluene adsorption
capacity is about 95% higher than that of MOR-C at 10 mbar
(P/P0 ≈ 0.2).
To further figure out whether the diffusion barriers stem

from the interior or the surface of the crystals, chemical etching
using an acetone−HF acid solution was carried out to remove
the outer layer of the as-made MOR-C crystals.46,47 The

Figure 3. DME carbonylation performance over pyridine-modified H-
MOR catalysts. Reaction conditions: (a) GHSV = 3600 mL/(g h),
200 °C, 2 MPa; (b) GHSV = 12000 mL/(g h), 220 °C, 2 MPa.

Figure 4. (a) MAc uptake rate inside pyridine-modified H-MOR. (b)
Initial uptake rate. The symbols and dashed lines respectively
represent the experimental data and fitting results by eq 4 in the
Supporting Information. (c) Toluene adsorption isotherms for H-
MOR. (d) MAc space−time yields on the pyridine-modified H-MOR
catalysts (calculated on the basis of DME conversion and MAc
selectivity at TOS = 20 h).
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corresponding sample was denoted as MOR-C-F, and its
structural, textural, and acid properties were examined in detail.
The XRD pattern (Figure S5) manifests typical diffraction
peaks of the MOR-type structure. The SEM image (Figure S6)
depicts no clear morphology changes after surface treatment.
29Si MAS NMR spectra (Figure S3) evidence Si coordination
environments of MOR-C-F similar to those of MOR-C, and no
EFAL can be observed in the 27Al spectrum (Figure S7). The
Si/Al ratios in Table S2 show that both the bulk and surface
composition of MOR-C-F is close to those of the parent
sample. In addition, the N2 sorption results (Figure S1 and
Table S2) indicate that MOR-C-F has almost the same textural
properties as its precursor. On the basis of NH3-TPD and
FTIR spectra (Figure S8), the acid amount and acid
distribution of MOR-C-F are also revealed to be similar to
those of MOR-C (Table S3). The above characterizations
evidence that the interior of MOR-C-F crystals remains intact
after the etching treatment.
Nevertheless, the diffusion resistance on MOR-C-F was

significantly ameliorated in comparison with that on MOR-C
(Figure 4a−c), as evidenced by the sharply enhanced MAc
uptake rate (Deff/L

2 = 6.36 × 10−3) and toluene sorption
capacity. In addition, to quantitatively compare the variation of
surface permeability (α) and intracrystalline diffusivity (D) on
MOR-C and MOR-C-F, the IGA curves of n-butane uptake
were further measured, and the data were fitted on the basis of
a dual-resistance model (DRM).16,17 From Figure S9, similar
intracrystalline diffusivity can be observed for both samples, in
accordance with their similar textural properties discussed
above. However, there is a significant difference in the surface
permeability. The α value of MOR-C-F is much higher than
that of MOR-C. These results demonstrate that the acetone−
HF solution preferentially etches the crystal surface of the as-
made MOR zeolite.
The carbonylation performances of MOR-C-F (pyridine-

modified catalyst) are illustrated in Figure S10. The
corresponding MAc yields of the samples are given in Figure
4d. An obviously improved carbonylation activity could be
observed for the MOR-C-F sample after HF etching, with a
MAc yield approaching that of MOR-T. Moreover, the
catalytic stability of MOR-C-F at 220 °C is also clearly
enhanced in comparison to that of MOR-C. It is noted that
etching MOR-T by the same procedure as for MOR-C (sample
MOR-T-F, Figures S5, S6, and S11) did not a show promoting
effect on its DME carbonylation performance, suggesting the
better structural integrity of the surface of MOR-T crystals.
To check if the surface barriers have a general effect in

catalysis, two more acid-catalyzed reactions (isopropylbenzene
cracking and n-octane cracking) have been tested, and the
corresponding results are shown in Figure S12. Clearly, the
apparent activities of the catalysts in the two cracking reactions
have the same sequence as that in the DME carbonylation
reaction, confirming the high surface barriers on MOR-C.
To investigate the origin of surface barriers on MOR-C, acid

treatment and alkali treatment were first explored to etch the
as-made crystals. From Figure S13, both acid and alkali
treatments cannot deliver a product with an enhanced
conversion comparable to that of the HF-etched sample.
Given that the acid treatment mainly etches Al species, alkali
treatment removes Si species, and HF treatment etches Si and
Al without bias,46,47 herein the weak effect of acid and alkali
treatments on the improvement of activity implies that local
disordered −Si−O−Al− connection (neither silica species nor

alumina species) at the shell of crystals may be responsible for
the blocking/narrowing of the channels.
The effect of gel parameters on the synthetic products was

also studied to understand the formation of surface barriers. As
given in Tables S5−S8, the TEAOH + TMA system has a
much wider synthetic phase region in comparison to the CHA
system for MOR synthesis. The CHA system has narrow
product Si/Al ratios and is sensitive to the decreased gel
alkalinity, OSDA, and Na2O amounts. The crystallization
processes of the two systems were further examined. The
results are displayed in Figures S14 and S15. Both samples
possess a rough surface at the early crystallization stage (12 h).
After 16 h, the crystal surface of MOR-C becomes smooth,
while the surface of MOR-T remains rough even after 24 h. It
has been reported that quaternary ammonium cation TEA+

could adsorb on a certain crystal plane of zeolites and reduce
the surface energy.48−50 Herein, the existence of TEA+ in the
MOR-T system may contribute to the maintenance of the
rough surface. On the other hand, given that the alkalinity and
cation concentration (such as Na+) change significantly at
different crystallization stages,51−53 and the phase region for
CHA-templated MOR zeolite is much narrower, it is
speculated that the variations of the gel environment may
exert great influence toward the growth of MOR-C crystals at
the latter stage of crystallization (with the formation of a
smooth layer), causing the development of local structural
disorder and consequently surface barriers for diffusion.
The DME carbonylation performances of the products

synthesized under different conditions using CHA as the
OSDA are shown in Figure S16. It can be found that changes
in the gel alkalinity, product Si/Al ratio, H2O/Si ratio, and
crystallization time have less of an effect on the catalytic
activity (40−56%), which implies that the varied synthetic
conditions are helpless for the modification of surface diffusion
resistance on MOR-C sample. According to these results, we
speculated that the OSDAs employed for the synthesis are
crucial for the quality of MOR products.
In conclusion, the DME carbonylation performance of two

MOR zeolites was investigated to reveal the significant impact
of surface barriers on the catalyst activity and stability. In
comparison with the highly efficient catalyst MOR-T, MOR-C
with severe surface barriers exhibits low catalytic activity and
stability. Chemical etching using an acetone−HF solution is
evidenced to be an effective route to reduce surface resistance,
improve the apparent diffusivity of guest molecules, and
enhance the carbonylation activity (comparable to that of
MOR-T) and stability of the catalyst. Furthermore, it is found
that the severe surface resistance on MOR-C may originate
from a local disordered connection at the shell of crystals, and
the OSDAs employed for the synthesis are crucial for the
quality of MOR products. This study demonstrates that, in
addition to acid properties and diffusion length, the control of
surface barriers is essential for an improvement in the mass
transfer and catalytic performance of zeolite catalysts.
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