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Abstract

Electrical capacitance tomography has been widely used to obtain key hydrodynamic

parameters of gas–solid fluidized beds, which is normally realized by first reconstructing

images and then by analyzing these images. This indirect approach is time-consuming

and hence difficult for on-line monitoring. Meanwhile, considering recurrence of similar

flow patterns in fluidized beds, most of these calculations are repetitive and should be

avoided. Here, we develop a machine learning approach to address these problems.

First, superficial gas velocity linear-increasing strategy is used to perform high-

throughput experiments to collect a large amount of training samples. These samples

are used to train the map from normalized capacitance measurements to key parame-

ters that obtained by an iterative image reconstruction algorithm off-line. The trained

model can then be used for on-line monitoring. Preliminary tests revealed that the

trained models show good prediction and generality for the estimation of the overall

solid concentration and the equivalent bubble diameter.
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1 | INTRODUCTION

Gas–solid fluidized beds are commonly used in industry, such as coal

conversion, power generation, pharmaceutical granulation, and poly-

merization. Accurate measurement of the hydrodynamic characteristics

is of paramount importance to the design, control, and optimization of

fluidized beds in these processes. In the past decades, both intrusive

and nonintrusive measurement techniques have been developed.1,2

Normally, intrusive methods provide only single point measurements

and tend to disrupt the hydrodynamics in the region of the vicinity of

the probe.3 Nonintrusive methods, such as process tomography, mean-

while, can be used to visualize the entire flow field without causing

any disturbance to the flow. Compared to other process tomographic

methods, electrical capacitance tomography (ECT) is the most mature

and ideal for measurement of gas–solid fluidized beds because of the

advantages of no radiation, high temporal resolution, robustness, with-

standing high temperature and high pressure, and low cost.4–8

In ECT measurement, a set of electrodes is mounted around the

periphery of the fluidized bed under investigation. Because the gas and

fluidized particles have different permittivity, once the distribution

and/or concentration of the fluidized particles vary, the interelectrode

capacitance will change accordingly. These changes in capacitance are

measured by the sensing electronics and further used to reconstruct an

image, in which each pixel is assigned a gray level to represent the

material distribution, that is, the solid concentration, by a specific image

reconstruction algorithm.9–11 By postprocessing the obtained image,

some key hydrodynamic parameters, such as the overall solid concen-

tration, bubble position, and bubble size, can then be estimated.5,8,10

Therefore, key hydrodynamic parameters are obtained in an indirect

manner (see later in step 2 of Figure 2).

However, there are two main difficulties associated with ECT

image reconstruction.10–14 First, it is severely under-determined dueDedicated to the 70th anniversary of Dalian Institute of Chemical Physics, CAS.
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to the number of independent capacitance measurements is much less

than the number of pixels in an image. Second, the characteristics of

soft-field sensing make the reconstructed images sensitive to noise in

raw capacitance measurements. To address these problems, many

image reconstruction algorithms have been proposed so far and have

been reviewed by Yang and Peng11 and Cui et al.12 Among all the pro-

posed algorithms, Landweber iteration algorithm is generally accepted

to be able to generate high-quality images in most cases.9–12,15 How-

ever, the iterative process of the Landweber iteration algorithm is

time-consuming and hence not suitable for on-line measurement. In

addition, it is laborious to carry out postprocessing of the recon-

structed images to obtain key hydrodynamic parameters because

additional computing time is needed. Therefore, it is essential to

develop an alternative approach for on-line monitoring of key hydro-

dynamic parameters for flow regime identification, fluidization quality

characterization, feedback control, and fault detection of gas–solid

fluidized beds by the use of ECT.

Note that although the two-phase flow in gas–solid fluidized beds

exhibits very complex chaotic behavior,16,17 many researches indi-

cated recurrence of similar flow patterns.6,18 In this regard, most of

the expensive calculations needed for the material distribution recon-

struction and postprocessing are repetitive and can be possibly

avoided via a universal data-driven key parameter prediction recipe.

Recent years have seen that machine learning is making a big

impact in chemical engineering. Novel applications include heteroge-

neous catalyst design,19 crystal identification,20 automated optimi-

zation for continuous flow chemistry,21 and multiphase flow pattern

recognition.22 Some attempts were also made to extend the applica-

tion of machine learning to ECT measurements with respect to key

parameter prediction without recourse to tomographic images.

Mohamad-Saleh and Hoyle23 used artificial neural networks to

directly estimate key parameters for characterizing gas–water flows

from normalized capacitance measurements. Zainal-Mokhtar and

Mohamad-Saleh24 trained a multilayer perceptron artificial neural

network and used it to estimate the oil fraction in a pipeline with

various ECT sensor parameters. Wang and Zhang25 used a model

trained by support vector machine to identify flow regime of gas–oil

flows. These works apparently indicated that machine learning may

be used to realize on-line measurement for key parameter estima-

tion without image reconstruction. However, the limitations of the

above works are that they focused only on some simple distributions

with stationary objects by numerical simulations but not on practical

problems such as gas–solid fluidized beds. A possible reason is the

lack of training samples from a suitable experimental facility.

The aim of this work is to apply machine learning to ECT without

image reconstruction for on-line measurement of key hydrodynamic

parameters in real gas–solid fluidized beds. To efficiently collect a

large amount of sample data that traverse many possible flow patterns

in a short time period, we proposed a high-throughput experimental

strategy with linearly increasing the superficial gas velocity (ug) in the

fluidized bed. Two key hydrodynamic parameters, that is, the overall

solid concentration and the equivalent bubble diameter, were consid-

ered in this work. Based on the two measured parameters, we further

studied the flow regime transition from fixed bed to bubbling bed via

the solid-like and fluid-like states26 and the evolution of the bubble

size in bubbling fluidized beds for Geldart A particles to illustrate the

effectiveness of this machine learning approach.

The organization of this article is as follows. First, experimental

setup, experimental methods, and ECT image reconstruction and post-

processing are briefly described. Then, a flowchart of the proposed

machine learning approach is given. Next, the performance and gener-

ality of the trained model to predict the overall solid concentration

are evaluated and discussed. Afterwards, some results regarding the

prediction of the equivalent bubble diameter are given, followed by a

short summary of the power and limitations of the machine learning

approach. Finally, the paper ends with some conclusions.

2 | EXPERIMENTAL SETUP AND DATA
PROCESSING

2.1 | Experimental setup

Figure 1a shows the experimental setup used in the overall solid con-

centration prediction research, which was adapted from our recent

work.26 Three cylindrical fluidized beds with different inner diameters,

30, 50, and 70 mm, were designed. The associated wall thickness of

these fluidized beds was also different, say 2.2, 2.5, and 2.9 mm for

the 30, 50, and 70-mm fluidized beds, respectively (see Figure 1a). All

these fluidized beds were made of quartz glass and had a height of

1 m. Airflow under ambient conditions was introduced to the bottom

of the fluidized beds through distributors made of expanded polysty-

rene foams with the average pore size of 10 μm. The flow rate of air

was precisely controlled by a Brooks mass flow controller (Brooks

SLA5800 Series). The structure of ECT sensors used for the three flu-

idized beds was similar, as shown in Figure 1b, with eight measure-

ment electrodes stuck onto the outside wall of the quartz tube and

covered by an earthed screen to eliminate external interference. The

vertical height of the electrodes was 25 mm, and the electrodes cov-

ered 90% of the whole area. As shown in Figure 1a, the mid-position

of the ECT sensors was located at 262.5 mm above the distributor.

Therefore, the measured region encompassed a height between

250 and 275 mm above the distributor.

Two fluid catalytic cracking (FCC) powders (FCC I and FCC II) and

an Al2O3 powder (Al2O3 I), were used as bed materials. Their particle

size distributions and main physical properties are shown in Figure 1c

and Table 1, respectively. According to Geldart's classification,27 these

fluidized particles all belong to typical Geldart A particles (see Sup-

porting Information Figure S1).

The ECT sensor needs to be calibrated before measurement. This

was done by first emptying the measured fluidized bed and then

recording the interelectrode capacitance as CL. Next, a known quan-

tity of a specified powder was poured into the bed, and the bed was

tapped to make the particles closely packed. The interelectrode capac-

itance at this state was measured as CH. Such calibration makes the

interelectrode capacitance for all flow patterns lie within the range

between CL and CH. After calibration, ug was set to a sufficiently large
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value to make the bed vigorously fluidized in the bubbling regime. Then,

ug was slowly decreased to zero, letting the bed be loosely packed (the

packed bed height was about 380 mm for all experiments), which was

regarded as the initial bed state in further fluidization process.

A dual-electrode excitation strategy was used for measurement, that

is to say, two adjacent electrodes were used as excitation electrodes in

turn and the other electrodes as detection electrodes. In this way, the

total number of independent capacitance measurements was 48 for the

8-electrode ECT sensor. An AC-based ECT system with a signal-to-noise

ratio of 73 dB28 was used for capacitance measurement.

For comparison, the bed pressure drop and its fluctuation were

also measured by using a differential pressure transducer. More spe-

cifically, the positive and negative sides of the transducer were con-

nected to taps below the distributor and at the top end of the

freeboard, respectively. The pressure drop across the distributor was

first determined as a function of ug with the tube being empty. Then,

the bed pressure drop was obtained by subtracting the distributor

pressure drop from the measured total pressure drop.

2.2 | Experimental methods

To collect a large amount of sample data for training, a high-throughput

experimental strategy was proposed by linearly increasing ug in the flu-

idized bed. During a linear-increasing stage, ug was programmed to

increase linearly from 0 to 11.5 mm/s in a relatively short time period.

Different durations, say 180, 300, 600, 900, 1,800, 3,600, and 7,200 s,

were used. Supporting Information Figure S2a shows the change in ug

in each duration. Note that as the response time of the used flow con-

troller was about 1 s, the increase in ug was not strictly linear, instead

a small step with the length of about 1 s was observed (see Supporting

Information Figure S2b). The data acquisition rate of the used ECT

system was 60 frames per second. Therefore, the numbers of samples

for different durations were 10,800, 18,000, 36,000, 54,000, 108,000,

216,000, and 432,000, respectively. In this way, a large amount of

sample data that traverse many flow patterns can be collected. These

collected data, after processing, were stored as training samples for

machine learning.

For comparison, ug step-increasing experiments were also carried

out. In this case, a sufficiently long duration, say 15 min, was remained

at each ug to ensure that the bed can reach a dynamic equilibrium, and

then the measurement results were recorded in a 100 s time period,

resulting in 6,000 and 12,000 measurements for ECT and pressure fluc-

tuation, respectively.

2.3 | Image reconstruction and postprocessing

To show the material distribution, the ECT sensing area was divided

into 64 × 64 pixels, resulting in 3,228 effective pixels in the circular

F IGURE 1 (a) Experimental setup, (b) 8-electrode ECT sensor structure, and (c) particle size distribution of the fluidized powders used in the
overall solid concentration prediction research
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imaging region. The projected Landweber iteration algorithm, which

can generate satisfactory images in most cases,9–12,15 was used. The

formula of this algorithm is written as

gk = P gk −1 + αkS
T λ− Sgk −1ð Þ

� �
ð1Þ

P f xð Þ½ � =
0

f xð Þ
1

if f xð Þ < 0

if 0 ≤ f xð Þ ≤ 1

if f xð Þ > 1

8>><
>>:

ð2Þ

where g is the gray level of image pixels, S is the normalized sensitivity

matrix, and k is the index of iteration steps. The projection operator

P is used to constrain the reconstructed image to ensure g 2 [0,1]. To

improve the convergence speed, the step length α is changed during

iteration as defined by29

αk =
ST λ− Sgk −1ð Þ�� ��
SST λ− Sgk −1ð Þ�� �� ð3Þ

The initial image of the Landweber iteration algorithm g0 is obtained

by the linear back projection method,11 which is the simplest single-step

algorithm for ECT, as given by

g0 =
STλ

STuλ
ð4Þ

where uλ is a unity vector. A drawback of the Landweber iteration

algorithm is its semiconvergence characteristic. Therefore, the

image quality is not always improved with the increase in the num-

ber of iterations, which makes it difficult to determine the number

of iterations in advance. Usually, a predefined threshold indicating

the distance between two successive reconstructed images is used

to mark the stop of the iteration.15 However, the optimal threshold

is flow pattern dependent. We have tested different thresholds and

found that on average, a value of 0.01 can give the best estimation

of key hydrodynamic parameters (the overall solid concentration

and the equivalent bubble diameter) in our cases. Therefore, the

iteration of the Landweber iteration algorithm stops following

Equation 5.

gk − gk −1k k ≤ 0:01 ð5Þ

The parameter λ in Equations 1, 3, and 4 is the normalized capaci-

tance vector calculated by

λ =
CM −CL

CH −CL
ð6Þ

where CM is the measured capacitance vector for an arbitrary distribu-

tion, and CL and CH are the capacitance vectors recorded during sys-

tem calibration.

The sensitivity matrix can be calculated by numerical simulation of

potential distributions based on quasi-static field assumption and then

by dot multiplying two potential distributions.30,31

S*ij x, yð Þ = −

ð ð
p x, yð Þ

rφi x, yð Þ
Vi

� rφj x, yð Þ
Vj

dxdy ð7Þ

where S*ij defines the sensitivity between the ith and jth electrodes

at the location of the pixel p(x,y), and φi(x,y) and φj(x,y) are the

potential distributions inside the imaging domain when the ith

and jth electrodes are excited by applying voltages of Vi and Vj,

respectively.

Then, S* is normalized as

Smn =
S*mnPN

n = 1 S
*
mn

ð8Þ

where Smn and S*mn are the entries in the mth row and nth column of

S and S*, respectively.

Supporting Information Figure S3 shows the normalized sensitivity

distribution averaged over all electrode pairs for ECT sensors used in

the three fluidized beds. Some quantitative data such as the maxi-

mum, minimum, and standard deviation (SD) of the sensitivity shown

in Supporting Information Figure S3 are summarized in Supporting

Information Table S1. As can be seen, the sensitivity matrix changes

with the dimension of ECT sensors.

With the reconstructed material distribution, key hydrodynamic

parameters can be obtained by postprocessing. For example, the

overall solid concentration can be obtained by pixel averaging:

β = θ � �g = θ �
PN

i = 1 gisiPN
i = 1 si

ð9Þ

where θ is the solid concentration of the packed bed, s is the area of

each image pixel, and N is the total number of pixels in the image.

TABLE 1 Physical properties of the fluidized powders

Powder
Density
(ρp, kg/m

3)a

Mean particle
diameter
(dp, μm)b

Fines
content
(F45, %)c

Relative
permittivityd

FCC I 1,300 69.5 16.4 2.22

FCC II 1,260 66.3 22.5 2.13

Al2O3 I 1,950 71.2 9.5 2.49

Al2O3 II 1,950 98.6 3.5 2.51

MTO 1,450 89.6 5.8 3.18

Glass

beads

2,300 92.0 2.1 3.42

aThe density of particles ρp was measured by water displacement technique.
bThe mean particle diameter dp was calculated as the Sauter mean diameter.
cThe fines content F45 is the fraction of fines with the size less than 45 μm.
dThe relative permittivity was estimated from the average of all the

opposite electrode pairs in an ECT sensor with internal electrodes at

closely packed bed state.
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The accuracy of the Landweber iteration algorithm to estimate

some key hydrodynamic parameters in gas–solid fluidized beds has

been evaluated by several studies.9,10,32,33 The results showed that

the relative error lies within ±5% for the overall solid concentra-

tion9,10,32,33 and ± 15% for the equivalent bubble diameter.9,10,32 This

confirms that the Landweber iteration algorithm can be used to obtain

the overall solid concentration and the equivalent bubble diameter

with acceptable accuracy.

3 | FLOWCHART OF THE MACHINE
LEARNING APPROACH

In this work, machine learning is applied to on-line measurement of

key hydrodynamic parameters in real gas–solid fluidized beds by using

ECT but without image reconstruction. Figure 2 shows the flowchart

of the machine learning approach. At first, ug linear-increasing strat-

egy, originally used by Ye et al.34 in discrete particle model simula-

tions, is used to perform high-throughput experiments to collect a

large amount of training samples that traverse many possible flow pat-

terns in a short time period. Then at the second step, key hydrodynamic

parameters in the training samples are calculated by postprocessing the

material distribution reconstructed by the Landweber iteration algo-

rithm off-line. Next, supervised machine learning is used to train the

map from the normalized capacitance measurements to the calculated

key hydrodynamic parameters on the training samples. With the trained

model, key hydrodynamic parameters can be directly predicted from

the measured interelectrode capacitance. Therefore, on-line monitor-

ing can be achieved. Note that in model training and further predic-

tion, the model input can be either all the normalized interelectrode

capacitance or their principal components, and the output is the con-

cerned key hydrodynamic parameter calculated based on postproces-

sing the image reconstructed by the Landweber iteration algorithm.

The proposed machine learning approach can be used to predict any

key hydrodynamic parameters in gas–solid fluidized beds. In this

work, the overall solid concentration and the equivalent bubble diam-

eter were considered.

4 | PREDICTION OF THE OVERALL SOLID
CONCENTRATION

4.1 | Comparison of different machine learning
models

From the viewpoint of statistics, predicting the overall solid concen-

tration from the measured capacitance is a regression problem. There-

fore, all machine learning models suitable for regression problems can

be used. To assess the performance of different machine learning

models, four popular models, that is, linear regression, regression tree,

support vector machine regression, and feedforward network regres-

sion, were used to train on samples collected in ug linear-increasing

experiments in 3,600 s for FCC I powder fluidized in the 50-mm fluid-

ized bed. The trained models were then validated against the data

from ug linear-increasing experiments in 1,800 s for the same powder

and fluidized bed. A brief introduction of the used models and training

details to prevent overfitting are provided in Supporting Information.

Figures 3 and 4 show the correlation plots between the overall solid

concentration obtained based on postprocessing the reconstructed

material distribution and predicted by different machine learning

models when all 48 normalized capacitance measurements and their

4 principal components (see Supporting Information Figure S4) are used

as the model inputs, respectively. For a quantitative comparison,

Supporting Information Figure S6 shows the root mean square error

for different models and different inputs. It can be seen that for the

regression tree model, there are always some scattered points along

the 45� line irrespective of the input, where the maximum error can

be as large as 0.04, and many points lie outside the ±1% error line.

While for other three machine learning models, most of the pre-

dicted points lie within the ±1% error line, showing good prediction

performance. It is also noted that except for the regression tree

model, all models give better results when all 48 measurements are

used as model input (also see Supporting Information Figure S6). This

can be easily understood from the measurement strategy of ECT, in

which gas–solid flow on a cross section is scanned by an array of

measurement electrodes from different viewing angles. Therefore,

all 48 interelectrode capacitance measurements contribute to the

F IGURE 2 Flowchart of the proposed machine learning approach for the measurement of gas–solid fluidized beds using ECT
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estimation of the overall solid concentration. The unusual performance

of the regression tree model may be associated with the structure of

the trained tree.35

Overall, the feedforward network regression model with all 48

measurements as input gives the best prediction results. However,

when the input is changed to four principal components, the perfor-

mance worsens significantly. For the simplest linear regression model,

the prediction results are satisfied no matter what kind of input is

used. Considering both the prediction performance and model com-

plexity, the linear regression model with four principal components as

input was chosen finally.

Note that using principal components as model input is not neces-

sarily superior to that with all 48 interelectrode capacitance mea-

surements as input in terms of computational cost in model training

and further prediction. This is because the scale of data in the prob-

lems discussed in this work is still small (see Supporting Information

Table S2). Principal component analysis is normally favorable for

situations where a significantly large amount of data is required

as training input. However, considering the potential extension of

current machine learning approach to wide applications of on-line

process tomography, in which the scale of data as training samples

might be substantially enlarged, the model with four principal com-

ponents as input was still chosen in this work.

4.2 | Comparison of different size of training samples

It is well known that fluidization behavior of Geldart A particles is

quite different from other particles, because a unique feature charac-

terized by Geldart A particles is that there is an interval of nonbub-

bling expansion regime, which is also called homogeneous fluidization

or particulate fluidization, between the minimum fluidization velocity

(umf) and minimum bubbling velocity (umb).
27,36 Recently, by using

ECT, camera recording, and pressure fluctuation measurements, we

experimentally verified that during the homogeneous expansion

regime, both solid-like and fluid-like states exist,26 which indicate that

the stability of homogeneous fluidization for Geldart A particles may

have two distinct origins: in the solid-like homogeneous fluidization

regime, interparticle forces dominate; while in the uniform nonbub-

bling fluid-like fluidization regime, fluid dynamics dominate. Supported

by camera recording and pressure fluctuation measurements, it was

found that the profile of the SD of the overall solid concentration

obtained by ECT against ug (see Supporting Information Figure S7 for

FCC I powder fluidized in the 50-mm fluidized bed. Note that the

average and SD were calculated from the time series of the 6,000

overall solid concentration measurements at each ug in ug step-

increasing experiments) provides a robust and reliable way to distin-

guish different fluidization regimes. Three plateaus with small SD

shown in this profile correspond to the fixed bed, solid-like homoge-

neous fluidization, and uniform nonbubbling fluid-like fluidization

regimes, respectively, and a sharp increase in SD marks the transition

to the bubbling fluidization regime. The gas velocities at the terminal

point of each plateau are umf, the transition velocity uc, and umb,

respectively. For the profile of the average of the overall solid

concentration against ug, two turning points with one corresponding

to umf and the other referring to the so-called bed contraction phe-

nomenon for Geldart A particles are shown. Note that the overall solid

concentration in our previous work26 was obtained on the basis of

postprocessing the material distribution reconstructed by the Land-

weber iteration algorithm, which is very time-consuming.

To check if the machine learning approach can also predict the

three plateaus, the linear regression was used to train on samples

collected in ug linear-increasing experiments in seven different dura-

tions, that is, 180, 300, 600, 900, 1,800, 3,600, and 7,200 s, where

different durations correspond to different size of the training sam-

ples. These trained seven different linear regression models were

then used to predict the fluctuation of the overall solid concentra-

tion on data collected in ug step-increasing experiments.

Figure 5 shows the profiles of the average and SD of the predicted

overall solid concentration against ug, alongside those calculated by

postprocessing for FCC I powder fluidized in the 50-mm fluidized bed.

Clearly, the profile of the average of the overall solid concentration

against ug predicted by all the trained models coincides well with that

calculated by postprocessing. In addition, two turning points also

agree well for different models. But for the profile of the SD of the

overall solid concentration against ug, only the models trained using

samples collected in 3,600 and 7,200 s can well predict the three pla-

teaus. For other models trained on samples collected in shorter time,

the SD of the overall solid concentration in the fixed bed regime are

overpredicted to the values close to those in the solid-like homoge-

neous fluidization regime, which make these two plateaus level off as

a plateau. Therefore, these models cannot distinguish between the

fixed bed and solid-like homogeneous fluidization regimes.

In ug linear-increasing experiments, the fluctuation of the raw

interelectrode capacitance arises from the combination of the change

in gas flow rate and fluctuation of gas–solid flow patterns. When ug

linearly increases in a relatively short duration, the change in gas flow

rate becomes significant and thus dominates over the small fluctua-

tion of gas–solid flow patterns in the fixed bed regime. The trained

model learns well this situation. From this point of view, it is not sur-

prising that the SD of the overall solid concentration in the fixed bed

regime predicted by the models trained on the samples collected in a

relatively short duration (less than 3,600 s) is larger. In other fluidiza-

tion regimes, the effect of the fluctuation of gas–solid flow patterns

dominates over the change in gas flow rate. Therefore, the SD of the

overall solid concentration predicted by the trained models agree well

with those by postprocessing regardless of the duration for sample

collection. In the following, the linear regression model trained on

samples collected in ug linear-increasing experiments in 3,600 s will

be used to evaluate the generality of the trained model.

4.3 | Generality of the trained model

A good machine learning model not only works well for the system

similar to that the model was trained on but also provides satisfac-

tory results for systems that the model has not seen before.13,19,20,35

To further test the generality of the trained model, the data from ug
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step-increasing experiments for different powders as well as different

fluidized beds were used as testing samples. Note that the tested

model was trained on samples collected in ug linear-increasing experi-

ments in 3,600 s for FCC I powder fluidized in the 50-mm

fluidized bed.

Firstly, the overall solid concentration in the same fluidized bed

with two different powders, that is, FCC II and Al2O3 I powders, whose

permittivity is different from that of FCC I powder (see Table 1), was

predicted. Figure 6 shows the average and SD of the overall solid

concentration predicted by the trained model alongside those calculated

by postprocessing for these two powders. As can be seen, for both

powders, the profiles obtained by the machine learning model and

postprocessing coincide well with each other, showing that the

prediction is very promising.

Secondly, the overall solid concentration in the fluidized beds with

different diameters (i.e., 30 and 70 mm) for FCC II powder was pre-

dicted. Similar to Figure 6, Figure 7a,b shows the results for FCC II

powder fluidized in the two fluidized beds, respectively. As mentioned

before, the sensitivity matrix for ECT sensors equipped on fluidized

beds will change when the fluidized bed size changes. Even so, the

machine learning model originally trained on the 50-mm fluidized bed

can also be used to predict the profiles of the 30- and 70-mm fluid-

ized beds, as shown in Figure 7. For a more intuitive presentation,

Figure 8a,b shows the fluctuation of the overall solid concentration at

a representative ug for the 30- and 70-mm fluidized beds, respec-

tively. Clearly, the fluctuation of the overall solid concentration can

always be captured by the machine learning model.

To summarize the results presented in Figures 6–8, the machine

learning model trained on a specified powder and specified fluidized

bed has good generality for other systems with different powders

and/or fluidized bed sizes. The reasons for such good generality may

be twofold. On the one hand, the input of the machine learning model

is obtained from the normalized interelectrode capacitance. With the

normalization, the effects of the wall thickness and sensor size on the

model input can be minimized.37 Therefore, for a specified flow pattern,

the normalized interelectrode capacitance is similar for different fluid-

ized beds. In turn, the similar interelectrode capacitance obtained from

different fluidized beds corresponds to similar flow pattern. On the

other hand, the similar flow patterns shared by the fluidized particles

grouped in the same category of Geldart's classification are indepen-

dent on the permittivity of powder and size of fluidized bed (when the

change is small).27 In the investigated range of ug, the flow behavior

transits from the fixed bed to the solid-like homogeneous fluidiza-

tion regime, then to the uniform nonbubbling fluid-like fluidization

regime, and finally to the bubbling fluidization regime for all the stud-

ied powders. All these flow behaviors have been traversed in ug linear-

F IGURE 3 The overall solid
concentration obtained in ug
linear-increasing experiments in
1,800 s for FCC I powder
fluidized in the 50-mm fluidized
bed. X axis: The results directly
from postprocessing. Y axis: The
results predicted by the different
machine learning models trained
on samples collected in ug linear-
increasing experiments in 3,600 s
for FCC I powder fluidized in the
50-mm fluidized bed. The model
input is all 48 normalized
capacitance measurements
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increasing experiments. Therefore, the map from the normalized

capacitance measurements to the overall solid concentration corre-

sponding to these flow patterns has been well learned by the trained

model, and thus the model has a good generality as shown in this work.

It should be stressed that, however, the sizes of the used fluidized beds,

say 30, 50, and 70 mm, are relatively small, which make it easy to pro-

duce similar flow patterns in these fluidized beds. For a fluidized bed of

larger size, the flow patterns may change,38 and therefore the general-

ity needs to be further checked.

4.4 | Effect of bed size on the transition velocities

In our previous work, only the 50-mm fluidized bed was used to

experimentally verify the existence of the solid-like and fluid-like

states in the homogeneous expansion regime for Geldart A particles.26

In this work, three fluidized beds of different sizes were used, which

allow to investigate the effect of bed size on the transition velocities.

Table 2 lists the transition velocities including umf, uc, and umb for FCC

II powder fluidized in different fluidized beds. These transition veloci-

ties were identified from the terminal points of the three plateaus in

the profile of the SD of the overall solid concentration against ug, as

shown in Figures 7a 6a and 7b for the 30-, 50-, and 70-mm fluidized

beds, respectively. Note that the identified transition velocities from

the profile of the SD of the overall solid concentration are in-line with

visual observations. In addition, the obtained umf and umb correspond

well with those from pressure fluctuation measurements. Figure 9a,b

show the bed pressure drop normalized by particle weight per unit

cross-sectional area (Δpn) and SD of the bed pressure drop for FCC II

powder fluidized in different fluidized beds, respectively. As can be

seen, umf identified from the point where the bed pressure drop

across the bed becomes sufficient to balance the particle weight34,39

(see Figure 9a) and umb from the point, after which the SD of the bed

pressure drop increases sharply26,40 (see Figure 9b), are the same as

the umf and umb listed in Table 2 from ECT measurements, respec-

tively. To further quantitatively compare the obtained transition

velocities, umf and umb calculated from the empirical correlations of

Abrahamsen and Geldart41 are also included in Table 2. Note that the

correlations for both umf and umb ignore the effect of bed size.

Liu et al.42 conducted a series of experiments to evaluate the bed

size effects on umf and umb for different powders and found that both

umf and umb increase with decreasing bed diameter. Similar conclu-

sions were draw by Rao et al.43 for umf and Shaul et al.44 for umb. uc, as

a new transition velocity demarcating the solid-like homogeneous flu-

idization and uniform nonbubbling fluid-like fluidization regimes, have

many common features with umf, as both indicating the bed changing

from a stationary state to a suddenly dynamic state.26 Therefore, it is

F IGURE 4 The overall solid
concentration obtained in ug
linear-increasing experiments in
1,800 s for FCC I powder
fluidized in the 50-mm fluidized
bed. X axis: The results directly
from postprocessing. Y axis: The
results predicted by the different
machine learning models trained
on samples collected in ug linear-
increasing experiments in
3,600 s for FCC I powder
fluidized in the 50-mm fluidized
bed. The model input is the four
principal components of the
normalized capacitance
measurements
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reasonable to speculate that the trend of uc with bed size follows umf.

In our work, it can be concluded from Table 2 that the three transition

velocities for FCC II powder in the 30- and 50-mm fluidized beds

are similar, while when the bed size further increases to 70 mm,

both umf and uc become smaller and umb becomes larger.

For gas–solid fluidization, an interesting and well-documented

phenomenon is that a pressure overshoot over the particle weight per

unit cross-sectional area occurs when ug reaches umf, and a qualitative

inference is that the stronger the wall friction and/or interparticle

cohesive forces, the higher the overshoot, and vice versa.34,45,46 As

shown in Figure 9a, the pressure overshoot for the 30- and 50-mm

fluidized beds is similar and larger than that for the 70-mm fluidized

bed, indicating the synergistic effect of wall friction and interparticle

cohesive forces is at the similar order for the 30- and 50-mm fluidized

beds and larger than that for the 70-mm fluidized bed. This may

partially explain why the transition velocities of the 30- and 50-mm

fluidized beds are similar and umf and uc of the two beds are larger

than that of the 70-mm fluidized bed. However, the increase in umb in

the 70-mm fluidized bed seems inconsistent with the previous conclu-

sion.42,44 It is noted that some points in Figure 5 by Liu et al.42 and

Figure 4 by Shaul et al.44 also show an increase in umb when the bed

size increases. We argued that, therefore, the different trend of umb

with increase in bed diameter may need further investigation. A possi-

ble tentative explanation is that the effect of bed size on umb is two-

fold. On the one hand, a smaller bed size results in an enhanced wall

friction, which delays the umb. On the other hand, the bed voidage

increases with the decrease in bed size,47 and finally the voidage in a

smaller bed is easier to form a bubble. Therefore, the umb may be a

result of the compromise between these two effects. In fact, identifi-

cation of umb is a nontrivial task and many controversies exist in litera-

ture. For example, some researchers suggested replacing umb, which is

a single velocity, by a velocity range.48 Nevertheless, as stressed

before, the transition velocities listed in Table 2 are unified for ECT,

visual observations, and pressure fluctuation measurements, and the

obtained umf and umb in three beds are all close to those calculated

from the empirical correlations of Abrahamsen and Geldart.41

5 | PREDICTION OF THE EQUIVALENT
BUBBLE DIAMETER

The proposed machine learning approach can be used to predict any

key hydrodynamic parameters in gas–solid fluidized beds, such as the

overall solid concentration, bubble position, and bubble size using the

same procedure as shown in Figure 2 with little modification. To fur-

ther confirm this, the proposed approach was used to predict bubble

parameters including the equivalent diameter, centroid coordinate,

major axis length, and minor axis length of a bubble in bubbling fluid-

ized beds in a parallel work. Here, some preliminary results regarding

the equivalent bubble diameter are shown.

Figure 10a shows the experimental setup used in the bubble

parameter prediction research, in which two cylindrical fluidized beds

(FB1 and FB2) available in our laboratory were used. FB1 was made of

quartz glass, while FB2 was made of Perspex. Airflow under ambient

conditions was distributed to the beds through an expanded polysty-

rene foam for FB1 and a sintered steel porous plate for FB2. The

dimensions of the two beds are shown in Figure 10a, in which FB1 had

an inner diameter of 60 mm and an outer diameter of 66 mm, while

FB2 had an inner diameter of 80 mm and an outer diameter of 89 mm.

An FCC powder (FCC II) was fluidized in FB1, while an Al2O3 powder

(Al2O3 II), a methanol to olefins (MTO) powder, and a glass bead pow-

der were fluidized in FB2. Figure 10c shows their particle size distribu-

tions, and Table 1 summarizes their main physical properties. All these

fluidized powders belong to Geldart A particles (see Supporting Infor-

mation Figure S1). Different from the ECT sensors used in the overall

solid concentration research, the ECT sensors used here had twelve

measurement electrodes, as shown in Figure 10b. The vertical height of

F IGURE 5 Average and SD of the overall solid concentration
against ug in ug step-increasing experiments for FCC I powder
fluidized in the 50-mm fluidized bed. The overall solid concentration
here is obtained by postprocessing and predicted by the linear
regression models trained on samples collected in ug linear-increasing
experiments in (a) 180, 300, 600, and 900 s and (b) 1,800, 3,600, and
7,200 s for FCC I powder fluidized in the 50-mm fluidized bed
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the electrodes of FB1 and FB2 were 30 and 40 mm, respectively. The

mid-position of the ECT sensor of FB1 and FB2 was located at 200 and

365 mm above the distributor, respectively.

Following the flowchart shown in Figure 2, ug linear-increasing strat-

egy was used to perform high-throughput experiments to collect a large

amount of bubble data in a relatively short time period. More specifically,

ug was programmed to increase linearly from 0 to 145.2 mm/s for FB1

and 0 to 182.4 mm/s for FB2 in a duration of 3,600 s. These data, after

processing, were stored as training samples to perform supervised

machine learning for the prediction of the equivalent bubble diameter.

The prediction consists of two steps, which require two machine learning

models, as shown in Figure 11a. The first model is a classification

machine that is used to judge from the normalized capacitance measure-

ments whether bubbles are formed on the cross section of the measured

region. The output of the classification machine has two labels indicating

the absence or presence of bubbles, respectively. When the output of

the classification machine is absence, the equivalent bubble diameter is

directly given a value of 0. While when the output of the classification

machine is presence, the second model begins to work to predict from

the normalized capacitance measurements the equivalent diameter of

the formed bubbles, which is a regression problem. Here, a bubble

was defined as the continuous region with the solid concentration

reconstructed by the Landweber iteration algorithm lower than a prede-

fined threshold. The diameter of a bubble was defined as the diameter of

a circular bubble with equivalent cross-sectional area, and the equivalent

bubble diameter was obtained as the number-averaged bubble diam-

eter. In literature, the threshold used to distinguish the boundary

between the bubble and emulsion phases ranges from 0.15 to 0.3

and a threshold of 0.25 was used in this work. Due to the studied

fluidized beds had small bed diameters and were operated with a

large initial aspect ratio, it was observed in experiments that in most

cases, only a single bubble could pass through the ECT measurement

region at a time.

For the 12-electrode ECT sensor, a total of 120 independent

capacitance measurements can be obtained with a dual-electrode

excitation strategy. The principal component analysis shows that the

former 12 components can retain more than 98% variance for

the training samples collected in ug linear-increasing experiments in

F IGURE 6 Average and SD of the
overall solid concentration against ug in ug
step-increasing experiments for (a) FCC II
powder and (b) Al2O3 I powder fluidized
in the 50-mm fluidized bed. The overall
solid concentration here is obtained by
postprocessing and predicted by the
linear regression model trained on
samples collected in ug linear-increasing
experiments in 3,600 s for FCC I powder
fluidized in the 50-mm fluidized bed
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3,600 s for Al2O3 II powder fluidized in FB2. Therefore, these con-

verted 12 principal components were used as the model input.

In addition to function fitting, neural networks are also good at clas-

sification.49 Therefore, feedforward network was used for both classifi-

cation and regression machines for the prediction of the equivalent

bubble diameter. Figure 11b,c shows, respectively, their structures.

A total of 25 neurons were included in the hidden layer for both

machines. For the classification machine, a tan-sigmoid transfer function

and a softmax transfer function were used in the hidden layer and in

the output layer, respectively. While for the regression machine, except

for the number of neurons in the hidden layer, other settings were the

same as that in the prediction of the overall solid concentration (see

Supporting Information).

Both the classification and regression machines were trained on

samples collected in ug linear-increasing experiments in 3,600 s for

Al2O3 II powder fluidized in FB2. Note that all data were used to train

the classification machine, while only the data indicating the presence

of bubbles were selected to train the regression machine.

Table 3 summarizes the accuracy of the trained classification

machine for the prediction of the presence of bubbles within the data

collected in ug linear-increasing experiments for different powders flu-

idized in FB1 and FB2. As can be seen, the trained classification

machine shows high accuracy. For the same powder and same fluidized

bed as those used for training, the accuracy can be as high as 99.5%.

For particles or fluidized beds other than those used for training, the

accuracy can still be higher than 96%, indicating a good generality.

Figure 12 further shows the correlation plots between the equiva-

lent bubble diameter obtained based on postprocessing the material

distribution and predicted by the trained machine learning models for

different powders fluidized in FB1 and FB2. It is clear that due to

some measurements are classified wrongly by the trained classifica-

tion machine, say the machine predicts the absence of bubbles for a

measurement that has bubbles, or vice versa, some points fall on the

X axis and Y axis, showing large deviation. Except for these points, the

rest predicted by the machine learning models lie within an acceptable

error margin of those obtained via postprocessing. The relative error

F IGURE 7 Average and SD of the
overall solid concentration against ug in ug
step-increasing experiments for FCC II
powder fluidized in (a) the 30-mm
fluidized bed and (b) the 70-mm fluidized
bed. The overall solid concentration here
is obtained by postprocessing and
predicted by the linear regression model
trained on samples collected in ug linear-
increasing experiments in 3,600 s for FCC
I powder fluidized in the 50-mm
fluidized bed
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for Al2O3 II powder fluidized in FB2, which are the same as those used

for training, is within ±10% (see Figure 12a). If different powders, that

is, MTO catalyst (see Figure 12b) and glass beads (see Figure 12c),

were fluidized in the same fluidized bed (i.e., FB2), most of the relative

error is within ±10%. Even when both the powders and fluidized beds

were changed to those that the trained machine learning models have

not seen before, the relative error is still within ±20% (see Figure 12d).

The trained machine learning models were also used to predict the

evolution of the equivalent bubble diameter against ug in ug step-

increasing experiments, as shown in Figure 13. The characteristic

equivalent bubble diameter at each ug was obtained as follows. First, the

time series of the equivalent bubble diameter at each ug was divided into

50 segments. Then, the maximum diameter in each segment was

detected. Finally, the average of the 50 maximum equivalent bubble

diameters was chosen. The error bars in Figure 13 were calculated as

the SD of the 50 maximum equivalent bubble diameters. As a reference,

the estimated bubble diameters from the established empirical correla-

tions of Rowe,50 Werther,51 Mori and Wen,52 and Yacono53 are shown

alongside the experimental size in Figure 13. Clearly, independent of the

powder and fluidized bed, the predicted bubble diameter and the associ-

ated error bar agree well with those obtained via postprocessing and lie

within the window of the established correlations. For a more intuitive

F IGURE 8 Fluctuation of the overall solid concentration at a
representative ug in ug step-increasing experiments for FCC II powder
fluidized in (a) the 30-mm fluidized bed and (b) the 70-mm fluidized
bed. The overall solid concentration here is obtained by
postprocessing and predicted by the linear regression model trained
on samples collected in ug linear-increasing experiments in 3,600 s for
FCC I powder fluidized in the 50-mm fluidized bed

TABLE 2 Transition velocities of FCC II powder in different fluidized beds

Bed size, mm umf, mm/sa uc, mm/sa umb, mm/sa umf,c, mm/sb umb,c, mm/sb

30 2.34 4.25 7.00 2.30 7.07

50 2.33 4.24 7.00 2.30 7.07

70 2.12 4.03 7.43 2.30 7.07

aumf, uc, and umb were identified from the profile of the SD of the overall solid concentration, which are in-line with visual observations.

Furthermore, umf and umb correspond well with those from pressure fluctuation measurements.
bumf and umb with the subscript c mean the values calculated from the empirical correlations of Abrahamsen and Geldart.

F IGURE 9 (a) Bed pressure drop normalized by particle weight
per unit cross-sectional area and (b) SD of the bed pressure drop
against ug in ug step-increasing experiments for FCC II powder
fluidized in different fluidized beds
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presentation, similar to Figure 8, Figure 14 shows the fluctuation of the

equivalent bubble diameter at a representative ug for different powders

and fluidized beds. As can be seen, the general fluctuation trend of the

equivalent bubble diameter can be well captured by the trained machine

learning models.

Comparing the prediction results for the equivalent bubble diame-

ter to the overall solid concentration (for example, comparing between

Figures 12 and 4), it is noted that even though more complex neural

network model was used, the predication results for the equivalent

bubble diameter are not as excellent as those for the overall solid con-

centration. This reflects the common knowledge that measurement of

the equivalent bubble diameter is much more difficult than that of the

overall solid concentration4,9,10 and may be associated with the differ-

ent properties of the two parameters, in which the overall solid concen-

tration is a global quantity averaged over the whole bed cross section,

while the equivalent bubble diameter is closely related to local material

F IGURE 10 (a) Experimental
setup, (b) 12-electrode ECT
sensor structure, and (c) particle
size distribution of the fluidized
powders used in the bubble
parameter prediction research

F IGURE 11 (a) Steps for the prediction of the equivalent bubble diameter, (b) feedforward network structure of the classification machine,
and (c) feedforward network structure of the regression machine
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distribution. In addition, when the fluidized bed size is not the same as

that used for training, it can be seen from Figures 7 and 8 that the pre-

diction results for the overall solid concentration are still pretty good.

While for the equivalent bubble diameter, the prediction results worsen

significantly, as shown in Figures 12 and 14. This is because that the

overall solid concentration is a dimensionless quantity that is irrelevant

to the bed size, while the equivalent bubble diameter may be scaled by

the bed size in different fluidized beds. Anyway, the results here still

support that the machine learning approach can provide direct estima-

tion of the equivalent bubble diameter, which is valuable in practice. In

a parallel work, the machine learning approach was used to predict

more bubble parameters including the equivalent diameter, centroid

coordinate, major axis length, and minor axis length of a bubble. With

these parameters, a complete description of a bubble in bubbling fluid-

ized beds can be given. This work is now undergoing.

6 | POWER AND LIMITATIONS OF THE
MACHINE LEARNING APPROACH

Compared to the indirect method, in which key hydrodynamic param-

eters are obtained based on postprocessing the reconstructed image

by the Landweber iteration algorithm, the power of the machine

learning approach can be summarized as follows.

1. The machine learning approach can approximate closely to the

results from the indirect method. For example, the predicted over-

all solid concentration is very close to that by postprocessing. In

addition, the SD of the overall solid concentration, which can be

used to characterize the fluidization regime transition, can also be

well captured by the machine learning approach.

2. The machine learning approach is very fast. The reason is that the

machine learning approach skips over the time-consuming image

reconstruction and postprocessing steps. The typical time needed

for the machine learning approach to predict the overall solid con-

centration with a trained model is about 1 ms on a PC with an

TABLE 3 Accuracy of the trained classification machine for the
prediction of the presence of bubbles within the data collected in ug
linear-increasing experiments for different powders and fluidized beds

Fluidized bed Fluidized powder Accuracy (%)

FB2 Al2O3 II 99.5

FB2 MTO 97.6

FB2 Glass beads 98.3

FB1 FCC II 96.8

F IGURE 12 The equivalent
bubble diameter obtained in ug
linear-increasing experiments in
3,600 s for (a) Al2O3 II powder

fluidized in FB2, (b) MTO powder
fluidized in FB2, (c) glass beads
powder fluidized in FB2, and
(d) FCC II powder fluidized in
FB1. X axis: The results directly
from postprocessing. Y axis: The
results predicted by the machine
learning models trained on
samples collected in ug linear-
increasing experiments in 3,600 s
for Al2O3 II powder fluidized
in FB2
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Intel Core i5 3.30 GHz, which is only 0.1% or less of that by the

traditional indirect method. Therefore, the machine learning

approach has great potential to be used for on-line flow regime

identification, fluidization quality characterization, feedback con-

trol, and fault detection of gas–solid fluidized beds.

3. The batch processing speed of the machine learning approach is

also very fast. The nature of the machine learning approach makes

it extremely suitable for batch processing of the data from a large

number of measurements. For example, the typical time needed for

the machine learning approach to predict the overall solid concen-

tration for 6,000 measurements at each ug in ug step-increasing

experiments is about 4 s, while the typical time for the traditional

indirect method can be as long as tens of minutes.

4. The machine learning approach can be used as a general method in a

certain range. The machine learning model trained on a specified

powder and fluidized bed can also be used in the measurements of

other powders and other fluidized bed sizes if the fluidization pat-

terns do not deviate too much, even though both the permittivity of

powders and sensitivity matrix of ECT sensors have been changed.

However, it should be stressed that the output of the training

samples is from postprocessing the material distribution reconstructed

by the Landweber iteration algorithm, which has certain error when

obtaining key hydrodynamic parameters. In this regard, the accuracy

of key hydrodynamics parameters obtained by the machine learning

approach in this work can be further improved. This can be done by

three potential ways in the future. The first way is to replace the

Landweber iteration algorithm with more advanced image reconstruc-

tion algorithms, such as those based on total variation.5,54 The second

way is to perform synchronous measurements by ECT with another

technique that can obtain key hydrodynamic parameters more accu-

rately. Some direct techniques (i.e., no image reconstruction is needed)

like pressure drop measurements and some process tomographic tech-

niques with higher spatial resolution like electron beam X-ray tomogra-

phy55 and magnetic resonance imaging technique56 can be used. The

third promising way is to conduct virtual experiments,10,57 in which true

distributions are extracted from the phantoms of CFD simulations and

the interelectrode capacitance is calculated from electrostatic simula-

tions. Unfortunately, for the first way, due to the challenging inverse

problem of ECT is not avoided, the improvement on the accuracy is lim-

ited. In other words, the accuracy obtained by the machine learning

approach is still constrained by that from the traditional indirect method.

For the latter two ways, both are not realistic at present. A difficulty

underlying the second way is making ECT and these mentioned mea-

surement techniques synchronous. Therefore, it may be difficult to con-

struct a one-to-one relationship between the normalized capacitance

measurements of ECT and the corresponding key hydrodynamic parame-

ters obtained by other measurement techniques. For the virtual

F IGURE 13 Evolution of the equivalent bubble diameter in ug step-increasing experiments determined by postprocessing, predicted by the
machine learning models trained on samples collected in ug linear-increasing experiments in 3,600 s for Al2O3 II powder fluidized in FB2, and
calculated by the correlations of Rowe, Werther, Mori and Wen, and Yacono for (a) Al2O3 II powder fluidized in FB2, (b) MTO powder fluidized in
FB2, (c) glass beads powder fluidized in FB2, and (d) FCC II powder fluidized in FB1
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experiments, even though it is attractive because both true key hydrody-

namic parameters and the corresponding interelectrode capacitance can

be known, the disadvantage is that the state-of-the-art CFD models can-

not always predict all flow patterns encountered in a real fluidized

bed.58,59 In addition, the calculated interelectrode capacitance, even

though incorporated with the effect of noise, still deviates from the mea-

sured data in experiments. In the future, if these problems can be well

addressed, the challenging inverse problem of ECT can be truly avoided

and key hydrodynamic parameters with higher accuracy can be directly

derived from the normalized capacitance measurements by the trained

machine learning model. Therefore, any progress in the development of

these ways will benefit the machine learning approach proposed in

this work.

7 | CONCLUSION

In this work, a general machine learning approach for the measurement

of gas–solid fluidized beds using ECT was developed. The method fea-

tures that an ug linear-increasing strategy is used to perform high-

throughput experiments to collect a large amount of training samples

that traverse different flow patterns and supervised machine learning is

used to train the map from the normalized capacitance measurements

to key hydrodynamic parameters in the training samples. With the

trained model, the time-consuming image reconstruction and

postprocessing steps can be avoided. The goal of on-line monitoring of

key hydrodynamic parameters can thus be achieved.

To tentatively show the effectiveness of the proposed machine

learning approach, the fluctuation of the overall solid concentration of

Geldart A particles in the fixed bed, solid-like homogeneous fluidization,

uniform nonbubbling fluid-like fluidization, and bubbling fluidization

regimes were concerned in this work. Four machine learning models

including linear regression, regression tree, support vector machine

regression, and feedforward network regression were used. The perfor-

mance of different machine learning models with different model inputs

was compared, and the linear regression model with four principal

components as model input was chosen. Then, the effect of the size

of the training samples on the performance of the trained model to

identify different flow regimes was investigated. It was found that a

duration of 3,600 s was needed to identify three plateaus in the

profile of the SD of the overall solid concentration against ug in ug

step-increasing experiments. Finally, data from different powders and

fluidized beds were used to test the generality of the trained model.

Due to the normalized form of the model input and the similarity of

the fluidization behavior for the same group fluidized particles, a

good generality was shown.

The proposed approach was also used to the prediction of the

equivalent bubble diameter to show that the approach can be used

for any key hydrodynamic parameters with little modification. The

prediction of the equivalent bubble diameter requires two trained

F IGURE 14 Fluctuation of the equivalent bubble diameter at a representative ug in ug step-increasing experiments for (a) Al2O3 II powder
fluidized in FB2, (b) MTO powder fluidized in FB2, (c) glass beads powder fluidized in FB2, and (d) FCC II powder fluidized in FB1. The equivalent
bubble diameter here is obtained by postprocessing and predicted by the machine learning models trained on samples collected in ug linear-
increasing experiments in 3,600 s for Al2O3 II powder fluidized in FB2
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machines: a classification machine used for the judgment of the pres-

ence of bubbles, and a regression machine used for the prediction of

the bubble diameter. Both machines were trained using feedforward

network. The results showed that the trained models have good pre-

diction performance and generality.

Although in this work the measurement technique is focused on

ECT, the proposed approach can also be applied to other techniques,

which are difficult to be used for on-line measurement of gas–solid

fluidized beds, such as electron beam X-ray tomography55 and

magnetic resonance imaging technique.56

NOTATION

Roman letters

C capacitance, pF

g normalized permittivity

S normalized sensitivity matrix

uc transition velocity between the solid-like homogeneous flu-

idization and uniform nonbubbling fluid-like fluidization

regimes, mm/s

ug superficial gas velocity, mm/s

umb minimum bubbling velocity, mm/s

umf minimum fluidization velocity, mm/s

V potential difference, V

Greek letters

α step length in the projected Landweber iteration algorithm

β overall solid concentration

λ normalized capacitance

uλ identity vector (a vector of ones) used in the linear back projec-

tion method

θ packed bed solid concentration

Δpn normalized pressure drop

Subscripts

H high calibration

L low calibration

M measurement

Superscripts

− mean value

Abbreviations

ECT electrical capacitance tomography

CFD computational fluid dynamics

FCC fluid catalytic cracking

MTO methanol to olefins
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