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a b s t r a c t

In this paper, a multi-region model based on the unified Maxwell–Stefan diffusion theory is developed to
investigate the reaction–diffusion processes within catalyst pellets formed by micro-pore particles and
meso/macro-pore support. The corresponding partial differential equation (PDE) systems, describing
chemical reactions, bulk diffusion, Knudsen diffusion, surface diffusion and viscous flow, are converted to
ODE systems based on finite volume method (FVM). The resulting multi-scale ODE systems are solved by
reduced storage matrix method, where a quasi-stationary state assumption is adopted in the numerical
solution to solve multi-scale problem in which the diffusivities of micro-pores and meso/macro-pores are
significantly different. The alkylation of benzene over a single multi-porous pellet formed with H-ZSM-5
crystal particles was simulated as an example. The effects of volume fraction, size and spatial distribution
of H-ZSM-5 crystal particles on the effectiveness factor of the catalyst pellet were then investigated and
discussed. It is shown that the multi-region model is a potential bottom to up tool for reaction–diffusion
processes in catalyst pellet exhibiting multi-scale time characteristic.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Zeolite catalysts see their applications in a variety of industrial
sectors including, among others, fluid catalytic cracking (FCC) and
methanol to olefins (MTO). Despite the complex mass and heat
transfer between catalyst pellets and surrounding fluid, the perfor-
mance of single catalyst pellet affects the reactor operation sig-
nificantly. The latter is strongly dependent upon the transport phe-
nomena inside the catalyst pellet, such as reactants adsorption, multi-
component diffusion, surface reaction, and reactants and products
desorption (Keil, 2012, 2013). Practically zeolite catalyst pellets used in
industrial reactors have complicated porous structures, in which pores
with different sizes may co-exist. For instance, an industrial MTO
catalyst pellet is composed of micro-pore SAPO-34 zeolite crystal
particles and macro/meso-pore catalyst support (or called matrix).
Here the micro-pores refer to the pores smaller than 2 nm, the macro-
pores refer to those larger than 50 nm, and the meso-pores are in
between (Krishna, 1993; Krishna andWesselingh, 1997). The same can
be found in industrial FCC catalyst pellet where the micro-pore Y
zeolite crystal particles are surrounded by macro/meso-pore catalyst
support. The study of reaction and molecular diffusion in the micro-
pore zeolite crystals has received considerable interest in past decades
(Kärger and Ruthven, 1992; Chen et al., 1994). However, despite the
diffusion-reaction process inside the zeolite crystals, the transport and
thus the reaction in an industrial zeolite catalyst pellet are also highly
related to the number, position, and size distribution of the micro-pore
zeolite crystal particles. Previous studies found that the effectiveness
factor of a single micro-pore crystal particle decreases as the particle
size increases due to the diffusion limitations (Hansen et al., 2009).
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As the diffusion coefficients (the bulk diffusion combined with
Knudsen diffusion) in the macro/meso-pores may be 4–6 orders of
magnitude higher than that of surface diffusion in the micro-pores, it
is usually assumed that the macro/meso-pores do not significantly
affect intracrystalline diffusion, and only a few studies concerning
the transport of reactants and products in macro/meso-pores in the
catalyst support have been reported so far in the open literature
(Hinderer and Keil, 1995; Keil et al., 1999). A series of experimental
studies by Kortunov et al., (2005) showed that the diffusion in macro/
meso-pores in fact plays an important role in the transport inside
catalyst pellets. In this connection, in order to improve the diffusivity
of reactants and products and thus enhance the reaction rates in the
catalyst pellet, the number, position, and size distribution of micro-
pore crystal l particles have to be optimized by considering the dif-
fusion in both macro/meso-pores and micro-pores simultaneously.
Currently researchers and engineers mainly use the trial and error
method to optimize the catalyst based on the conversion and selec-
tivity data obtained in the laboratory scale experiments, which
certainly elaborates the process of catalyst development. Apparently
the understanding of the transport and thus reaction in real industrial
catalyst pellet still requires significant effort. As the first step toward
this ambition, the aim of this paper is to develop a modeling approach
in which the diffusion in both micro-pores and macro/meso-pores can
be studied simultaneously.

Obviously, the modeling approach capable of addressing the
diffusion-reaction process in both micro-pores and macro/meso-
pores simultaneously has to deal with different diffusion
mechanisms dwelled in different pore sizes. From the view of
modeling hierarchy, this model could be regarded as a meso-
scale model (medium level). In the literature, though a variety of
modeling approaches have been developed for the diffusion-
reaction process in a catalyst pellet, there are few meso-scale
models for catalyst pellets (Hansen et al., 2009; Solsvik and
Jakobsen, 2012). Most models could be ascribed to micro-scale
and macro-scale models. Micro-scale models are at the lowest
level for catalyst particles, their research objects focus only on
zeolite crystals. Keil (2012) and Hansen and Keil (2012) recently
proposed a hierarchical modeling strategy for diffusion-reaction
process in zeolite crystals, in which the first principles, quantum
chemistry, force field simulations and macroscopic differential
equations are coupled at different scales. In their strategy, the
quantum chemical calculations is applied to study the influence
of the active sites of the catalyst, which is followed by Monte
Carlo and molecular dynamic simulations of adsorption and dif-
fusion of reactants and products, and ended with continuum
modeling of zeolite particles. The main idea in this micro-scale
model is to use the results obtained in the simulations at a lower
level as an input to the simulations at a higher level. This com-
prehensive modeling strategy has been demonstrated in the
analysis of the diffusion limitation in the alkylation of benzene
over H-ZSM-5 crystals (Hansen et al., 2009). Macro-scale models
are at highest level for catalyst particles. The main feature of this
model is to assume uniform distribution of reaction sites and the
same diffusion mechanism inside the whole catalyst particle. In
the real catalytic reactors, the reactions over the catalyst pellets
are complicated and the diffusion of multi-components needs to
be taken into account. So the assumption of uniform distribution
can considerably reduce the computational time. The classical
approach for predicting the multi-components diffusion and
reaction in catalyst pellets is to employ continuum equations
with the assumption of the uniform distribution of pore size and
active sites in the catalyst pellet (Sahimi, 1990; Hegedus and
Pereira, 1990; Solsvik and Jakobsen, 2011, 2012; Keil, 2012; Lim
and Dennis, 2012). Solsvik and Jakobsen (2012) recently outlined
the derivation of the different diffusion flux models for porous
pellets with respect to the molar based and the mass based
average velocity definition. The diffusion resistances described by
the macro-scale continuum models are in essence the effective
resistances which account for the comprehensive effect of the
steric resistance and adsorption introduced by the existence of
micro-pore crystal particles (active sites). The reaction rates in
the continuum models, on other hand, are related to the effective
rates where the diffusion within the micro-pore crystal particles
is neglected. Therefore, the main problem for macro-scale models
is how to effectively predict the diffusion and rate parameters.
The key lies in meso-scale models. Since the micro-scale model is
related with elementary reaction steps, a meso-scale model
embodies important theoretical significance in linking the micro-
scale model and macro-scale model.

A meso-scale model could deal with different diffusion
mechanisms for different pore sizes. For micro-pore crystal parti-
cles, surface diffusion of adsorbed molecular components along the
pore wall surface is dominant. The adsorption isotherms and dif-
fusion coefficients within micro-pores could be effectively predicted
by means of molecular dynamics and Monte Carlo simulations
(Hansen et al., 2009; Hansen and Keil, 2012; Smit and Maesen,
2008). While for macro/meso-pores, the bulk (or molecular) diffu-
sion and Knudsen diffusion becomes important suppose that no
strong adsorption exists. In addition, the pressure gradient inside
the pellet is not negligible if there is a net change in the number of
moles inside the porous catalyst, which can lead to the viscous or
Darcy flow in the pellet (Krishna, 1993; Krishna and Wesselingh,
1997). The fluxes of bulk and Knudsen diffusion as well as the
viscous flow can be described by a modified Maxwell–Stefan model
(Krishna and van Baten, 2009a) in which the gas-phase Maxwell–
Stefan diffusion model is modified by introducing the interaction
between the species and pore surface or wall. Therefore, it is pos-
sible to derive a unified Maxwell–Stefan description for diffusion
and/or viscous flow for both micro- and meso-/macro-pores, as
shown by Krishna and van Baten (2009b). The main problem for
this approach caused by the difference of the diffusion coefficients
between macro/meso-pores and micro-pores could be at several
orders of magnitude, which means that the diffusion resistance, and
thus the characteristic time could be significantly different for these
different size pores. In current contribution, we develop a numerical
scheme to address this problem.

This paper is organized as following: firstly the unified Maxwell–
Stefan diffusion theory is used to describe diffusion and reaction
behavior in both micro- and macro/meso-pores in catalyst pellets.
Then the multi-region model and corresponding numerical methods
are introduced. This model is validated against the results of alkyla-
tion of benzene over a single multi-porous pellet formed with H-
ZSM-5 crystal particles by Hansen et al. (2009). Finally, the effects of
volume fraction, size, and spatial distribution of the H-ZSM-5 crystal
particles on the effectiveness factor are studied and discussed.
2. Modeling

2.1. Multi-region model

Our model for reaction–diffusion process in catalyst pellet with
multi-pores is a natural outcome of the hierarchical multi-scale
idea. From theoretical view, the use of quantum chemical or ab
initio dynamical simulation can give deep insight into details of a
catalytic reaction process with high accuracy. However, the
quantum chemical approach, due to its time-consuming char-
acteristic, has been mostly used to calculate energy barriers of
elementary reactions and vibration frequency spectrum of sta-
tionary geometries along the reaction coordinate (Keil, 2012;
Hansen and Keil, 2012). The limited time and length scales in
quantum chemical calculation hinder its application in catalyst



Fig. 1. A catalyst pellet formed with micro-pore crystal particles region Z and
support region S. The region S is decomposed into subregionA and Bk.
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design and reactor optimization. A model based on hierarchical
multi-scale idea is more practical for real application.

A single catalyst pellet could be decomposed into two different
types of regions: micro-pore crystal region Zand catalyst support
(or matrix) region S. It is assumed that only the micro-pore crystals
contain the active sites of the catalyst, where the reactions and
surface diffusions may occur. The catalyst support consists of meso-
pores or macro-pores, where the bulk diffusion combined with
Knudsen diffusion dominate if no strong adsorption exists. Gen-
erally, the difference of the diffusion coefficients between these two
types of regions is about several orders of magnitude, which means
that the diffusion resistance and thus the characteristic time is
significantly different for regions Z and S. The convenient approach
for solving such problem is to describe the reaction–diffusion pro-
cess in the whole particle by two separate partial differential
equations (PDEs) that are coupled with component mass fluxes.

Surface reactions around micro-pore crystals are always not
negligible because of high transport ability of the support region. It
is natural to incorporate the surface reaction term into the PDE for
catalyst support region S. However, the different characteristic time
between the diffusion and surface reaction may lead to the solution
much more complicated. In fact, according to whether it connects to
the external boundary of the catalyst pellet or not, the catalyst
support region S can be decomposed into two different types of
subregions: A and B. Adenotes the subregion connected to the
external boundary of the pellet, and B denotes the subregion that is
not directly connected to the external boundary. The subregion B
can be further divided into small regions Bk (k¼1, 2, 3,…, M) due to
the connectivity, i.e., each region Bk is isolated by support region Z.
Fig. 1 shows a simplified two-dimension partition for illustrating
the hierarchical relation for different types of regions. Let us now
ignore the coupling between the support region and the zeolite
crystal region for simplification. If the diffusion transfer is con-
siderably faster than the surface reaction kinetics, the exchange rate
of component masses between subregionA and environment of the
catalyst pellet will be much faster than the rate of the surface
reaction. However, in each small region Bk the faster diffusion
transfer only increase the speed in achieving the uniform dis-
tribution of components of interest, and the surface reaction rate
determines the speed in achieving the stationary state of small
region Bk. This implies that the subregion B will need a much
longer time than that of the subregion A to approach stationary
state. So it is meaningful to further separate the PDE system of the
catalyst support region S according to its region connectivity.

The catalyst pellet formed with the randomly distributed micro-
pore crystals could be split into micro-pore crystal region Z, sub-
region A, and subregion Bk(k¼1, 2, 3, …, M) based on the discus-
sion above. Each region is controlled by its own PDEs with coupling
boundary conditions. We call such scheme multi-region model.
When volume fraction of subregion B is small, the subregion B
could be replaced by micro-pore crystals for simplification, and the
effect of the replacement in analyzing catalytic performance of the
pellet will be negligible.

2.1.1. Continuum approach for micro-porous crystal region Z
The change of loading of component i with time in the region Z

due to reaction and diffusion is described by the following PDEs:

∂qi

∂t
¼ −∇⋅Ni

!þ ri i ¼ 1;2 ; …; nð Þ ð1Þ
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Stefan diffusion theory. The equations for n-component diffusion
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. The form of Maxwell–Stefan equation, Eq. (2), is slightly

different from that in Hansen et al. (2009) by defining Ni
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where f i (in Pa) denotes the partial fugacity of component i. The
relation between fi and qi can be obtained on the basis of multi-
component adsorption theory, e.g. the ideal adsorbed solution
theory (IAST) (Myers and Prausnitz, 1965). The solution of Eqs. (2)
and (3) for the fluxes is given by
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Eqs. (1) and (4) describe the reaction–diffusion processes in
micro-pore crystals. The parameters Di, Dij and Γijcan be predicted
based on the molecular dynamic simulations and Monte Carlo
simulations. And the parameters of reaction kinetics can be
obtained by quantum chemical calculations in combination with
harmonic transition state theory. The Maxwell–Stefan diffusion
model combined with multi-component adsorption theory pro-
vides a quantitative prediction of the multi-component fluxes in
the micro-pore crystals.
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2.1.2. Continuum approach for subregion A of catalyst support
region

The governing equations of component mass balance in the
catalyst support region S could be described as follow

ϵ∂ci
∂t

¼ �∇ � ℕi
-
þri ði¼ 1;2;…;nÞ ð6Þ

where ϵ (in dimensionless) denotes porosity of catalyst support, ci
(in kmol

m3 ) the concentration of component i, Ni
�!

(in m
s
kmol
m3 ) the molar

flux of component i, and ri (in 1
s
kmol
m3 ) the reaction rate of compo-

nent i. The value of ri in the support region is zero if the surface
reactions are ignored. When the surface reactions are not ignored,
ri can be calculated by

ri ¼
riScsu
vc

ð7Þ

when the cells of interest are adjacent to the micro-pore crystals,
which will be otherwise set to zero. The surface reaction refers to the
reaction at the active sites that are located at the boundary face of the
crystal particles, where the reaction species may be transported
much faster than that inside the zeolite channel. The surface reaction
is introduced to account for this effect. In the Eq. (7), S (in m2) is the
interface area between region S and region Z, vc (in m3) is the cell
volume, and csu (in kmol unit cell

m2 ) denotes the number (in kmol) of unit
cells of micro-pore crystals per 1 m2 area of the interface. The right
hand side of Eq. (7) is calculated based on Eq. (18), where the
required component loadings are computed from IAST by assuming
the first layer of active sites of crystal particle is located at the
boundary surface. The value of csu could be predicted based on
crystal’s framework parameters. The flux of component i, Ni

�!
, could

be calculated based on Maxwell–Stefan equation (Krishna and van
Baten, 2009a, 2009b) described as follows
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where pi (in Pa) is the pressure of component i, xi (in dimensionless)
is molar fraction of component i,De

ij(in
m2

s ) is the effective binary pair
diffusion coefficients, and De

iS(in
m2

s ) is the effective Maxwell–Stefan
diffusion coefficient in the porous medium. TheDe

ij,D
e
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their corresponding free space values by (Krishna and Wesselingh,
1997)
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τDij; D

e
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where τ (in dimensionless) denotes the tortuosity of catalyst support,
Dij (in m2

s ) are binary pair diffusion coefficients in free space, which
can be estimated from the kinetic gas theory (Solsvik and Jakobsen,
2012; Reid et al., 1987), and DiS (in m2

s ) is the Maxwell–Stefan diffu-
sion coefficient portraying the interaction between component i with
the pore surface(s). DiS , as described by Krishna and van Baten
(2009a), represents a conglomerate of the “Knudsen”, “surface”, and
“viscous” effects. Following Kerkhof (1996) and Krishnaand van Baten
(2009a), we could get the formulation by neglecting the adsorption
between the component i and pore surface

DiS ¼ DiKþ
B0ciRT
μi

ð10Þ
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3

ffiffiffiffiffiffiffiffiffi
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πMi

s
ð11Þ
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32
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where DiK (in m2

s ) is the Knudsen diffusivity (Krishna and Wesselingh
1997), and B0 (in m2) the permeability of the pore, μi (in

kg
ms) the

dynamic viscosity of component i, d0 (in m) the pore diameter, and
Mi (in
kg

kmol) the mass of species i. The second term on the right side of
Eq. (10) represents the viscous contribution.

The solution of Eq. (8) for the fluxes, Ni
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The relationship between pi, and ci follows the ideal gas law

pi ¼ ciRT ð15Þ
The reaction–diffusion processes in the catalyst support region

S can be described by (Eqs. (6) and 13). The parameters ϵ, τ, and d0

are used to characterize the porous structure of the region in
approximation. Because the values of De

ij are larger than Dij by
several orders of magnitude, the support region S will need less
time than the micro-pore crystal regionZ in approaching the
stationary state. Such multi-scale phenomenon also exists within
the support region S itself. The solving scheme for the subregion A
could approach the solution of stationary state much faster than
that for subregion B. This scheme will be applied to improve the
solving efficiency. Thus the continuum approach for subregion B
can be simplified in the following.

2.1.3. Continuum approach for subregion B of catalyst support region
The subregion B of catalyst support is not connected to the

external boundary of the pellet, and it can be further decomposed
into small region Bk (k¼1, 2, 3, …, M). Each small region Bk is
surrounded by micro-pore crystals. When the characteristic time
of diffusion in Bk is much smaller than that of the surface reaction,
the component concentration will approach the uniform dis-
tribution within Bk very fast, which, however, has a slow speed in
approaching the stationary state. Therefore, it is convenient to
assume the uniform distribution of all components in each Bk,
which can avoid solving the PDEs, Eq. (6), at a very small time step
due to the small characteristic time of diffusion. For each sub-
region Bk , the Eq. (6) could be simplified as

ϵdci
dt

¼ �∇∙Ni
�!þri ði¼ 1;2;…;nÞ ð16Þ

where Ni
�!

only represent the boundary fluxes of Bk.
The simplification is not necessary if the characteristic time of

diffusion in Bk is comparable to that of the surface reaction, since
the computational efficiency in solving the PDEs is dominated by
the reaction rate term in this situation. However, the simplification
could approximate results anyway due to the higher transport
capacity of Bk against micro-pore crystals.

2.1.4. Coupling boundary conditions
At the interfaces of the region Z and S, the mass fluxes of each

region should be equal

ℕi
!¼ Ni

!
cvu i ¼ 1;2 ; …; nð Þ ð17Þ

where cvu ð in kmol unit cell
m3 ) denotes the number (in kmol) of unit cells

of micro-pore crystal per 1 m3 volume.

2.2. Numerical method

As stated above, the diffusion–reaction process in each region
(or subregion) is described by separate time-dependent PDEs
that are coupled with mass fluxes at the interfaces. The



Fig. 2. Different time scales for the ODE system for reaction–diffusion inside a
catalyst pellet.

Table 1
Three-site Langmuir parameters of C2H4, C6H6 and C8H10 at 653 K (Hansen et al.,
2009).

Species molecules
unit cell

� � 1
Pa

� �
qsat
i;A qsat

i;B qsat
i;C bi;A bi;B bi;C

C2H4 12 5 2 8.40e�8 1.50e�9 4.46e�12
C6H6 4 4 4 1.97e�6 4.44e�9 7.58e�11
C8H10 4 2 0 3.13e�6 5.58e�10 0
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time-dependent PDEs for each region (or subregion) are first dis-
cretized with respect to the spatial coordinate by use of finite
volume method (FVM), which yield time-dependent ordinary
differential equations (ODE) for each region (or subregion). In this
work, the reduced storage matrix method (Brown and Hindmarsh,
1989), which is the combination of Newton iteration, BDF meth-
ods, GMRES iteration, and preconditioning for stiff reactions, was
used to solve the stiff ODEs for each region (or subregion). For
non-stiff ODEs, we replace the GMRES iteration with functional
iteration and ignore the preconditioning (Brown and Hindmarsh,
1989; Radhakrishnan and Hindmarsh, 1993) such that the com-
putational efficiency can be improved. The time step of the ODEs
for each region (or subregions) is automatically controlled by pre-
setting both the relative and absolute tolerance (Radhakrishnan
and Hindmarsh, 1993; Gear, 1971).

The treatment of the boundary conditions, i.e. how to update
mass fluxes at the interfaces between different regions, is critical for
the computational efficiency in solving ODEs due to the multi-scale
characteristics of time. The essence underlying the treatment lies in
the balance between the accuracy and computational efficiency. It is
obvious that a higher accuracy for the solutions of ODEs can be
obtained by updating the coupled mass fluxes with a smaller time
interval, which, however, leads to a much longer computational
time to reach the stationary state. Fig. 2 illustrates the different time
scale of the ODEs, where dtcoupling (in s) represents the time interval
for updating the coupled boundary conditions, dtZ(in s) the time
step of the ODEs for region Z, and dtA(in s) the time step of the
ODEs for subregion A. The ODEs for region Z and subregion A are
solved separately at every time interval dtcoupling. Due to the dif-
ferent transport capacities, dtZ may be larger than dtA by several
orders of magnitude suppose the stiff of reactions is not too large. If
our interest focuses mainly on the stationary state of the catalyst
pellet, or the approximate evolution of the catalyst performance, a
loose solution tolerance for the ODEs for subregion A could be set
by choosing a relatively large dtcoupling, which will in turn speed the
computation to reach the stationary state of the subregion A with
the given coupling fluxes. Another practical scheme is to set a
relatively small time limit for solving the ODE system of subregion
A at every time interval dtcoupling, and the ODE systems with the
time evolution will satisfy a strict criteria and approach the sta-
tionary state of the particle at last. The choice of the time step of the
ODE system of the subregions Bk,which is not represented in Fig. 2,
is determined by characteristic times of the diffusion and reactions
in Bk. It is convenient to replace the Bk by the micro-porous crystal
when the volume of the subregion B is small.

Another key point in current multi-region model is to produce
physical model of the catalyst pellet. In order to do that, the size of
the pellet, the volume fraction of the micro-porous crystal parti-
cles, the size of the micro-porous crystal particles, and the spatial
distribution of the micro-porous crystal particles need to be
known in priori. The first step is to determine the mesh size of the
pellet used in the simulations according to the size of the micro-
porous crystal particles. The mesh size cannot be larger than the
crystal particle size, and thus one crystal particle may include at
least one unit cell of the mesh. It has to be noted that, however, the
mesh of the catalyst pellet is used to solve the PDEs, and the mesh
size has to be checked against the mesh convergence study of the
reaction–diffusion system of the pellet. The second step is to
determine how many mesh units must be included in one micro-
porous crystal particle. This can be easily done as the mesh size
and crystal particle size are both known. The third step is to locate
the crystal particles inside the pellet. The number of the crystal
particles needs to be calculated according to the size and volume
fraction of the crystal particles in the pellet. Then the mesh units
are grouped into clusters, and each cluster includes several
neighboring mesh units and the size of the cluster equals the
crystal particle size. Based on the spatial distribution of the crystal
particles, the crystal particles will be assigned to the correspond-
ing locations. For example, if the random spatial distribution is
considered, then Ncrystal random number in the range of 1–Ncluster

will be produced, where Ncrystal is the number of the micro-porous
crystal particles inside the pellet, and Ncluster is the number of
clusters. The cluster is now defined as the crystal particle if the
index of the cluster is amongst the Ncrystal random number pro-
duced above. In principle, any shape of the micro-porous crystals
and the pellet could be applicable in this modeling approach, as
long as suitable mesh is used.

In summary, the scheme adopted here for solving the multi-
scaled problem, caused by significantly different diffusion resistance
of region Z and S, is based on a quasi-stationary state assumption.
We exploit the different diffusivity of different regions, which leads
to different speed in approaching stationary state, to improve the
solving efficiency of the whole system. However, if we are only
interested in steady state of the reaction–diffusion system, a steady-
state solver (e.g. using Gauss Seidel iteration) is more favored since
it is usually more efficient than the transient state solver.
3. Alkylation of benzene over H-ZSM-5

In the present study the multi-region model is applied to
simulate the alkylation of benzene over a single multi-porous
pellet formed by H-ZSM-5 crystals. The considered reaction
kinetics is described by a one-step reaction scheme, and the
parameters of reaction kinetics and diffusion of the H-ZSM-5
crystal region are obtained from Hansen et al. (2009). The C2H4/
C6H6 ratio at the boundary of the catalyst pellet was also in
accordance with that in Hansen et al. (2009). The rates of three
species corresponding to the one-step mechanism are (Hansen
et al., 2009)

�rC2H4 ¼ �rC6H6 ¼ rC8H10 ¼
kf

qC6H6
22�3:25qC6H6 �3:5qC8H10

qC2H4
qC6H6

qC6H6 þqC8H10
λ�krqC8H10

qC8H10
qC6H6 þqC8H10

λ ð18Þ
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where kf (in 1
s) and kr (in 1

s) are coefficients for the forward and
reverse reaction of ethene and benzene to form ethylbenzene,
respectively. The λ (in dimensionless) in Eq. (18) is the active site
density (average number of acid sites per intersection) defined
asλ� γ

4 , whereγ (in dimensionless) denotes the number of protons
per unit cell which are located in an intersection. We set
kf ¼ 6:96� 1021

s, kr ¼ 1:37� 10�11
s, corresponding to a pellet

temperature of 653 K (Hansen et al., 2009) andλ¼ 0:3425, corre-
sponding to 1.37 acid sites per unit cell (Hansen and Keil, 2013).

The matrix of thermodynamic correction factors, Γ
� �

, is calcu-
lated based on IAST (Myers and Prausnitz, 1965), only using the
parameters of the pure-component adsorption equilibrium at the
same temperature and the same adsorbent. According to Hansen
et al. (2009), the adsorption isotherms of a pure-component are
described by a three-site Langmuir model

qi ¼
qsat
i;Abi;Af i

1þbi;Af i
þ
qsat
i;B bi;Bf i

1þbi;Bf i
þ
qsat
i;C bi;Cf i

1þbi;Cf i
ð19Þ

where qsat
i;X (in molecules

unit cell ) denotes the saturation capacity of species i
on site X (X¼A, B, C), and bi;X (in 1

Pa) is the affinity constant of
species i on site X (see Table 1).

The exchange coefficientsDij required by Eq. (2) are estimated
using the interpolation formula (Hansen et al., 2009)

qsat
j Dij ¼ qsat

j Dii

h i qi
qi þ qj qsat

i Djj
� � qj

qi þ qj ¼ qsat
i Dji ð20Þ

The self-exchange coefficients, Dii(in m2

s ) , is related to the
Maxwell–Stefan diffusivity by an empirical correlation (Hansen
et al., 2009)

Dii ¼Di ai;1exp �ai;2θ
� �þai;3exp �ai;4θ

� �� � ð21Þ
where ai;1, ai;2, ai;3, and ai;4 are dimensionless coefficients, θ (in
dimensionless) is the total occupancy of the mixture defined
asθ¼ P3

i ¼ 1 θi. The loading dependencies of the diffusivities of
benzene and ethylbenzene are approximated by a simple relation
(Hansen et al., 2009)

Di ¼Dið0Þð1�θÞ ð22Þ
While for ethene, an improved relation is used (Hansen et al.,

2009)

Di ¼Dið0Þ
ð1þεÞz�1

ð1þε
f Þz

ð23Þ

with

ε¼ ðβ�1þ2θÞf
2ð1�θÞ ;β¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4θ 1�θ

� �
1�1

f

� 	s
; f ¼ a expðbθÞ ð24Þ

In Eqs. (23) and (24), z, a, and b are dimensionless parameters.
Table 2 gives the values of these diffusion parameters.
4. Results and discussion

The alkylation of benzene in a catalyst pellet formed by H-ZSM-5
crystals was studied as an example by use of current multi-region
Table 2
Diffusion parameters of C2H4, C6H6 and C8H10 at 653 K (Hansen et al., 2009).

Species qsat
i Dið0Þ [dimensionless] (Eqs. (23), and (2

molecules
unit cell

� �
m2

s

h i
z a

C2H4 22 9.95e�12 2.5 0.7687
C6H6 4 2.0e�13 — —

C8H10 4 1.6e�13 — —
model. We first validated the model by comparing the simulation
results for single spherical catalyst pellets with those reported in
Hansen et al. (2009). In the validation, the catalyst pellets formed
exclusively by H-ZSM-5 crystals were simulated for eleven pellet
sizes and three total boundary phase pressures under the fixed
boundary benzene/ethene molar ratio of 5. After validation, we
studied effects of volume fraction, size and spatial distribution of H-
ZSM-5 crystal particles on the effectiveness factor at fixed boundary
partial pressures (83316.67, 416583.33, and 100.0 Pa for C2H4, C6H6,
and C8H10, respectively) for catalyst pellets of radius of 10 μm. In all
simulations, the temperature is fixed at 653K. The parameters ϵ, τ,
and d0, which are used to characterize the porous structure of the
region S, are assigned as 0.5 (dimensionless), 4.0 (dimensionless),
and 10 (nm), respectively. For convenience of analyzing these
effects, we define two internal effective factors as follow

ηpellet �
R
VZ
rC8H10 dVþ csu

cvu

R
SZ
rC8H10 dS

rbC8H10Vpellet
ð25Þ

ηZ �
R
VZ
rC8H10 dVþ csu

cvu

R
SZ
rC8H10 dS

rbC8H10VZ
ð26Þ

where VZ(in m3) represents the total volume of the region Z, and
SZ is the total area of the boundary faces of the region Z, Vpellet (in
m3) denotes the total volume of the whole catalyst pellet, and rbC8H10
(in 1

s
molecules
unit cell ) is the reaction rate of ethylbenzene calculated at

boundary temperature and partial pressures. For H-ZSM-5 crystal,
we set

csu ¼ 4:1680� 10�10kmol unit cell
m2 ; cvu ¼ 0:30950

kmol unit cell
m3

ð27Þ
Based on the (Eqs. (25) and 26), it could be found that rbC8H10

ηpellet means the volume mean reaction rate of catalyst pellet, and
rbC8H10ηZ represents the volume mean reaction rate of crystal
region Z. The fixed boundary temperature and partial pressures
means the value of rbC8H10 is constant. Therefore, the curve shape of
volume mean reaction rate is identical with that of its corre-
sponding effective factor when the boundary partial pressures and
temperature are fixed.

4.1. Model validation

In order to choose suitable mesh size for these simulations,
effectiveness factors of a pellet of 10 μm radius that is composed
exclusively by H-ZSM-5 crystals (see Fig. 3) were first calculated by
setting the radial mesh size as 0.5, 0.25, 0.1667, 0.125 μm respec-
tively. As it can be seen, when the mesh size reduces, the effec-
tiveness factor predicted increases, which means fine mesh is
preferred for accurate effectiveness factor calculation. On the other
hand, however, fine mesh size means large number of mesh units,
and this certainly causes much heavier computational load. A close
check discovers that when the mesh size decreases from 0.25 to
0.125 μm, the effectiveness factor changes from 0.557 to 0.598,
which indicates an increase of relative error of the solution of
6.75%. Note that the number of mesh units for mesh size of
4)) [dimensionless] (Eq. (21))

b ai,1 ai,2 ai,3 ai,4

0.3651 0.1088 1.4554 0.3063 0.90
— 3 0 0 0
— 3 0 0 0



Fig. 3. Effectiveness factor of a catalyst pellet of 10 μm radius composed exclusively
by H-ZSM-5 crystal particles as function of mesh size.
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Fig. 4. Effectiveness factor as function of the particle radius for three total gas
phase pressures at 653 K and a benzene to ethene ratio of 5. Our 3D model results
are shown as diamonds, and the data from Hansen et al. (2009) are shown as
squares.

Fig. 5. The effectiveness factors ηpellet and ηZ versus volume fraction of H-ZSM-5
crystal particles (left axis). Weight factor of surface reactions versus volume frac-
tion of H-ZSM-5 crystal particles (right axis).
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0.25 μm is 180224, which is only one eighth of that for mesh size
of 0.125 μm, the computational efficiency significantly increases.
Thus in the following subsections we chose 0.25 μm as the radial
mesh size for the simulations to study effects of volume fraction,
size and spatial distribution of H-ZSM-5 crystal particles.

Before investigation on the influence of volume fraction, size and
spatial distribution of H-ZSM-5 crystal particles, we first carried out
simulations for a single spherical H-ZSM-5 crystal particle for vali-
dation. In total 33 simulations have been carried out for this com-
parison, which include simulations for different crystal size and gas
phase pressure. The particle radii of these validation simulations
range from 0.05 to 5.0 μm, and their mesh sizes are chosen less
than 0.25 μm. It is seen that the effectiveness factor decreases as the
crystal radius increases due to the diffusion limitation (Hansen et
al., 2009). The results of the effectiveness factor predicted by our 3D
model agree well with the results reported by Hansen et al. (2009),
as shown in Fig. 4. Note that the surface reactions at the boundaries
included in Eq. (26) were neglected for the comparison since they
were not considered by Hansen et al. (2009). From Fig. 4, it can be
found that the volume average reaction rate of spherical crystal
decreases significantly with the increased crystal size, because the
reaction kinetics is faster compared to the diffusion mass transfer
for crystal particle with larger crystal size. The value of ηZcalculated
from above mesh convergence simulations, as shown in Fig. 3, is
below 0.1 when the H-ZSM-5 crystal radius increases up to 10 μm.

4.2. Effect of volume fraction of crystal particles

As stated above, the effectiveness factor of a pellet of 10 μm
radius, which is composed exclusively by H-ZSM-5 crystals, is low
(below 0.1). In order to enhance catalytic performance of the pellet
of 10 μm radius, it is natural to increase the volume fraction of
meso-pores or macro-pores in the pellet. It is obvious that ηZ
should increase as the volume of subregion A increases in a pellet
with a given radius. However, the curve of ηpellet versus the
volume fraction of subregion A could possess a maximum, where
the position is dependent on specific properties of catalyst pellet
and reactants. The maximum indicates the optimized catalytic
performance of a pellet with a given size.

We then investigated the effect of volume fraction of H-ZSM-5
crystal particles on ηpellet. In this simulation, each H-ZSM-5 crystal
particle occupies 8 neighboring mesh units. Fig. 5 shows the simula-
tion results of ηpellet and ηZ versus volume fraction of H-ZSM-5
crystals at temperature of 653 K. It is evident that the curve of ηpellet
has a maximum when the volume fraction of H-ZSM-5 crystals is
0.623, while ηZ decreases monotonically within creasing volume
fraction of H-ZSM-5 crystal particles. This implies that the catalyst
pellet shows best catalytic performance at volume fraction of H-ZSM-5
crystal particles of 0.623.

The diffusion resistance in subregion A increases as the volume
fraction of the region Z increases. Fig. 6 represents the distribu-
tions of species partial pressures and reaction rate at different
volume fractions of H-ZSM-5 crystals. It is seen that pressure
variations of species within subregion A increases as the volume
fraction of region Z increases, describing the relation between the
diffusion resistance in subregion A and the volume fraction of
region Z. The phenomenon could be understood due to the fact
that the increasing volume fraction of the region Z enhances both
the steric diffusion-hindrance and the component absorbability. It
is noted that higher absorbability of species could increase the
diffusion resistance of species in a multi-porous pellet. With the
increase in the diffusion resistance in the subregion A, reaction
rate in region Z decreases monotonically, which is consistent with
the change of ηZ . However, the curve of ηpellet does not change
monotonically, because it is determined not only by the reaction
rate, but also by the total volume of region Z.

Since the diffusion resistance in subregion A is considerably
smaller than that in region Z, surface reaction of the pellet is
worthy of attention. In order to describe conveniently the effect of
the surface reaction compared with volume reaction, we defined a



Fig. 6. Distributions of crystal particles over cross sections of catalyst pellets (in first row), distributions of reaction rate of C8H10 in H-ZSM-5 crystal region (in second row),
and distributions of pressures of C2H4, C6H6 and C8H10 in support region (in third, fourth, and fifth row, respectively).In first row, the crystal particles are plotted in red color,
while the support region is plotted in blue color. The plots shown in the same column correspond to the same volume factor of H-ZSM-5 crystals. The values of volume
fraction of first, second, third and fourth column are 0.043, 0.360, 0.490 and 0.623, respectively. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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weight factor (in dimensionless)

ϕ� csu
cvu

R
SZ
rC8H10 dSR

VZ
rC8H10 dV

ð28Þ

ϕis dependent on the problem itself, i.e. the capacity of diffusion
mass transfer in subregion A and reaction kinetics of H-ZSM-5
crystal. Fig. 5 shows the curve of ϕ versus volume fraction of H-
ZSM-5 crystals obtained from simulations. Φ decreases mono-
tonically with increasing volume fraction of H-ZSM-5 crystals,
which represents that higher diffusion resistance in the support
region decreases the importance of surface reaction. The low
values of ϕ calculated from simulations, below 0.02, indicate that
the volume reaction is more important than surface reaction for
the alkylation of benzene in our constructed H-ZSM-5 pellet.
4.3. Effect of crystal particle size

In the simulations above, we explored the effect of the volume
fraction of the crystal particles within a catalyst pellet on the
catalytic performance. The size of the crystal particles in these
simulations was set as 0.5 μm. For convenience, we call these
crystal particles normal crystal particles. From Fig. 4 it could be
found that the catalytic performance of catalyst pellet composed of
normal crystal particles is influenced to a certain degree by the
internal diffusions within the single crystal particle. So it may be
expected that the effectiveness factor increases with the reduced
crystal particle size. To study the effect of the crystal particle size,
we then introduce fine crystal particles which have a size of
0.25 μm, i.e. half of that of the normal crystal particles. Fig. 7
demonstrates the crystal particle distributions and reaction rate



Fig. 7. The crystal particle distributions and reaction rate distributions over cross sections of catalyst pellets with volume fraction of H-ZSM-5 crystal particles of 0.62. The
distributions of the pellet composed by normal crystal particles (first column) and by fine crystal particles (second column). The first row shows the distributions of crystal
particles (the crystal particles are plotted in red, while the support region is plotted in blue), and the second row shows the reaction rate distributions. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Effectiveness factor as a function of volume fraction of H-ZSM-5 crystal
particles for both normal and fine crystal particles.
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distributions over cross sections of the catalyst pellet, which has a
volume fraction of H-ZSM-5 crystal particles of 0.62. Our simula-
tions verified that the catalyst pellet composed by fine crystal
particles has higher effectiveness factor than that composed by
normal crystal particles, as shown in Figs. 7 and 8. Since it is easy
to obtain relatively large inter-connected subregions in crystal
regions inside a catalyst pellet with larger crystal particles, the
diffusion resistance in the crystal region inside pellet composed by
normal crystal particle is usually larger than that composed by fine
crystal particle. And catalyst pellet composed by fine crystal par-
ticles, mean while, could create more complex support region
which leads to higher diffusion resistance in the support region.
Our simulations suggest that the internal diffusion resistance
within the crystal region is decisive for the effectiveness factor of
the catalyst pellet, as shown in Fig. 8. This is not surprised since
the diffusion coefficient of crystal regions is much lower than that
of support regions, and thus the diffusion resistance in the crystal
region is highly sensitive to the size of crystal particles.

4.4. Effect of spatial distribution of crystal particles

In designing catalyst pellet, the spatial distribution of crystal
particles is of great importance. An optimal distribution of crystal
particles inside catalyst pellet will improve the catalytic perfor-
mance, because it can reduce the connection complexity of the
support region, and enhance the diffusion to the connected crystal
regions. In this section, we studied the effect of the spatial dis-
tribution of crystal particles. As presented in Fig. 9, three different
distributions of normal crystal particles were considered: outer
distribution, random distribution and alternate distribution. The outer
distribution means all normal crystal particles are randomly located
in the outer surface of the catalyst pellet. The random distribution
means all normal crystal particles are randomly located inside the
catalyst pellet. For the alternate distribution normal crystal particles
are alternately located in the layers of catalyst pellet. Here, the
pellet is decomposed into 20 layers, and the crystal particles are
randomly located in the odd layers. In all three distributions, the
support regions are assumed to be inter-connected. Our simulations
indicate that, as shown in Figs. 9 and 10, the effectiveness factor of
outer distribution deviates significantly from that of the other two
distributions when the volume fraction of H-ZSM-5 crystal particles
is increased. This could be ascribed to two reasons: (1) when the
volume fraction of crystal particles increases, the crystal particles
form a larger inter-connected crystal region at the outer layer of the
pellet, which leads to a high internal diffusion resistance in the
crystal region, as can be seen from the rate distribution depicted in
Fig. 9; (2) In the outer layer of the pellet, the support region is
scattered, which leads to the loss of connections to the out surface
of the catalyst pellet, which in turn means a higher diffusion



Fig. 9. The spatial distributions of crystal particles (in first row) and reaction rate distributions (in second row) over cross sections of catalyst pellets, and pressure dis-
tribution of C8H10 in support region (in third row). All catalyst pellets have volume fraction of H-ZSM-5 crystal particles of 0.36. The crystal particles demonstrate the outer
distribution (the first column), random distribution (the second column), and alternate distribution (the third column) in the catalyst pellets. In the first row, the crystal
particles are plotted in red, while the support region is plotted in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 10. Effectiveness factor for catalyst pellets with different spatial distribution of
crystal particles.
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resistance in the support region. This can be evidenced by the high
pressure of C8H10 in Fig. 9. Catalyst pellet shows a quite different
performance when the crystal particles show the alternate dis-
tribution. All crystal particles, in the case of alternate distribution,
have at least two faces connected with support region. Our simu-
lations indicate that the alternate distribution has the best catalytic
performance when the volume fraction of crystal particles is lower
than 0.36 (see Fig. 10). We argued that, however, this distribution is
quite artificial and the production of this type of distribution might
be difficult in reality. But our purpose here is just to illustrate the
applicability of the multi-region model approach. The random dis-
tribution is also a better choice in terms of the effectiveness factor
of catalyst pellet. On one hand it has very close catalytic perfor-
mance like alternate distribution (see Fig. 10), and on the other
hand it could easily produce high volume fraction of crystal parti-
cles (see Figs. 5, 6 and 8). Furthermore, catalyst pellet in reality
mostly has random distribution of the crystal particles. Anyway,
from our simulations, it can be participated that to optimize the
spatial distribution of the crystal particles, one has to consider the
compromise of the diffusion resistances in both crystal and support
regions to achieve maximum catalytic performance.

4.5. The solver efficiency

The different resistances in subregion A and region Z affect the
sizes of time steps of their ODE systems. In our simulations, both
relative and absolute tolerances of ODE systems were set to the
same value 1.0e�14. The corresponding time steps dtZ and dtA
were automatically controlled by the program based on the given
tolerances. For the simulations with radial mesh size of 0.25 μm, the
difference between dtZ (about 9.e�9s) and dtA (about 2.e�5s) is
about 3–4 orders of magnitude. So using the approach based on
quasi-stationary state assumption could significantly improve the
solving efficiency. In order to show the details of evolution of ODE
systems, the results of a multi-porous pellet with 0.043 volume
fraction of H-ZSM-5 crystals are shown in Figs. 11 and 12. In this
simulation,dtcoupling was set to 0.001 s, and the integration time of
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ODE systems of subregion Awas required not less than 1.0e�6 s.
That is to say, the integration time of subregion A is controlled with
the range from 1.0e�6 s to 0.001 s at every coupling interval. Based
on the quasi-stationary state assumption, the integration time of A
will be actually far smaller than 0.001 s in most steps. This is
achieved by setting a criterion of ∂ci

∂t





 (denoted by σ here). If all
values of ∂ci

∂t





 in subregion A are smaller than σ, the integration of
ODE systems of subregion A should be normally terminated at
current coupling interval.The value of σshould be set according to
the problem itself, and in this simulation σ is set to 0.005. Fig. 11
shows that the curves of max ∂qi

∂t





 ��
decrease monotonically within

the first one second. The integration time of region Z is equal to
dtcoupling at every coupling interval. However, the integration times
of subregion A are smaller than dtcoupling since max ∂ci

∂t





 �
oσ

�
is

satisfied under the quasi-stationary state assumption (see Figs. 11
and 12). As shown in Fig. 12, the integration time of subregion A
decreases from 1.14e�4 s, and reaches the minimum setting time
(1.0e�6 s) when the whole system evolves about 0.1 s. In this
simulation, the whole system takes about 3 s to reach stationary
state, and more than 90% of the integrations of the subregion
Arequires far fewer time than region Z. Considering small value of
dtZ (about 9.e�9 s), the reduced integration time of subregion A
significantly improves the solving efficiency.
5. Conclusions

A multi-region model based on the unified Maxwell–Stefan
diffusion theory is developed to study the catalytic performance of a
porous catalyst pellet formed with micro-porous crystal particles
and meso/macro-porous support. This model can be considered as a
derivative from the multi-scale approach which could effectively
reveal the essence of diffusion–reaction processes that are directly
related to the molecule-molecule and molecule-pore wall interac-
tions within the catalyst pellet. Based on the multi-region model,
the effects of the volume fraction, size, and spatial distribution of
micro-porous crystal particles on the effectiveness factor of the
catalyst pellet could be investigated via computational simulations.

The complicated processes in a catalyst pellet including (surface)
chemical reactions, bulk diffusion, Knudsen diffusion, surface diffu-
sion and Darcy flow exhibit a multi-scale nature in time. The corre-
sponding multi-scale PDE systems are converted to ODE systems via
discretization by use of finite volume method (FVM). The resulting
ODE systems are solved by reduced storage matrix method. The
value of the time interval for updating the coupling mass fluxes
between catalyst support region and micro-porous crystal region
determines the efficiency and accuracy of the solution. A loose cri-
terion for the ODE system of the support region that connected to
pellet’s boundary is used to improve the solution efficiency.

As an example of applications, the model was first validated
against the data of the alkylation of benzene over a single porous
catalyst pellet formed with H-ZSM-5 crystal particles by Hansen et al.
(2009), which suggests a good agreement between our results with
their data. Then the efficiency of this model is further demonstrated
by studying the effects of the volume fraction, size, and spatial dis-
tribution of the H-ZSM-5 crystal particles on the effectiveness factor
of a catalyst pellet with radius of 10 μm. The results show that the
largest effectiveness factor, which indicates the best catalyst perfor-
mance, is found at volume fraction of 0.623 for a catalyst pellet with
a random spatial crystal distribution. It also shows that the crystal
particle size and spatial distribution of crystal particles play impor-
tant roles in controlling the internal diffusion resistance within
crystal region and thus determines the catalytic performance of
catalyst pellet. Since the difference of time step between H-ZSM-5
crystal region and catalyst support region is in 3–4 orders of mag-
nitude, the multi-region model developed in this work is therefore a
potential bottom to up tool for reaction-diffusion processes inside a
catalyst pellet exhibiting multi-scale time characteristic. The possible
applications include rational catalyst design for zeolite based catalyst
encountered in many industrial applications.
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