第28卷第9期

催化学报 Chinese Journal of Catalysis

2007年9月 September 2007

文章编号:0253-9837(2007)09-0817-06

研究论文:817~822

ZSM-34 分子筛的合成及其催化甲醇转化制烯烃反应性能

周 帆^{1,2}, 田 鹏¹, 刘中民¹, 刘广宇¹, 常福祥^{1,2}, 李金哲^{1,2}

(1 中国科学院大连化学物理研究所,辽宁大连 116023;2 中国科学院研究生院,北京 100049)

摘要:以氯化胆碱为模板剂,采用水热合成法在较短的晶化时间内合成了 OFF/ERI 共晶体 ZSM-34,考察了各种合成条件对 产物的影响.通过调变合成参数可以获得不同 ERI 含量的 ZSM-34.用 X 射线衍射、扫描电子显微镜和 X 射线荧光分析等对 合成产物进行了表征.吸附实验显示,所合成的分子筛具有较大的孔容,其对正己烷的吸附容量为 11.4%.HZSM-34 分子筛 对甲醇转化制烯烃(MTO)反应具有良好的催化活性和高的乙烯选择性,低碳烯烃(乙烯+丙烯)选择性高达 86.0%,并且在 反应过程中始终维持在较高的水平,不受甲醇转化率降低的影响.高温水蒸气处理后的分子筛酸性降低,大大抑制了 MTO 初始反应中丙烷的选择性,而初始低碳烯烃的选择性则明显提高.

关键词:ZSM-34;分子筛;水热合成;甲醇转化制烯烃;氯化胆碱 中图分类号:O643 文献标识码:A

Synthesis of ZSM-34 and Its Catalytic Properties in Methanol-to-Olefins Reaction

ZHOU Fan^{1,2}, TIAN Peng¹, LIU Zhongmin^{1*}, LIU Guangyu¹, CHANG Fuxiang^{1,2}, LI Jinzhe^{1,2}

(1 Dalian Institute of Chemical Physics, The Chinese Academy of Sciences, Dalian 116023, Liaoning, China; 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract : ZSM-34 (OFF/ERI intergrowth) was synthesized using choline chloride as the template in a shorter crystallization time under hydrothermal conditions. Many factors that may influence the synthesis were investigated. The ERI content in ZSM-34 could be adjusted by selecting different synthesis conditions. The synthesized products were characterized by X-ray diffraction, scanning electron microscopy, and X-ray fluorescence spectroscopy. Adsorption experiments showed that ZSM-34 possessed high pore volume, and the adsorption amount of *n*-hexane reached 11.4%. In the methanol-to-olefins reaction, HZSM-34 was 86.0%, and it nearly did not change even when the methanol conversion decreased. High-temperature steam treatment increased the framework Si/Al ratio and thus decreased the acidity of HZSM-34, which led to the obvious decrease in propane selectivity and the increase in initial olefins selectivity.

Key words : ZSM-34 ; molecular sieve ; hydrothermal synthesis ; methanol-to-olefins reaction ; choline chloride

ZSM-34 分子筛是菱钾沸石(OFF)与毛沸石 (ERI)交互生长在一起形成的共晶体^[1~4],属于八 元环孔道占主导的小孔分子筛.OFF 沸石和 ERI 沸石都是以钙霞石笼为基本结构单元,通过双六元 环连接形成的三维骨架结构,在结构上具有一定的 相近性,因此在 OFF 沸石的生长过程中很容易夹杂 ERI 微畴(即出现堆积错误,有序或无序堆积),从 而得到几种不同的 OFF/ERI 共晶沸石,如 ZSM-34, Linde T 和 TMA-OFF 等.由于具有适宜的孔 道结构, ZSM-34 在甲醇转化制烯烃反应(MTO)中 表现出较好的低碳烯烃选择性^[5,6].另外, ZSM-34 也可用于选择性催化脱蜡^[7,8]和烃类吸附^[9]等.

收稿日期:2007-02-12. 第一作者:周 帆,女,1982年生,硕士研究生. 联系人:刘中民.Tel:(0411)&4685510;E-mail:liuzm@dicp.ac.cn. 本文的英文电子版由 Elsevier出版社在 ScienceDirect 上出版(http://www.sciencedirect.com/science/journal/18722067).

ZSM-34 在吸附性质上呈现出与其它共晶家族分子 筛不同的特征,其对环己烷的吸附量介于 OFF 和 ERI之间^[10].

由于 OFF/ERI 共晶家族的分子筛在结构上比 较相近,需要在适宜的合成条件下才能得到 ZSM-34.通常使用氯化胆碱(CC)^{6,10]}为模板剂来合成 ZSM-34,但该方法晶化时间较长,一般不少于 25 d (100 ℃),提高晶化温度至 150 ℃可以将晶化时间 缩短到 8 d. 也有文献使用二胺类有机物(如 1 *6*-己 二胺)来合成 ZSM-34^[11].本文以氯化胆碱为模板 剂,详细调变合成凝胶中各组分的摩尔配比,尤其是 碱离子的浓度和比例,在较低的晶化温度下水热合 成 ZSM-34.考察了晶化温度、模板剂用量、碱金属 离子钠钾比、碱离子浓度及硅铝比等条件对合成产 物的影响.以甲醇转化制烯烃为模型反应,评价了 ZSM-34 分子筛的催化性能,考察了高温水蒸气处 理对 ZSM-34 催化性能的影响.

1 实验部分

1.1 分子筛的合成

将 KOH(82%,沈阳市化学试剂厂),NaAlO₂ (含量≥41%,中国医药集团上海化学试剂公司)和 NaOH(AR,沈阳市联邦试剂厂)混合后溶于蒸馏 水,剧烈搅拌后得澄清溶液A.将氯化胆碱(AR,上 海试剂三厂)溶于蒸馏水制得溶液B.在剧烈搅拌 下,将溶液B缓缓滴入溶液A,再将硅溶胶(28% SiO₂,工业品)逐滴缓慢加入混合液中,继续搅拌60 min,得白色凝胶.典型的初始凝胶摩尔组成为 1.3CC:12.7SiO₂:1.0Al₂O₃:0.7K₂O:2.5Na₂O: 212H₂O.将凝胶转移到有聚四氟乙烯内衬的高压 反应釜中,在25℃老化10h后,于一定温度下晶化 120h.晶化结束后,洗涤至中性,干燥,即得Na型 ZSM-34.将Na型ZSM-34焙烧后,用1 mol/L NH₄NO₃(AR,沈阳市化学试剂厂)溶液交换3次, 烘干,即得NH₄-ZSM-34,焙烧后制得 HZSM-34.

高温水蒸气处理:将 NH₄-ZSM-34 分子筛在 700 ℃用饱和水蒸气处理 16 h,再用 1 mol/L HCl (固液比 1 g:10 ml)在 80 ℃处理 2 h,洗涤烘干焙 烧后即得到水处理的分子筛,记为 700-HZSM-34.

室温直接酸洗:用 0.5 mol/L HCl(固液比 1 g :10 ml)室温处理 NH₄-ZSM-34 分子筛 2 h,洗涤烘 干焙烧后即得到室温直接酸洗样品,记为 RT-HZSM-34.

1.2 分子筛的表征

分子筛样品的 X 射线衍射(XRD)在日本理学 D/max-rb 型 X 射线衍射仪上测定, Cu 靶, K_{α} 辐射 源($\lambda = 0.154\ 06\ nm$), 电压 40 kV, 电流 40 mA. 晶 体的形貌由 KYKY-AMRAY-1000B 型扫描电子显 微镜(SEM)观察. 样品组成采用 Philips 公司 Magix 2424 型 X 射线荧光分析仪(XRF)测定.

分子筛的吸附性能测定:焙烧后的分子筛经压 片,筛分 20~40 目的样品,550 ℃下通空气活化 30 min,然后降到室温,用 40 ml/min 的 № 携带吸附 质常温常压下通过分子筛,直至质量不发生变化.

1.3 分子筛的活性评价

采用固定床不锈钢反应器评价分子筛样品对甲 醇转化反应的催化性能. 将焙烧后的样品压片,破 碎筛分出 20~40 目的颗粒 2.5g,装入反应器中, 在 550 ℃下通氦气活化 30 min,然后降至反应温度 进行反应,甲醇采用微量泵进料(WHSV=1 h⁻¹). 反应产物组成用 Varian 3800 型气相色谱仪在线分 析,FID 检测器, Poraplot Q-HT 毛细管柱.

2 结果与讨论

2.1 合成参数对 ZSM-34 的影响

2.1.1 晶化温度的影响

固定合成凝胶摩尔配比 $1.3CC: 12.7SiO_2:$ 1.0Al₂O₃: 2.5Na₂O: 0.7K₂O: 212H₂O, 晶化时间 120 h, 考察了晶化温度对合成产物的影响,结果列 于表 1. 图 1 为部分样品的 XRD 谱. 由于 XRD 上 2 θ = 9.62°处的衍射峰为 ZSM-34 的特征峰,因此表 1 中列出了每个样品的 XRD 谱中 2 θ = 9.62°和 7.65°处峰相对强度的比值,该比值大小直接反映 ZSM-34 样品中 ERI 含量的高低^[10,12].

从表 1 可以看出,在较宽的温度范围(110~150 ℃)都可以合成出 ZSM-34. 晶化温度为 150 ℃时, 合成的 ZSM-34 中 *I*₂/*I*₁ 比值高达 11.2%,根据文 献 10,12 判定,此样品中 ERI 的含量很高,在 80% 以上;温度过低凝胶不能很好晶化,产物为无定形; 当晶化温度为 160 ℃时,合成产物主要呈现 MAZ 沸石的晶相(MAZ 含有十二元环和八元环孔道).

图 2 为部分样品的 SEM 照片.可以看出,各样 品均形貌均一,表明样品是 OFF/ERI 的共晶体,而 不是两者的简单物理混合体.晶化温度较低时,样 品为六棱柱状晶体;晶化温度升高,晶粒变大,但六 棱柱晶体不再是单晶,而是由细片状晶体组成.

表 1 晶化温度和模板剂用量对合成产物的影响

 Table 1
 Influence of crystallization temperature and choline chloride (CC) amount on synthesized product

C1		0.1%		Relative intensity in XRD					
Sample	x	<i>01</i> C	Product	I_1	I_2	I_3	I_2 / I_1		
1	1.3	90	amorphous	_			_		
2	1.3	110	ZSM-34	72.0	4.6	55.1	0.063		
3	1.3	130	ZSM-34	91.5	4.9	47.0	0.054		
4	1.3	140	ZSM-34	100.0	4.9	56.2	0.049		
5	1.3	150	ZSM-34	61.5	6.9	43.3	0.112		
6	1.3	160	MAZ + little	_		_	—		
			ZSM-34						
7	0	140	OFF + PHI	20.8		12.8	—		
8	0.6	140	OFF + PHI	13.9		11.8	—		
9	2.3	140	ZSM-34	89.5	2.3	61.8	0.026		
10	3.3	140	ZSM-34	66.5	3.5	55.0	0.052		
11	5.3	140	ZSM-34	56.3	3.1	47.6	0.055		
12	6.3	140	ZSM-34	47.6	3.3	48.4	0.068		

Gel composition xCC : $12.7SiO_2$: $1.0Al_2O_3$: $2.5Na_2O$: $0.7K_2O$: $212H_2O$, 120 h.

 I_1 , I_2 , and I_3 refer to the relative intensity of $2\theta=7.65^\circ$,

 9.62° , and 31.33° , respectively.

图 1 不同沸石分子筛的 XRD 谱

Fig 1 XRD patterns of different zeolites (1) $\text{ERI}^{[12]}$, (2) $\text{OFF}^{[12]}$, (3) Sample 2, (4) Sample 5(* Characteristic peaks of ZSM-34 at $2\theta = 9.62^{\circ}$, 16.62° , and 21.34° , lodd lines^[10].)

图 2 不同 ZSM-34 样品的扫描电镜照片 Fig 2 SEM images of different ZSM-34 samples (a) Sample 2, (b) Sample 4, (c) Sample 5, (d) Sample 12

值得注意的是,几个样品 XRD 谱上 $2\theta = 7.65^{\circ}$ 峰强度的变化程度要远远大于 $2\theta = 31.33^{\circ}$ 峰,结合 样品的 SEM 照片可知,三个样品均结晶良好,没有 无定形物质存在.因此,我们认为不能简单地根据 $2\theta = 7.65^{\circ}$ 处峰强度来判断样品的结晶度,还应该 同时结合其它峰强度和 SEM 进行判定.这种情况 有可能与 ZSM-34 是 OFF 和 ERI 两种沸石的共晶 体有关,两种沸石的相对峰强度可能存在差别,因此 伴随着样品中 ERI 含量的变化,样品的 XRD 峰强 度也相应发生变化.

2.1.2 模板剂用量的影响

在分子筛合成过程中,模板剂起结构导向、电荷 平衡和孔道填充等多种作用.模板剂用量对合成产 物的影响见表 1. 当 *x* < 1.3 时, XRD 谱(未示出) 显示合成产物结晶度差,为含有 PHI 的 OFF 晶相. 模板剂用量从 1.3 增加到 6.3 时,合成产物均为 ZSM-34,但是随着模板剂用量的增加,合成产物的 结晶度(I_1 和 I_3)逐渐降低,同时产物中 ERI 含量 (I_2/I_1 比值)呈现增加的趋势.样品的 SEM 照片 (图 2(b)和(d))显示,随着模板剂用量的增加, ZSM-34 分子筛由六棱柱状逐渐转化为小的六方片 状晶体.另外,本文还考察了初始凝胶配料为xCC: 15.9SiO₂:1.0Al₂O₃:2.7Na₂O:1.7K₂O:440H₂O 的 体系中模板剂用量对合成产物的影响,所得规律与 上面相同.

2.1.3 凝胶中 Na⁺/K⁺摩尔比的影响

只有少数硅铝沸石可以在纯有机模板剂体系中 合成,多数情况下碱金属阳离子的存在是必不可少 的,碱金属阳离子种类和浓度对合成产物具有重要 影响.固定合成凝胶中碱的总摩尔用量,考察了 Na^+/K^+ 比对 ZSM-34 的影响,结果见表 2. 由于使用 $NaAlO_2$ 作为铝源,因此在固定合成凝胶中硅铝比的条件下无法考察 Na^+/K^+ 比小于 1.3 的情况.

表 2 Na⁺/K⁺摩尔比对合成产物的影响

	Table 2	Influence	of Na 7K r	nolar ratı	o on syn	thesized j	product			
0 1		n(Na ⁺)	D 1 (Relative intensity in XRD						
Sample	<i>n</i> (K ⁺)	Froduct	I_1	I_2	I_3	I_2 / I_1				
	13	1.3	ZSM-34	100.0	1.9	44.5	0.019			
	14	2.4	ZSM-34	99.4	2.2	35.3	0.022			
	4	3.6	ZSM-34	56.7	2.8	31.8	0.049			
	15	5.9	ZSM-34	33.3	3.2	29.0	0.095			
	16	12.8	MAZ + little		—	—				
			ZSM-34							
	17	00	MAZ	—						

Gel composition 1.3CC:12.7SiO₂:1.0Al₂O₃:3.2(Na₂O + K₂O):212H₂O,140 °C,120 h.

当配料中 Na⁺/K⁺比从 1.3 增加到 5.9 时,合 成产物均为 ZSM-34; Na⁺/K⁺ >5.9 时,合成产物 中出现 MAZ 沸石;继续增大 Na⁺/K⁺比, MAZ 所 占比例逐渐增大;当配料中没有钾离子时,合成产 物为纯 MAZ 沸石.

从表 2 还可以看出,合成的 ZSM-34 沸石结晶 度随凝胶中 Na^+/K^+ 比的增加而降低,同时样品中 ERI 的含量逐渐增大.本文还考察了初始凝胶配料 为 2.2CC:15.9SiO₂:1.0Al₂O₃:4.4($Na_2O + K_2O$): 440H₂O($Na^+/K^+ = 0.7 \sim \infty$)的合成体系中 Na^+/K^+ 比对合成产物的影响,所得规律与上面相似. Na^+/K^+ 比大于 5 以后开始出现 MAZ 沸石晶相,无 钾离子时合成产物为纯 MAZ 沸石.

2.1.4 碱离子浓度的影响

固定合成凝胶中 Na⁺/K⁺比,考察了碱离子浓 度对合成 ZSM-34 的影响,结果见表 3. 实验表明, 只能在较窄的碱度范围内合成 ZSM-34. 初始凝胶 碱度太小(即 y < 2.7),产品以无定形相存在;2.7 $\leq y \leq 3.1$ 范围内可以合成出 ZSM-34,但样品中 ERI的含量随碱离子浓度的提高而降低;进一步增 加凝胶的碱度,合成产物的 XRD 谱上 $2\theta = 9.6^{\circ}$ 处 衍射峰消失,谱图呈现 OFF 沸石的特征.

表 3 碱离子浓度对合成产物的影响

Table 3 Influence of alkali cation concentration o	on synthesized j	product
--	------------------	---------

Sal.		Duradurat	Relative intensity in XRD						
Sample	У	Froduct	I_1	I_2	I_3	I_2 / I_1			
18	2.5	amorphous	—		—	_			
19	2.7	ZSM-34	36.9	3.3	29.1	0.090			
20	2.9	ZSM-34	64.3	2.1	31.3	0.033			
14	3.1	ZSM-34	100.0	2.2	35.5	0.022			
21	3.4	OFF	88.8		43.8	—			
22	3.8	OFF	82.5	—	42.6	—			

Gel composition $1.3CC: 12.7SiO_2: 1.0Al_2O_3: y(Na_2O + K_2O): 212H_2O$, $n(Na^+)/n(K^+) = 2.4$, 140 °C, 120 h.

部分样品的 SEM 照片示于图 3. 可以看出,几 个样品均结晶良好,没有无定形物质存在. 随着初 始凝胶中碱度的增加,产物的形貌发生了相应的变 化,六棱柱状晶体逐渐变细长,这也对应于产物由 ZSM-34 逐渐过渡到 OFF.

2.1.5 硅铝比的影响

表 4 给出了合成凝胶中硅铝比对合成产物的影响.可以看出,只能在较窄的硅铝比范围内合成出 ZSM-34,硅铝比大于 8.0 后,合成产物为无定形 相.ZSM-34 的硅铝比随凝胶中硅铝比的增加略有 提高,最大值为 4.3.

从目前文献报道来看,只有少数沸石的硅铝比可以在较宽的范围内变化,而 OFF 和 ERI 的硅铝 比一般都不高于 6^[13].因此,ZSM-34 中的硅铝比

图 3 不同碱离子浓度下合成产物的扫描电镜照片 Fig 3 SEM images of products synthesized with different alkali cation concentration in the gel (a) Sample 20,(b) Sample 14,(c) Sample 22

也应该大约在此范围内.分别按照硅原子和铝原子 计算了合成样品的收率(见表 4).由于合成凝胶中

的硅铝比要大于产物的硅铝比,即硅是过量的,因此 按硅原子计算的收率明显低于按铝原子计算的。

Table 4 Influence of Si/Al molar ratio in gel on synthesized product											
Sample	Product	n(Si)/n(Al)	n(Si)/n(Al)	Yield based	Yield based		Relative intensity in XRD				
		in gel	in product	on Si(%)	on Al(%)	I_1	I_2	I ₃	I_2 / I_1		
23	amorphous	31.8			_	_	_	_	_		
24	amorphous	10.6		_	—		—	—	_		
25	ZSM-34	8.0	4.3	46.9	86.7	88.7	5.9	77.4	0.067		
4	ZSM-34	6.4	3.9	56.0	91.6	100.0	4.9	56.2	0.049		

表 4 凝胶中硅铝比对合成产物的影响

Gel composition 1.3CC:12.7SiO₂: zAl₂O₃:2.5Na₂O:0.7K₂O:212H₂O, 140 °C, 120 h.

2.2 HZSM-34 分子筛的吸附性能

不同分子筛的吸附性能见表 5. 可以看出, HZSM-34(样品 11)对正己烷和环己烷的吸附量分 别为 11.4%和 4.0%,与文献报道的数值接近^[10]. 对比 ZSM-34,OFF和 ERI 的吸附性能可以发现, ZSM-34 对正己烷的吸附能力明显高于后两者. 尽 管 ZSM-34 中 ERI 的比例较高,但其对环己烷还是 具有一定的吸附能力,说明 ZSM-34 中 ERI 和 OFF 的交错堆积很有可能不是规整有序的.

rption properties of dif	ferent zeolites				
Adsorption amount (%)					
n-Hexane	Cyclohexane				
11.4	4.0				
10.7	4.3				
8.8	7.8				
6.5	1.0				
6.6	0.8				
	rption properties of dif Adsorption = <i>n</i> -Hexane 11.4 10.7 8.8 6.5 6.6				

表 5 不同分子筛的吸附性能

* The data quoted from Ref [10].

2.3 HZSM-34 分子筛的催化性能

用甲醇转化制烯烃反应评价了 HZSM-34(样品 11)的催化性能,结果如图4所示.随着反应的进 行,甲醇转化率逐渐降低;低碳烯烃(乙烯+丙烯) 的选择性先上升而后基本保持稳定,并不受甲醇转 化率降低的影响,始终维持在较高的数值(>80%, 最高值为86.0%);反应初期丙烷的选择性较高 (24%),其后明显下降.

反应产物中丙烷/丙烯的比值大小与氢转移反 应程度密切相关,初始反应中高的丙烷选择性应该 与 HZSM-34 中较低的硅铝比有关(大的酸量和高 的酸强度).随着反应的进行,强酸中心逐渐失去活 性,使氢转移反应的程度和丙烷的选择性也降低. 值得注意的是,在反应产物选择性保持稳定的区间 内,乙烯的选择性明显高于丙烯(比值大于2),体现

出高乙烯选择性的特点.这一特点明显区别于目前 用于 MTO 反应的成熟催化剂 SAPO-34. 在 400 ℃ 的反应温度下,SAPO-34 上乙烯和丙烯的选择性是 比较接近的^[14],只有在反应温度高于 450 ℃后,乙 烯选择性才明显高于丙烯。

表 6 列出了 HZSM-34、高温水蒸气处理的 700-HZSM-34 和室温直接酸洗的 RT-HZSM-34 样 品的 MTO 反应结果.相比于 HZSM-34,700-HZSM-34 样品上初始反应产物中的低碳烯烃选择 性升高,而丙烷的选择性明显受到抑制;反应进行 到 52 min 时,乙烯的选择性上升到 60.5%,乙烯/ 丙烯选择性之比为 3,表现出很高的乙烯选择性. RT-HZSM-34 上的产物选择性相比于 HZSM-34 没 有太大变化,但反应 36 min 后甲醇的转化率就降低 到 88.7%.

对比三个样品的 XRD 结果(未示出)发现, 700-HZSM-34 的结晶度不但没有下降,反而略有提 高,而室温直接酸洗样品的结晶度降低较大.这些结果说明,高温水蒸气处理过程中HZSM-34发生 了骨架脱铝和重排,因为只有形成高硅铝比的骨架 结构,才能保证样品在随后的80℃酸洗时保持稳定,这同时也与样品上MTO反应产物中丙烷选择 性降低(酸中心数量减少)相一致.

Table 6Methanol-to-olefins reaction results over different zeolites											
Samela	<i>n</i> (Si)	$_{t}/_{\min}$	Conversion (%)	Selectivity (%)							
Sample	n(Al)			CH_4	C_2H_4	C_2H_6	C_3H_6	C_3H_8	$C_{4 +}$	$C_{5 +}$	$C_2H_4 + C_3H_6$
HZSM-34	4.29	4	100	3.0	41.3	0.6	27.0	12.3	11.5	4.3	68.3
		52	100	9.2	57.5	0.7	20.5	3.3	5.5	3.3	78.0
700-HZSM-34	4.40	4	100	3.0	46.8	0.6	27.6	6.9	9.7	5.4	74.4
		52	98.2	7.7	60.5	0.6	19.9	1.8	5.9	3.6	80.4
RT-HZSM-34	6.26	4	98.0	3.8	33.9	0.5	32.5	10.1	13.3	5.9	66.4
		36	88.7	7.7	53.0	0.7	25.3	3.1	7.9	2.3	78.3

表 6 不同分子筛上的 MTO 反应结果

450 $^\circ\!\!\mathrm{C}$,10 $^\circ\!\!\mathrm{M}$ methanol , WHSV = 1 h^{-1}.

HZSM-34 — NH₄-ZSM-34 (Sample 11) after calcinations.

700-HZSM-34 — NH₄-ZSM-34 (Sample 11) after high-temperature steam treatment at 700 $^{\circ}$ C for 16 h and 1 mol/L HCl acid leaching at 80 $^{\circ}$ C for 2 h.

 $RT-HZSM-34 - NH_4-ZSM-34$ (Sample 11) after 0.5 mol/L HCl acid leaching at room temperature for 2 h.

3 结论

以氯化胆碱为模板剂,在较短的晶化时间内合 成了 ZSM-34,提高了合成效率.可以在较宽范围 内变化晶化温度和模板剂用量而得到 ZSM-34,碱 金属离子的种类和浓度对合成产物的影响较大,如 果合成体系中没有 K⁺离子,则合成产物为纯 MAZ 沸石;较高的 Na⁺/K⁺比和较低的碱离子浓度可以 有效提高 ZSM-34 中 ERI 的含量.提高初始凝胶中 的硅铝比不能有效增加 ZSM-34 的硅铝比.HZSM-34 用于 MTO 反应表现出高的乙烯选择性和总低碳 烯烃选择性,并且低碳烯烃的选择性不随甲醇转化 率的降低发生变化.700 ℃高温水蒸气处理后,样 品发生了脱铝和骨架重排,酸中心密度降低,初始低 碳烯烃选择性增加,而丙烷选择性则受到明显抑制.

参考文献

- 1 吕新春,赵荣,吴泰琉,王力平,孙尧俊. 化学学报(Lu X Ch, Zhao R, Wu T L, Wang L P, Sun Y J. Acta Chim Sin), 2005, **63**(11): 961
- 2 Auroux A, Occelli M L. Stud Surf Sci Catal, 1994, 84: 693
- 3 陈迺沅. 石油与天然气化工(Chen N Y. Chem Eng Oil Gas), 1999, 28(1):17

- 4 Bessell S. Appl Catal A , 1995 , 126(2):235
- 5 Anderson M W, Occelli M L, Klinowski J. J Phys Chem, 1992, 96(1):388
- 6 Occelli M L , Innes R A , Pollack S S , Sanders J V. Zeolites , 1987 , 7(3):265
- 7 Chen N Y. In : Hightower J W ed. Proceedings of the 5th International Congress on Catalysis. Vol 2. Amsterdam : North Holland , 1973. 1343
- 8 Chen N Y , Schlenker J L , Garwood W E , Kokotailo G T. J Catal , 1984 , 86(1):24
- 9 Cavalcante C L , Eic M , Ruthven D M , Occelli M L. Zeolites , 1995 , 15(4):293
- 10 Rubin M K, Rosinski E J, Plank C J. US 4 086 186. 1978
- 11 Vartuli J C , Kennedy G J , Yoon B A , Malek A. Microporous Mesoporous Mater , 2000 , 38 (2-3): 247
- 12 Treacy M M J, Higgins J B. Collection of Simulated XRD Powder Patterns for Zeolites. 4th Ed. Amsterdam :Elsevier, 2001. 379
- 13 Occelli M L , Innes R A , Apple T M , Gerstein B C. In : Olson D H , Bisio A eds. Proceedings of the 6th International Zeolite Conference. London : Butterworths , 1984. 674
- 14 Wu X C , Abraha M G , Anthony R G. Appl Catal A , 2004 , 260(1):63