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We investigate numerically the rotational behaviour of a circular porous particle
suspended in a two-dimensional (2D) simple shear flow with fluid inertia at particle
shear Reynolds number up to 108. We use the volume-averaged macroscopic
momentum equation to formulate the flow field inside and outside the moving porous
particle, which is solved by a modified single relaxation time lattice Boltzmann
method. The effects of fluid inertia, confinement of the bounding walls, and
permeability of the particle are studied. Our two-dimensional simulation results
confirm that the permeability has little effect on the rotation of a porous particle in
unbounded shear flow without fluid inertia (Masoud, Stone & Shelley, J. Fluid Mech.,
vol. 733, 2013, R6), but also suggest that the role of permeability cannot be neglected
when the confinement effect is significant, or the fluid inertia is not negligible. The
fluid inertia and the confined walls have similar effects on the rotation of a porous
particle as that on a solid impermeable particle. The angular velocity decays with an
increase in fluid inertia, and the confinement effect suppresses the angular velocity
to a shear rate ratio below 0.5. A simple scaling argument based on the balance of
torque exerted by fluid flows adjacent to the two bounding walls and that due to the
flow recirculation can explain our results.
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1. Introduction

Rotation of particles at finite particle shear Reynolds number (Rep), which is
essential to understanding the hydrodynamics of particle–fluid systems in many
industrial and natural processes, has been the subject of a variety of theoretical
(Lin, Peery & Schowalter 1970; Robertson & Acrivos 1970), experimental (Poe &
Acrivos 1975; Zettner & Yoda 2001; Bluemink et al. 2008), and numerical studies
(Kossack & Acrivos 1974; Ding & Aidun 2000; Ku & Lin 2009; Mao & Alexeev
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2014). Moreover, several advancements have been made recently on detecting and
tracking particle rotation (Zimmermann et al. 2011; Klein et al. 2013; Byron et al.
2015; Wu et al. 2015; Mathai et al. 2016). These studies exclusively focused on
impermeable particles. In practice, however, porous and permeable particles are
frequently encountered. Examples include coal particles in power stations, suspended
sediment in coastal waters, and catalyst clusters in fluidized bed reactors. The
permeability of the particle can affect the flow pattern as well as particle–fluid
interactions to various extents (Chen & Cai 1999; Bhattacharyya, Dhinakaran &
Khalili 2006; Shahsavari, Wardle & McKinley 2014). Nonetheless, there have been
no investigations about the rotation of porous particles in fluid flow, apart from a
very recent theoretical analysis by Masoud, Stone & Shelley (2013) on the rotation
of porous ellipsoids in an unbounded simple shear flow. Their analysis was based on
the coupled Brinkman–Stokes model (Debye & Bueche 1948). They found that the
permeability has little effect on the rotation of porous particles in the absence of fluid
inertia, and Jeffery’s prediction (Jeffery 1922) remains an excellent approximation for
the angular velocity of porous ellipsoids in simple shear flow without fluid inertia.
Previous studies showed that the effect of fluid inertia, which increases with Rep,
leads to a reduction of angular velocity for a solid impermeable particle in shear flow
(Lin et al. 1970; Poe & Acrivos 1975; Ding & Aidun 2000; Zettner & Yoda 2001).
Therefore, the natural question is how the permeability affects the rotation of porous
particles in shear flow with fluid inertia.

In order to describe fluid flow through a porous medium, models based on either
Darcy’s law or the Brinkman equation have been widely employed (Brinkman
1949; Neale & Epstein 1973; Michalopoulou, Burganos & Payatakes 1993; Ollila,
Ala-Nissila & Denniston 2012; Dalwadi et al. 2016). Compared to Darcy’s law, the
Brinkman equation includes a viscous term in the momentum equation to account for
the boundary layer occurring in porous medium flow, and thus the continuity of fluid
velocity and shear stress is fulfilled at the interface between the porous region and
the free flow. Many researchers have used the Brinkman equation to study the flow
past moving porous media (Debye & Bueche 1948; Roy & Damiano 2008; Masoud
et al. 2013). However, these studies were limited to fluid flows with low enough
Reynolds number, such as creeping flow, because no nonlinear inertial term has been
included in the Brinkman equation. The inertial effect on the fluid flow of a moving
porous medium is not minute in practical applications (Wood 2007). Recently, Wang
et al. (2015) presented a volume-averaged macroscopic momentum equation in terms
of the intrinsic phase-average velocity for fluid flow passing the porous medium, in
which they included the inertial terms; thus, this equation is suitable for fluid flow
with finite Rep.

In this work, we study the rotation of a circular porous particle in a simple
shear flow with Rep up to 108. The general volume-averaged macroscopic governing
equations of Wang et al. (2015) are used to formulate the fluid flow around and
inside the porous particle. A lattice Boltzmann model is adopted to numerically solve
the general macroscopic equations. The effects of fluid inertia, confinement by the
boundary walls, and permeability of the particle are investigated. Our results reveal
that the fluid inertia and confinement of the bounding walls affect the rotation of a
porous particle in shear flow in a similar way to that of a solid impermeable particle.
Although the permeability has a negligible effect on the angular velocity of a porous
particle in unbounded shear flow at very low Rep, as found by Masoud et al. (2013),
our results suggest that the permeability is of paramount importance in porous particle
rotation in shear flow with either a significant confinement effect or a finite particle
shear Reynolds number.
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2. Method

2.1. Governing equations
Here, we consider one single, circular, neutrally buoyant, porous particle rotating in
a simple shear flow. The particle is placed in the centre of a rectangular channel
of length L and width H. The fluid flow is driven by two bounding walls (located
in the width direction) moving at the same speed U, but in opposite directions.
The particle shear Reynolds number is defined as Rep = GD2/ν, where D is the
particle diameter, G= 2U/H is the shear rate, and ν is the fluid kinematic viscosity.
We adopt the volume-averaged macroscopic equations in terms of the intrinsic
phase-average velocity to formulate the porous particle–fluid system (Wang et al.
2015). The macroscopic equations consist in averaging the microscopic equations
over a representative element volume (REV), where the REV scale is much larger
than the characteristic size of pore structures, such that it includes sufficient pores
for the averaging. On the other hand, however, it should be much smaller than the
particle such that the volume-averaged macroscopic equation can be applied in the
porous domain of the particle. Therefore, the fluid flow is governed by the following
macroscopic equations

∇ · 〈uf 〉f = 0 and
∂〈uf 〉f
∂t
+ 〈uf 〉f · ∇〈uf 〉f =− 1

ρf
∇〈pf 〉f + ν∇2〈uf 〉f +Fm, (2.1)

where ρf is the fluid density, and 〈uf 〉f and 〈pf 〉f are the intrinsic phase-average
velocity and pressure of fluid phase, respectively. The total body force Fm is calculated
via

Fm =−ενK (〈uf 〉f − 〈us〉s)− ε
2Fε√
K
(〈uf 〉f − 〈us〉s)|〈uf 〉f − 〈us〉s| +G, (2.2)

where 〈us〉s is the intrinsic phase-average velocity of particle, and ε the porosity of
particle. In the limit of ε = 0, the porous particle reduces to a solid impermeable
particle, whereas as ε approaches 1, the porous regime would be filled by fluid and
Fm vanishes in (2.1). K is the permeability of particle, which qualifies the ability
of the porous medium to transmit fluids, which is denoted by the Darcy number,
Da = K/D2, in this work. The geometric function Fε follows Ergun’s correlation
(Ergun 1952), Fε = 1.75/

√
150ε3. Note that the porous structure inside the porous

particle is described by the permeability and the porosity. In this work, for simplicity,
we associate the permeability K with the porosity ε via K= ε3d2

p/[150(1− ε)2], where
dp stands for the characteristic diameter of filling grains within the porous particle,
which is taken as 100 µm here, following Bhattacharyya et al. (2006). The total body
force Fm includes the resistance arising due to the porous medium, and the external
body force G. On the right-hand side of (2.2), the first and the second terms represent
the linear and nonlinear drag force, respectively. Under creeping flow conditions, i.e.,
steady flow with a sufficiently low flow velocity, the nonlinear resistance can be
neglected because of its quadratic nature. Thus, the inertial term in (2.1) can be
omitted. The macroscopic equations (2.1) reduce to the coupled Brinkman–Stokes
model (Debye & Bueche 1948) in the absence of an external body force. The net
force Fp and torque Tp on the particle are calculated using Newton’s equations:

Fp =Mp
dVp

dt
=−

∫
S

n · σ ds and Tp = Ip
dωp

dt
=−

∫
S
(rb −R)× (n · σ ) ds, (2.3a,b)
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where Mp is the particle mass, Ip the moment of inertia of particle, and S the boundary
of the particle. Note that rb represents the position vector of boundary node, R the
position vector of particle centre, σ the stress tensor, n the unit outward normal vector,
Fdrag

p = ∫S n · σ ds the hydrodynamic drag force experienced by particle, ωp the angular
velocity of particle, and Vp the simple expression of 〈us〉s. The velocity of particle us
is defined as us=Up+ωp× (r−R), with Up and r being the translation velocity and
position vector of the particle, respectively.

2.2. Numerical approach
The lattice Boltzmann method has been successfully applied to simulate complex
fluid flows because of its easy implementation of boundary conditions, short codes,
and natural parallelism compared to conventional computational methods based on
the Navier–Stokes equations (Ladd 1994; Zou & He 1997; Chen & Doolen 1998;
Ding & Aidun 2000; Ollila et al. 2012; Mao & Alexeev 2014; Wang et al. 2015).
In this work we use a modified single relaxation time lattice Boltzmann equation
(SRT-LBE) model to solve equations (2.1). The corresponding lattice Boltzmann
evolution equations are given as

fα(x+ eαδt, t+ δt)− fα(x, t)=−1
τ
[ fα(x, t)− f eq

α (x, t)] + δtFα, (2.4)

where τ is the relaxation time, fα(x, t) the particle distribution function (PDF), f eq
α (x, t)

the equilibrium PDF and Fα the force term. In our simulations, the two-dimensional
nine velocities (D2Q9) model is used. The lattice speed c is given by c= δx/δt, where
δx is the lattice size, and δt the time step. The equilibrium PDF and the force term
are defined as

f eq
α (x, t)= ρfωα

[
1+ eα · u

c2
s

+ (eα · u)
2

2c4
s

− u2

2c2
s

]
, (2.5)

Fα = ρfωα

(
1− 1

2τ

) [
eα ·Fm

c2
s

+ eα · u
c4

s

(eα ·Fm)− u ·Fm

c2
s

]
, (2.6)

where ωα is the weight parameter, defined as ω0 = 4/9, ω1−4 = 1/9, ω5−8 = 1/36, cs
is the lattice sound speed, and u is the intrinsic phase-average velocity of fluid phase
〈uf 〉f . The macroscopic density ρf and velocity u are calculated using

ρf =
8∑
α=0

fα and ρf u=
8∑
α=0

eαfα + 1
2
δtρf Fm. (2.7a,b)

The macroscopic velocity equation in (2.7) is nonlinear in the velocity u, since the
total body force term Fm includes u. The quadratic equation is solved by introducing
(2.2) into (2.7), and then the velocity u is computed using

u= v

d0 +
√

d2
0 + d1|v|

+Vp and ρf v =
8∑
α=0

eαfα + 1
2
δtρf G− ρf Vp, (2.8a,b)

where v stands for the temporal variable and the two parameters d0 and d1 are d0 =
(1+ (1/2)δt(εν/K))/2 and d1 = δt(ε2Fε/

√
K)/2.
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FIGURE 1. Dimensionless torque acting on a circular porous particle as a function of
1/(2
√

Da) for various confinement ratios B at Rep= 0.08: (a) the particle is stationary in
simple shear flow of shear rate G; (b) the particle has no translational motion but rotates
with an angular velocity G/2 in a quiescent fluid.

The periodic boundary conditions are implemented in the flow direction (length
direction), and the Zou–He boundary condition based on the bounceback of the
non-equilibrium part of the distribution function (Zou & He 1997) is applied for
the bounding walls (width direction). No explicit boundary condition is used for
the interface between the porous particle regime and free flow, since a second-order
viscous term is already included in the macroscopic governing equations. The fluid
density ρf and particle density ρp are set to ρf = ρp = 1.0. We use both the stress
integration method (Li et al. 2004) and the momentum exchange method (Mei, Yu
& Shyy 2002) to compute the hydrodynamic drag force Fdrag

p acting on the particle.
After Fp and Tp are obtained, the translational and angular velocity, as well as the
position, can be updated via (2.3). We find that the angular velocities at steady state
based on two force evaluation methods, in the current work, are almost the same.
The grid independence is also checked by the simulations of particle rotation in shear
flow with Rep= 39.168 and Da= 4.25× 10−12, in which we consider relaxation times
τ = 0.58, 0.60, 0.65, 0.70, particle diameters D = 40, 50, 60 lattice size, and aspect
ratios W/H= 4, 6, 8. The computed angular velocities at steady state for all the cases
are very close to 0.3807(±%0.03), and thus W/H = 6, τ = 0.58 and D = 50 lattice
size are chosen in the rest of this work.

3. Results and discussion

To validate our model, we first examine the torque acting on the porous particle
at a near-zero particle shear Reynolds number (Rep = 0.08) in two scenarios: (i)
the particle is stationary in shear flow of shear rate G, and (ii) the particle has no
translational motion but rotates with an angular velocity ω=G/2 in a quiescent fluid.
For such a small Rep, the effect of fluid inertia is negligible. Various confinement
ratios B (= H/D, 2 ∼ 12) and Da (2.5 × 10−7 ∼ 25) are considered. The results
are compared to the analytical solutions by Masoud et al. (2013), which are given
by T = −πµωD2(I2(1/

√
4Da)/I0(1/

√
4Da)). Note that T is the magnitude of the

torque, µ is the dynamic viscosity, and I2 and I0 are modified Bessel functions of
the first kind. Figure 1 shows that the curves of dimensionless torque on the porous
particle for B = 10 and 12 practically overlap, which means that the confinement
effect due to the bounding walls can be neglected when B > 10. We also notice that
the dimensionless torque for B > 10 agrees very well with the analytical solutions
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FIGURE 2. Dimensionless angular velocity ω/G (a) as a function of the confinement ratio
B for various Da at Rep = 0.08, and (b) as a function of Rep for various B at Da =
4.25× 10−12, compared with results for a solid impermeable particle in the literature.

by Masoud et al. (2013), thus confirming the accuracy of our model. By comparing
figures 1(a) to 1(b), we find that the torque experienced by the particle rotating
with an angular velocity of G/2 in scenario (ii) matches very well with the torque
exerted by shear flow with shear rate of G on a stationary particle in scenario
(i) in the absence of a confinement effect (i.e. B > 10). However, with an enhanced
confinement effect (i.e. B decreasing from 10 to 2), the torque on the particle rotating
in a quiescent fluid departs gradually from that for a stationary particle in shear flow
with a shear rate of G. This suggests that the confinement ratio has an impact on the
particle dynamics.

Then we study a porous particle freely rotating in shear flow between two bounding
walls (with confinement ratio B = 2 ∼ 12) at near-zero particle shear Reynolds
number Rep = 0.08. Here Da = 10−6 ∼ 10−1. Figure 2(a) shows the effect of B
on the dimensionless angular velocity ω/G (normalized by the shear rate G). It
is noted that ω/G increases with B, and converges to approximately 0.5 when
B > 10, regardless of Da. For large B(> 10), whereas the confinement effect is
minute, we obtain ω/G = 0.49710 ∼ 0.4996 for B = 10 and 0.4978 ∼ 0.4997 for
B = 12 when Da varies from 10−6 to 10−1, which is in good agreement with the
results for a solid impermeable particle in simple shear flow, i.e., the exact analytical
solutions (ω/G= 0.5 in unbounded domain by Jeffery (1922)) and numerical results
(ω/G = 0.4982 by Ding & Aidun (2000) and ω/G = 0.4971 by Ku & Lin (2009)
for Rep = 0.08 and B = 10). This supports the conclusion by Masoud et al. (2013)
that the permeability has little effect on the rotational behaviour of a porous particle
at negligible particle shear Reynolds number in unbounded shear flow, where the
Jeffery’s prediction (Jeffery 1922) remains an excellent approximation for the angular
velocity of porous particles. For smaller B(< 10), where the confinement effect of the
two bounding walls plays a role, we identify that ω/G is suppressed to below 0.5.
Ding & Aidun (2000) found that for low Rep the angular velocity of an impermeable
solid particle in shear flow decreases when the width of the channel decreases. As
shown in figure 2(a), we can draw a similar conclusion for a porous particle. However,
the suppressing effect for the rotation of a porous particle is also dependent on Da
when Rep is low. The smaller Da, the lower ω/G. At B = 2, for instance, we find
that ω/G for Da = 10−6 is 15% lower than that for Da = 10−1. This indicates that
the effect of permeability on the rotation of a porous particle should not be neglected
when the confinement ratio is small, even if the fluid inertia can be neglected.
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FIGURE 3. Comparison of the simulation results on the angular rate of a circular porous
particle in a simple shear flow with various Darcy numbers at the same confinement ratio,
(a) B= 2, (b) B= 4. Lines of slope −0.26, −0.267 and −0.3 at B= 2, and slope −0.273,
−0.28 and −0.31 at B= 4 are also shown.

Next we investigate the effect of fluid inertia on the rotation of a porous particle
in shear flow with Rep up to 108. Here we limit B to 2 and 4 to illustrate the
influence of confinement. First Da is fixed at Da = 4.25 × 10−12. Thus, the porous
particle approximates its solid impermeable counterpart, and a comparison with results
available in the literature for a solid impermeable particle can be made. As depicted
in figure 2(b), we observe that the angular velocity of the particle decreases with
increasing Rep, as reported in many previous works (Kossack & Acrivos 1974; Poe &
Acrivos 1975; Ding & Aidun 2000; Zettner & Yoda 2001). Quantitatively, our results
for the angular velocity ω/G are in good agreement with the simulation results by
Ding & Aidun (2000) for the whole range of Rep studied in this work, which further
demonstrates the accuracy of the current model. In particular, for low Rep we find
that ω/G reaches a plateau of 0.48 for B = 4 and 0.42 for B = 2, and the width
of plateau varies with the confinement ratio B, which is Rep = 0 ∼ 3 for B = 4 and
Rep = 0 ∼ 20 for B = 2. This was also well documented by Ding & Aidun (2000).
For high Rep > 39 we notice that the simulation results in this work agree well with
the experimental results by Zettner & Yoda (2001) and numerical results by Ding &
Aidun (2000), where ω/G decays rapid with Rep.

We extend the range of Da to 10−6∼ 10−1, and further examine the effects of fluid
inertia and confinement on the rotation of a porous particle in shear flow. As shown
in figure 3, the trend of ω/G decaying with increasing Rep, similar to that for a solid
impermeable particle, as shown in figure 2(b), is observed for both B= 2 and B= 4. A
plateau of ω/G is also identified in figure 3 for various Da at low Rep. Therefore, we
argue that a critical Rep, hereafter referred to as Re∗p, can be defined to illustrate the
importance of the effect of fluid inertia. In the case of Rep<Re∗p, ω/G remains almost
constant with increasing Rep, indicating that the Reynolds number has little effect on
the rotation of the particle. For Rep larger than Re∗p, ω/G is significantly influenced
by the Reynolds number, and decays rapidly with Rep. From figure 3, we find that
Re∗p is 3 for B = 4 and 20 for B = 2, and Re∗p is reduced when B increases, which
suggests that the effect of Reynolds number on particle rotation must be considered
even for very small Rep in a wider channel. In fact, Kossack & Acrivos (1974) found
that fluid inertia already plays a significant role for a solid impermeable particle in
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FIGURE 4. Dimensionless rotational angular velocity as a function of Da at various Rep
at the same confinement ratio (a) B= 2, (b) B= 4.

an unbounded shear flow with Rep = 1. Comparison between figures 3(a) and 3(b)
also shows that the confinement of two bounding walls suppresses ω/G to below
0.5. The smaller the confinement ratio B, the lower the angular velocity ω/G. This
observation is in accordance with our results for Da = 4.25 × 10−12, as discussed
above, and the results by Ding & Aidun (2000) and Zettner & Yoda (2001) for a
solid impermeable particle. To summarize, the fluid inertia and the confined walls have
similar effects on the rotation of a circular porous particle in shear flow as on a solid
impermeable particle. In addition, we found there is a power law between ω/G and
Rep at smaller Da (10−6 6 Da 6 10−3) when Rep is larger than Re∗p, but the power
law is absent for Da = 10−2 and 10−1 (as shown in figure 3). The power reduces
(for example, from −0.26 to −0.3 for B= 2) when Da increases from 10−6 to 10−3,
indicating a more rapid decay of ω/G with Rep. The trend could be extrapolated to
larger Rep, but the results should be verified by further numerical work or experiments.

We also evaluate the effect of permeability on the rotation of a porous particle in
shear flow at finite Rep. For low Rep(< 20), as shown in figure 4, the angular velocity
ω/G increases with Da. It is also seen that ω/G demonstrates the largest deviation
from 0.5 (the theoretical value of ω/G for an impermeable particle rotating in an
unbounded shear flow at Rep=0 by Jeffery (1922)) when Da=10−6, and the deviation
is reduced with increasing Da. Thus, the suppression of the angular velocity ω/G due
to the confinement of bounding walls is enhanced by reducing the permeability of
the particle. We observe that the rate of increase of ω/G with Da at B= 2 is higher
than that at B = 4. Masoud et al. (2013) found that Da has a negligible effect on
ω/G in shear flow with a vanishing confinement effect and fluid inertia. Based on
our results, together with the findings of Masoud et al. (2013), we expect that the
increasing rate of ω/G with Da at low Rep(< 20) may reduce to a negligible amount
when the confinement effect vanishes. Therefore, for low Rep(< 20), we argue that
the rotation of the porous particle increases with Da in a bounded shear flow, and the
rate of increase of angular velocity with Da diminishes when the confinement effect
reduces. In the limit of unbounded flow, the increasing rate of angular velocity over
Da becomes negligible, and Da has little effect on the rotation of a porous particle.
For large Rep(>20), ω/G is influenced by Da in a more complicated way, as shown in
figure 4. With increasing Da, ω/G first drops slowly to a minimum, then rises rapidly.
We observe the minimum of ω/G occurs at Da= 10−3 for both B= 2 and B= 4 in
our simulations.
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FIGURE 5. Streamlines for shear flow past a freely rotating circular porous particle with
various Da and Rep at B= 4, (a–d) for Rep = 5.574, (e–h) for Rep = 76.8. B= 2 presents
similar results (not shown here).

To understand better the flow field inside and around the rotating porous particle, we
plot typical results of the streamlines for the shear flow in figure 5. The streamlines
for B=2 and B=4 are quite similar, so we show only the results for B=4 in figure 5.
We find that a particle with higher Da is effectively more permeable, indicating that
the permeability has a strong influence on the flow field interior and exterior to
the rotating particle in the shear flow at finite Rep, as in the results without inertia
given by Masoud et al. (2013). In addition, the flow pattern in figure 5 is similar to
that of a solid particle freely rotating in shear flow given by Ding & Aidun (2000)
and Zettner & Yoda (2001). For a solid impermeable particle, it is argued that the
particle rotation is determined by a positive torque exerted by fluid flows adjacent
to the two bounding walls moving in opposite directions, and a negative torque due
to the recirculation of fluid flow in the middle of the channel (Ding & Aidun 2000;
Zettner & Yoda 2001). Besides these two contributions, a third fluid layer moving
near and around the particle at the surface exists, and transfers momentum from the
moving walls and the recirculating flow to the particle, but the net effect of the fluid
layer around the particle plays a minor role in reducing the particle rotation. For
a porous particle, however, the flow that penetrates the particle plays an important
role in the particle behaviour, i.e., many streamlines (which are dependent upon the
permeability) can penetrate and pass through the particle, reducing the contribution to
the angular velocity of the particle from the recirculation region. Thus, we examine
the effect of fluid inertia and permeability on the flow rate through the particle. Since
the flow rate through the entire particle is zero, based on the symmetrical flow field,
we calculate the flow rate passing the top-half of the porous particle at steady state
Qporous=UaverD/2 for all the cases, where Uaver stands for the average velocity along
the top radius in the y-direction of the particle. To compare with the flow rates with
various Rep and Da, Qporous is normalized by the flow rate through the top-half of
an infinitely permeable particle (the porosity ε = 1), Qtp. In figure 6, we find that
the normalized flow rate decreases with increasing Rep at the same Da with B = 4,
and there also exists a critical Reynolds number Re∗p. For Rep < Re∗p, the flow rate
remains almost constant with increasing Rep, and when Rep > Re∗p, the flow rate
decays rapidly with Rep. The reason may be that the normalized flow rate depends
on the particle rotation at steady state, and the value of ω/G decreases with Rep. We
also find that the normalized flow rate increases with Da at various Rep, indicating
that the permeability strongly affects the flow rate through the particle. Additionally,
the curves of normalized flow rates for B = 2 with various Rep and Da present a
similar trend.
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FIGURE 6. (a) Dimensionless flow rate at steady state Qporous/Qtp through the top-half of
a porous particle as a function of Rep at various Da with B= 4; (b) value of S2/S1 as a
function of Rep at various Da and B; (c) locations of the stagnation points as a function
of Rep at various Da and B, Rδ is the distance between the stagnation point and the centre
of the particle.

Figure 5 shows that the location of the stagnation point and the area of recirculating
flow change with Rep, Da and B. Following Zettner & Yoda (2001), therefore,
we present a simple scaling argument based on the balance of torque exerted by
the fluid flow to explain the effects of B, Rep and Da on ω/G. Similarly, one
circular porous particle of diameter D rotating steadily at angular velocity ω in a
channel of height H and the maximum shear velocity U on the wall is considered.
We assume that the velocity profiles near the particle surface are roughly linear;
thus, the positive torque contributed by the movement of the bounding walls is
T+ ∼ µ(1ur/1r)1S ∼ µ((U − 0.5ωD)/0.5(H −D))S1 ∼ µ((B−ω/G)/(B− 1)/G)S1,
and the negative torque due to recirculation of fluid flow is T− ∼ µ(1ur/1r)1S ∼
µ(0.5ωD/δ)S2∼µ(ω/G/(2δ/(GD)))S2, where δ is the distance between the stagnation
point and the centre of the particle surface, i.e., δ = |Rδ − D/2|, and Rδ is the
distance between the stagnation point and the centre of the particle. S1 and S2 are the
effective areas of the flow imposing the positive and negative torques on the particle,
respectively. Noting that the steady ω/G in shear flow is actually a balance of the
aforementioned positive and negative torque, we can estimate the angular velocity of
the porous particle from the following simple scaling argument:

ω/G∼ 1

0.5
S2

S1

D
δ
+
(

1− 0.5
S2

S1

D
δ

)
1
B

∼ B

0.5
S2

S1

D
δ
(B− 1)+ 1

. (3.1)

The values of S2/S1 and the dimensionless distance between the stagnation point
and the particle surface are shown in figures 6(b) and 6(c), respectively, as a function
of Rep for various Da and B. In figure 6(b,c), we find that the value of S2/S1 is
reduced as B increases, and thus the stagnation point moves gradually away from the
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particle surface, resulting in an increase of ω/G based on (3.1). When B is larger
than 10, the confinement effect can be omitted in (3.1). This explains the effect of
the confinement ratio on the particle rotation. The explanation of the effect of Rep

is not as straightforward. However, Poe & Acrivos (1975) and Zettner & Yoda (2001)
found that the influence of Rep can be related to δ, the distance between the stagnation
point and the particle external surface. For a particle with very small Da, i.e. fluid
flow is hard to penetrate or pass through the particle, the ratio S2/S1 increases and
the stagnation points of the recirculation flow become closer to the particle surface
when Rep increases (figure 6b,c), which in turn leads to a reduction of ω/G based on
(3.1), resembling that for a solid impermeable particle (Ding & Aidun 2000; Zettner
& Yoda 2001). This can be evidenced by comparing the streamlines in figures 5(a)
and 5(e) or figures 5(b) and 5( f ). For large Da, even though more fluid can penetrate
the particle due to the effect of permeability (figures 6d and 6h), the value of S2/S1
also increases with Rep. The combined effects of δ and S2/S1 with increasing Rep

eventually lead to a slow decrease of ω/G for a highly permeable particle (Da=10−1),
as demonstrated in figure 3. The effect of Da can also be explained. Figure 4 depicts
that ω/G increases with Da for low Rep. As seen in figure 5(a–d), for Rep = 5.574,
the stagnation points stay outside of the particle, but when Da rises from 10−6 to
10−1, more and more streamlines penetrate or pass through the particle. Thus, S2/S1
decreases as the recirculation area is gradually reduced, and we can expect a higher
ω/G at steady state following (3.1). At high Rep, with increasing Da, the stagnation
points can move from outside to inside the particle, crossing the external surface of
the particle, as shown in figure 5(e–h). In figure 6(c), we find that δ first drops and
then increases after the stagnation points crossing the external surface of particle at
high Rep. This explains the existence of a minimum of ω/G when Da changes from
10−6 to 10−1. For high Da, the reduction of the recirculation area results in a rapid
increase of ω/G, as shown in figure 4.

4. Conclusions

We investigate the rotation of a circular porous particle in a shear flow with Rep

up to 108 by numerical simulations. The volume-averaged macroscopic momentum
equation is used to formulate the fluid flow of a moving porous particle, and a
modified single relaxation time lattice Boltzmann method is implemented to solve
the macroscopic equation. The code is validated with the analytic solutions given
by Masoud et al. (2013) for the rotation of a porous particle in unbounded shear
flow at near-zero Rep, and simulation and experimental data given by Ding & Aidun
(2000), Zettner & Yoda (2001) for a solid impermeable particle with Rep up to 108.
The effects of fluid inertia, confinement ratio, and permeability are studied. Our
results confirm the conclusion by Masoud et al. (2013) that the permeability has
little effect on the rotation of a porous particle in unbounded shear flow without
fluid inertia, but also suggest that the role of permeability cannot be neglected when
the confinement effect is significant, or the fluid inertia cannot be neglected. The
fluid inertia and the confining walls have similar effects on the rotation of a porous
particle as they have on a solid impermeable particle. The angular velocity ω/G
decays with increasing Rep, and the confinement effect suppresses ω/G to below 0.5.
The smaller the confinement ratio B, the lower the ω/G. The effect of fluid inertia on
the rotation of particle is significant for Rep > Re∗p, where the critical Re∗p decreases
with the width of channel, and becomes minute when Rep 6 Re∗p. The permeability
impacts the rotation of a porous particle in a more complicated way in bounded flow.
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For low Rep, ω/G increases with Da. For large Rep, ω/G as function of Da first
drops slowly to a minimum, then rises rapidly. Following Zettner & Yoda (2001), we
find that a simple scaling argument based on the balance of a positive torque exerted
by fluid flows adjacent to the two bounding walls and a negative torque due to the
recirculation of fluid flow in the middle of the channel can explain our results.
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