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Methanol to olefin conversion catalysts 
Zhongmin Liu* and Juan Liang 

The past year has seen remarkable advances both in methanol 
to olefin process development and in understanding the 
catalysts and reactions involved. The methanol to olefin 
process is now on the way to being commercialized locally 
with economic advantages in comparison with other natural 
gas utilization technologies and conventional naphtha cracking 
processes. Using a specially designed procedure, a catalyst 
for the selective synthesis of ethylene from methanol has been 
reliably reproduced. The relationships between catalyst 
properties and reaction performanc~es are clearer than ever 
before. 
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Abbreviations 
GTL natural gas to liquids 
GTO natural gas to olefin 
LNG liquefied natural gas 
MTO methanol to olefin 
SAPO silicoaluminophosphate 

I n t r o d u c t i o n  
Natural gas has become an abundant fuel and chemical 
feedstock. As the technology for methanol production 
from natural gas is widely used and well-established, the 
conversion of methanol to olefins tends to be an interest- 
ing and promising way of converting methane to chemi- 
cals. Solid acids can effectively catalyze this reaction to 
form hydrocarbons [1,2]. However, the selective produc- 
tion of light olefins, especially ethylene and propylene, is a 
challenge to catalysis. In the past decade, most of the liter- 
ature has discussed the use of zeolite ZSM-5 as the appro- 
priate catalyst [3], it possesses a 10-ring interconnected 
channel system and yields aromatics as by-products. 
Recently, catalyst researchers have focused on small pore 
silicoaluminophosphate (SAPO) molecular sieves [4,5], 
mainly on SAPO-34 [6-8], which gives a narrow range 
product distribution from C 1 to C 5 hydrocarbons. The pre- 
sent progress in research and development shows a great 
possibility for the commercialization of a MTO (methanol 
to olefin) process in the near future [9"']. This review will 
focus on the remarkable advances since 1997 in catalyst 
and process research, and on the advances in the under- 
standing of catalysts and reaction mechanisms. 

M e t h a n o l  t o  o l e f i n  p r o c e s s  d e v e l o p m e n t  
The past year has seen remarkable advances in MTO 
process development. Vora et al. [9"',10"] reported pilot 

plant results of the MTO reaction and the comparative eco- 
nomic estimations of the process. The test was carried out 
in a fluidized bed reaction system. The material balance 
data show that, in the case of high-ethylene production, the 
yield of ethylene is 19.98% and that ofpropylene is 12.99%. 
Comparison with other natural gas conversion and utiliza- 
tion technologies, such as natural gas to liquids (GTL) and 
liquefied natural gas (LNG), the process of natural gas to 
olefin (GTO) v ia  MTO is significantly more attractive. To 
produce 500,000 MTA (metric tons annually) ethylene in 
equivalent GTL and LNG plants, the simple payback peri- 
od is 5.1 years for GTO technology, 7.7 years for GTL, 
7.9 years for LNG and 11.8 years for the naphtha cracking 
process, respectively. The economics were from a Middle 
East location using a natural gas price of 0.75 $/MM Btu 
(million British thermal units) with a naptha feed value of 
150 $/MT (metric tons). The natural gas to olefin technolo- 
gy is also more attractive than conventional naphtha crack- 
ing for ethylene and propylene production. The 
commercially manufactured catalyst contains SAPO-34 
molecular sieve as the active component. Another pilot 
plant test was reported by Liu et al. [11"] using dimethyl 
ether as the feedstock, which is similar to a MTO reaction. 
The reaction was carried out in a fluidized bed reaction sys- 
tem (reactor diameter 100 ram) with continuous regenera- 
tion of the catalyst. The catalyst contains molecular sieve 
SAPO-34 synthesized using triethylamine as a templating 
agent. The cost is reduced by -20% of the method using 
tetraethyl ammonium hydroxide as the templating agent. 
The material balance results show that the corresponding 
yield of ethylene and propylene from methanol are 20.38% 
and 13.35%, respectively. 

S A P O  molecular sieve catalysts 
The small pore limitations of SAPO molecular sieves result 
in a rather high ethylene selectivity [5,12,13,14"]. However, 
it is for the same reason that it is difficult to apply conven- 
tional modification methods, such as ion-exchange and 
impregnation, to change the properties of the catalyst. 
Modification in the synthesis of the molecular sieve seems 
to be critical for improvement of catalytic performance. 
Remarkable results were observed using Ni-SAPO-34 [15], 
on which an ethylene selectivity of 88% was found at 
450°C with 100% methanol conversion and without coke 
formation. This catalyst was not easy to reproduce [16] 
because the selectivity is very sensitive to those properties 
which depend on the preparation procedure. Inui and 
Kung [17"'] reported a reliable procedure for the synthesis 
of Ni-SAPO-34, and investigated the factors involved in its 
preparation. The authors point out that the order of mixing 
of the starting materials is important to obtain a homoge- 
neous gel mixture. The sequence of the addition of seed 
crystallites, milling for a time, treatment with ultrasonic 
waves and the application of a rapid crystallization method 
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[7] seem necessary to obtain a satisfactory catalyst. The cat- 
alysts have particles 0.8-0.9 I.tm in size and a sharp size dis- 
tribution, with low acid density on both the internal and 
external surface, with a 86% selectivity to ethylene at 
425°C. A linear relationship between internal acid density 
and the selectivity to ethylene was observed, thus one may 
expect to obtain more selective formation of ethylene by 
controlling the internal acid density to less than 4 ~tmol/m z. 
The authors demonstrated that for most samples Ni is at 
least partly incorporated into the framework in the tetrahe- 
dral coordination state. The remaining part of Ni is in the 
octahedral coordination state. The amount of Ni incorpo- 
rated in SAPO-34 is surprisingly very small (Si/Ni ~-100). So 
it is interesting to argue what the exact effect of Ni is on 
the catalyst properties and on reaction performance. 

Lischke et al. [18"] reported that the best results with 
respect to the formation of lower olefins are achieved over 
NiAPO-5 among various MeAPO-5 (Me = Co, Mn, Mg, 
Zn, Ni, Cr, Zr) catalysts. Selectivity of lower olefins 
increased gradually by raising the content of Ni. The 
assumed reason was due to the low density of acid sites of 
higher acidic strength and to the presence of only small 
portions of strong acid Lewis sites. Relatively higher con- 
version and selectivity towards Cz+ hydrocarbons were also 
found on the Ni0.05AI0.95PO 4 catalyst in comparison with 
other MeA1PO 4 (M = Cr, Mn, Fe, Co) catalysts [19"]. 
Tsoncheva etal .  [20"] observed that the methanol to hydro- 
carbon reaction on CoSAPO is sensitive to the presence of 
isomorphously substituted cobalt and the generated strong 
acid centers. 

It is worthy to note the observations of Djieugoue et al. 

[21"] on the reducibility, location and adsorbate interac- 
tions of Ni(I) in Ni(II)-exchanged SAPO-34 by electron 
spin resonance (ESR) and electron spin echo modulation 
(ESEM) techniques. After dehydration above 573K, Ni(II) 
was reduced to Ni(I). A similar phenomenon was also 
observed on a Cu(II)-exchanged SAPO-17 molecular sieve 
[22"]. A redox property of CoAPO-34 and CoSAPO-34 was 
observed by Moen et aL [23"] and Rajic et al. [24"]. 
Adsorption of methanol into a hydrogen-reduced sample 
forms two Ni(I)-methanol complexes that are suggested to 
be located at two different sites in the chabazite structure 
[21"]. At a higher reaction temperature, migration of Ni to 
a cation position is possible, and there is indeed some 
hydrogen in the product. The Ni in Ni-SAPO-34 possibly 
has another effect besides changing acid properties of the 
catalyst when under real reaction conditions. 

Popova et al. [25"] suggested that the ratio between 
Br6nsted and Lewis acid sites may also be important for 
ethylene selectivity and catalyst stability as well as the 
other structure related factors. They observed that the 
source of silicon and aluminum in the synthesis SAPO-34 
has effects on the catalytic performance in a MTO reaction 
[26"']. Although all the samples exhibited similar activities 
and selectivities, the samples synthesized from organic 

precursors deactivated more rapidly accompanied with 
high methane formation. There have also been some 
advances in the synthesis method of zeolites [27"] and 
SAPO molecular sieves [24°,28"]. The test of these meth- 
ods to MTO catalyst and reaction will be interesting. 

Acid sites 
The acidic properties of SAPO molecular sieves are close- 
ly related with the silicon incorporation into the framework 
[29]. Smith et al. [30,31"] revealed that there are two dis- 
tinct acid sites in the SAPO-34 unit cell: one in the eight- 
ring channel and the other in the six-ring. Understanding 
the crystallization mechanism and detailed distribution of 
silicon and aluminum in the framework is essential for cat- 
alyst research. Some interesting results focusing on the 
incorporation of silicon into the framework have been 
reported [32-34]. Sastre et al. [35"',36"'] reported the lat- 
tice simulation results of silicon incorporation into an 
AIPO 4 framework. They found that the single silicon incor- 
poration process appears to be independent of the frame- 
work type, and 'dispersed silicon' is more stable than the 
distribution that has large areas of an 'aluminosilicate 
phase'. If the silicon content is such that island formation is 
promoted, the acidic character will become strongly depen- 
dent on the topology of the material. Acidity directly 
relates to the concentration of the Si island. Large propor- 
tions of silicon-rich regions were found in mesoporous 
SAPOs [37"]. Experimental results [38"'] from a crystalliza- 
tion research of SAPO-34 indicate that silicon precursors 
directly take part in the formation of the crystal nucleus as 
well as in the growth of the crystal grains, giving the Si(4AI) 
structure at the initial stage (<2.5 h). At this stage -90% of 
the total silicon entered the crystals with a relative crys- 
tallinity greater than 80%. Si(3AI), Si(2A1), Si(1AI) and 
Si(0A1) appeared only at a later stage, which implies the 
substitution of the Si atoms for the phosphorus and alu- 
minum pair. The above results may explain the advantage 
of fast crystallization for enhanced catalyst performance. 

Reaction mechanisms 
The conversion of methanol to olefins involves the forma- 
tion of C-C bonds. Understanding the reaction mechanism 
is important for the development of a high efficiency cata- 
lyst. Two features of the reaction are clear: methanol equi- 
librates with dimethyl ether and water, and there is an 
induction period before the onset of extensive hydrocar- 
bon synthesis. Methanol adsorption on the surface of the 
catalyst should be the first step for reaction. Salehirad and 
Anderson [39 "°] studied the adsorption complexes on 
H-ZSM-5 and H-SAPO-34 by a solid state NMR tech- 
nique. The results reveal that at low loading (up to one 
methanol per acid site) the methanol adsorbed in two- 
hydrogen bonded configurations. At higher coverage, 
methanol may cluster with the involvement of one 
methoxonium ion. Hunger and Horvath [40"] found that 
behavior of SiOH groups in zeolite Hbeta is different from 
that in ZSM-5 and HY zeolites in the adsorption of 
methanol. This suggests that, besides acid properties, the 
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framework structure of zeolites also has an effect on the 
adsorption or activation of methanol. N M R  has proven to 
be a particularly useful technique in the study of SAPO 
molecular sieves [8,32], the adsorption of methanol 
[39°°,40 °] and catalytic reactions [41",42]. 

Many and varied mechanisms have been proposed for the 
methanol to hydrocarbon reaction [43]. From a simplistic 
view, there are two main mechanism types for olefin for- 
mation in the methanol conversion reaction, which may be 
simply represented by the following schemes: 

1. A consecutive-type mechanism: ethylene will be first 
formed in the reaction. 

CH3OH ~ C2H 4 ~ C3H 6 ~ C4H 8 ~ C5H10 ~ . . . . .  

2. A hydrocarbon pool-type mechanism. Dahl and Kolboe 
[44,45] proposed that olefin synthesis occurs through a car- 
bonaceous species of unknown stoichiometry, possibly a 
carbonium ion. This species is assumed to be alkylated by 
methanol or dimethyl ether until it eliminates an olefin 
and restarts the catalytic cycle. 

C2H4 
1L 

CH3OH --) (CHz)n ~ C3H 6 

1L 
C4H8 

The  present results from pulse-quench catalytic reactor 
studies [46"] and an isotopic tracer method [14"] tend to 
support the carbon-pool mechanism. Lischke et al. [18 °] 
suggested that all three lower olefins arc formed simulta- 
neously by C-C bonding, and an additional stepwise 
build-up occurs in the consecutive reaction sequence as 
the reaction proceeds. 

Deactivation 
It is known that coke formation cannot be avoided in the 
methanol to olefin reaction, and this will deactivate the 
catalyst. However, relatively fewer studies have been 
done on deactivation in the past year. Inui and Kung 
[17 °° ] observed that the amount of coke deposited large- 
ly depends on the acid density on the external surface of 
Ni-SAPO-34 crystals. This is due to fewer space-restric- 
tions of external surface acid sites to the growth of bulk 
aromatic coke. As dimethyl ether is a key M T O  reaction 
intermediate, Chen etal. [47 °] studied the deactivation of 
SAPO-34 in the dimethyl ether to olefin reaction. Based 
on the assumption that the coke was randomly deposited 
inside the crystals, a kinetic model was developed with 
good consistency with experimental data to account for 
the effective diffusion and deactivation. Further research 
on coking mechanisms and its relation to catalyst proper- 
ties is important for the development  of a high efficiency 
catalyst. 

Conc lus ions  
The  past year has seen remarkable advances both in 
methanol to olefin process development and in under- 
standing catalysts and the reactions involved. The  
methanol to olefin process is now on the way to being com- 
mercialized with economic advantage in comparison with 
other natural gas utilization technology and the conven- 
tional naphtha cracking process. The  catalyst for the selec- 
tive synthesis of ethylene from methanol can be reliably 
reproduced by a specially designed procedure. A low inter- 
nal acid density seems to favor ethylene selectivity. 
Methanol adsorption and mechanism studies suggest that 
the reaction may proceed by a carbon-pool mechanism. 
Further understanding of the relationship between cata- 
lyst preparation and performance needs research on the 
crystallization and silicon incorporation mechanism of 
small pore silicoaluminophosphate molecular sieves. Any 
application of in situ techniques to characterize a catalyst, 
reactions and deactivation will bring advances to this field. 
Quantum-chemistry simulations [48 ° ] can also be helpful 
in M T O  reaction and catalyst research. 
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