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Abstract

The coordination of extra-framework Li+ in faujasite (FAU) and the interaction between H2 and Li-FAU were studied by the generalized-
gradient approximation (GGA) of density functional theory (DFT) with the Perdew–Burke–Ernzerhof (PBE) exchange-correction functional.
Four adsorption sites have been found to be stable for Li+: site SI′, the most stable one, in the sodalite cage; site SII in the six-ring windows
of the sodalite unit and sites SIII and SIII′ in the supercage. Hydrogen interacting with these sites prefers the side-on coordination geometry.
Calculated adsorption energies decrease in the sequence of SIII′ > SIII > SI′ > SII, consistent with the calculated Li–H distance and the charge
on H2. The H–H stretching frequencies of adsorbed species at 4286–4346 cm−1 are by about 7–67 cm−1 lower than in the free hydrogen
molecules. The small bathochromic harmonic H2 frequency shift is in agreement with the small H2 bond elongation.
� 2007 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In the approach to a viable hydrogen-based economy, the
safe and affordable for storage of hydrogen still presents a chal-
lenging issue [1]. Among the different storage methods [2–6],
adsorption on materials presents the advantage of simplicity
and of quick kinetics of the charge and discharge cycles. Con-
cerning sorbent materials, zeolites have been the major candi-
dates for hydrogen storage due to their high thermal stability,
low cost, high bulk density, and adjustable composition. It has
been reported that the amount of hydrogen adsorbed on ze-
olites depends on the framework structure, composition, and
also acidic–basic nature of the zeolites [7,8]. It is known that
cations in the zeolite create strong electric fields that will fa-
vor gas adsorption [4]. So far, there are many experimental and
theoretical studies with the hydrogen molecule interacting with
different kinds of cations in various zeolites [9–13].

Here we report the hydrogen adsorption in the zeolite
Li-FAU. FAU has been selected because it seems to be a
suitable zeolitic framework type for hydrogen purification
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and adsorption. The FAU structure consists of sodalite cages
(truncated cuboctahedra) linked by double six-rings (D6Rs) as
shown in Fig. 1. The sodalite cage and D6Rs are applied as
encapsulation materials for H2 because they contain a maxi-
mum pore opening with a size similar to that of the kinetic
diameter of molecular hydrogen, 2.89 Å. For commercial ap-
plications, a hydrogen storage tank should be able to efficiently
store a sufficient amount of hydrogen with acceptable weight
proportions [14]. This is the first reason for us choosing Li+;
its light mass (6 protons mass) is significantly smaller than
that for other cations such as Na+ (22 protons mass), or Cu+
(58 protons mass). For the second reason is that large size of
alkali metal cations’ presence may affect the available void
volume, thus limiting the pore space for hydrogen adsorption.
It is worth noting that Li-LSX has a hydrogen storage capacity
of 0.6 wt%, among the highest for allknown sorbent materials
at ambient temperature [7].

2. Computational details

All the cluster calculations were performed with density
functional theory (DFT) within the generalized-gradient ap-
proximation (GGA) approximations using DMol3 code of
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Fig. 1. FAU structure with extraframework cation sites denoted. Sitting sites
of cations (SI, SI′, SII, SII′, SIII, and SIII′) as yellow spheres. For the sake
of clarity, the D6Rs units are red; the sodalite cages are light blue.

Accelrys Inc. [15]. The Perdew–Burke–Ernzerhof (PBE)
exchange-correction functional [16,17] and the double numer-
ical plus polarization (DNP) [18–20] basis set, which is equiv-
alent in accuracy to the commonly used 6-31G** Gaussian or-
bital basis set, were used throughout the calculations. However,
the numerical basis set is much more accurate than a Gaussian
basis set with the same size. More recently, van den Berg and
co-workers have found that the GGA with the PBE functional
can give an accurate account of the H2–H2 interactions within
confined (H2)N clusters [21]. Each basis function was restricted
to within a cutoff radius of Rcut =5.0 Å, while the convergence
criteria were set as follows: energy = 2 × 10−5 Ha; force =
4 × 10−3 Ha/Å; displacement = 0.005 Å. Thereby, allowing
for efficient calculations without a significant loss of accuracy.

The cluster we choose consists of a sodalite cage and
D6Rs, which extend the study by a large series of bare extra-
framework cations or the clusters limited to S6Rs (a single
six-membered ring) or D6Rs [22–24]. One framework Si atom
was replaced by aluminium and the charge was compensated
for by a Li+ cation. In these models, the dangling bonds of the
Si atoms are terminated by H atoms and the Si–H bonds are
oriented along the bond direction to what would otherwise have
been the next oxygen atom. By doing this we are aware that our
model will miss some of the details of the cation–framework
interaction. Our strategy is first to provide a certain basic
understanding in the simplest cases. More sophisticated mod-
els will be developed in the future in order to predict cation
distributions more accurately. Full structure optimization of
the clusters representing the various sorption complexes was
performed without geometry restrictions or fixed coordinates.

To test the accuracy of DMol3 in describing H-bond
strengths, the interaction energies between two water molecules

were computed using the PBE/DNP/Rcut = 5.0 Å settings,
as described in the previous section. The calculated value
of 4.7 kcal/mol compares well with experimentally estimated
ranges of 4.7–6.1 kcal/mol [25]. The standard procedure in ab
initio calculations of interaction energies uses the so-called
basis set superposition error (BSSE) approach [26] to account
for incomplete atomic basis sets. The DMol3 program uses
numerical functions that are far more complete than the tradi-
tional Gaussian functions. Moreover, this basis set is known
to produce a small BSSE [27,28]. Considering both the size
of the model and the level of calculation method, we are con-
vinced that the conclusions that will be drawn in the following
should be quite reliable.

3. Results and discussion

3.1. Li+ sites in FAU

In order to study the substitution of Si4+ by (Al3+, Li+), we
replaced a Si4+ in a T site by an Al3+ and introduced a Li+ to
compensate the charge on the framework created by an Al/Si
substitution. Fig. 1 shows the six possible sitting sites of Li+
in the FAU zeolite. Even if all of them have been considered
in the calculations, only parts of the sites have been found to
be stable for the Li+. For the SI, and SII′ sites, geometry op-
timization brings the Li+ into the site SI′. It is impossible to
present the entire trajectory for the motions here and, instead,
selected representative angle (Al–Li–Si) versus optimized step
is presented in Fig. 2. One can clearly see that the Li cation in
SI and SII′ sites transferred to the SI′ site. The selected bond
distances and angles and the relative stability are reported in
Table 1. Also shown in Table 1 for comparison are the results of
experimental [29–31] and similar calculations with D6Rs [24]
reported in the literature. It shows that the distance between the
bridging oxygen and Li atom (R(Li–O)) of the present work
has a better match to experiment than that in the D6Rs simu-
lation. The angle of O–Li–O is in reasonable agreement with
the experimental data. Therefore, we can conclude that clusters
we used in the work are adequate to represent the interaction
of H2 and the acid sites in zeolite framework. From the rela-
tive stability of the Li+ sitting sites in the Table 1, we found
that site SI′ turned out to be the most stable location for Li+,
which is in agreement with the study by D6Rs [24]. The SII′
site is preferred next and then follows the SIII′ site. The last is
SIII site. The present results can be compared with other exper-
imental reports. According to Plevert et al. [31], sites SI′ and
SII′ are fully occupied, and the Li+ in a supercage are equally
distributed between SIII and SIII′ sites. In a dehydrated zeo-
lite, the SIII′ cations can be regarded as nearly “bare”: they
should be easily accessible and have high adsorption capacity.
This preliminary step allowed us to validate the choice of the
cluster size and method used in the calculations.

3.2. H2 interaction with Li-FAU

In order to investigate the cationic effect on the interaction
of sorbates in the Li-FAU/H2, the naked Li/H2 adducts have
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also been performed and compared. The coordination of H2
molecule adsorption can take place through two possible struc-
tures: the side-on [14,32] and the end-on structures (Scheme
1). The end-on structures are not stable: geometry optimization
brings the end-on structure to the side-on structure, except for
the naked Li cation. For naked Li cation, the adsorption en-
ergy with the side-on structure is considerably more compared
to the end-on structure and shows the closest agreement with
the literature data [11]. So, we can say that the H2 molecule
mainly interacts with an active site via the bonding electron
density accumulated between the two H atoms, that is, the side-
on structure, in agreement with the literature [32].

Fig. 2. Angle distribution of the Al–Li–Si for optimizing the Li cation in
the (a) SI site, (b) SII′ site. The Si atom is at the next-next-nearest-neighbor
(NNNN) site in the S6Rs.

Table 1
Relative stability Erel(kcal/mol) of the metal cations sitting site and simulated structural data

Site Stabilization energy (kcal/mol) R(Li–O) (Å) O–Li–O (deg)

Present work Expt. D6Rs [24] Present work Expt.

SI SI′
SI′ 0 1.915 1.902 [29,30] 1.985 112.23 118.5 [31]
SII 1.32 1.913 1.930 [42] 2.050 112.224 120.0 [31]
SII′ SI′
SIII 21.44 1.999 2.010 [31] 106.715
SIII′ 12.45 1.858 1.880 [31] 1.801 89.740

Selected optimized geometrical structures for H2 adsorp-
tion on Li-FAU and the H2 adsorption energy, as well as the
Mulliken population analysis are documented in Table 2. The
interaction of H2 with the “bare” cation Li+ is considerably
stronger compared to the interaction of H2 with Li+ embedded
in a zeolite environment, as shown in Table 2. Fig. 3 shows
the optimized geometries for the H2 adsorption on Li-FAU.
The Li–H internuclear distances for the “bare” Li+ adsorption
complexes Li/H2 are shorter, the adsorption energies consider-
ably are higher and the adsorbate molecule polarization is very
strong. For Li+ there is a clear dependence on the cation site:
the weakest adsorption is for Li+ in the SII site, where it is em-
bedded in the six-ring. Here, the hydrogen cannot approach the
cation as closely as for all other sites. Therefore, the lower in-
teraction energy at the SII site compared to the other sites is due
to extra repulsion between the hydrogen molecule and the rest
of the framework [33]. This result agrees with previous Monte
Carlo studies, according to which, Li+ cations at SII sites are
not involved in the adsorption process [34]. The comparison of
the H2 adsorption energies clearly shows that the SIII site and
SIII′ site, which are in the supercage, are more favorable than
the SI′ and SII sites (Table 2). The Li+ cation at SIII′ site has a
much higher H2 adsorption energy (12.15 kJ/mol), as compared
to all other sites under study.

We can observe that the Li–H distances for H2 bonding to
Li+ decrease in the order: SIII′ < SI′ < SIII < SII, which cor-
relate with the adsorption energy. The closer the hydrogen ap-
proaches the extra-framework cation, the stronger the interac-
tion becomes. The adsorption energy is inversely proportional
to the stability of the site. This trend is consistent with those pre-
viously reported from experimental and theoretical results for
the adsorption of H2 in metal-exchanged ferrierite [35], MOR
[36], FER [11,37] or other gases in various zeolite systems
[38–42]. The more tightly the extra-framework cation binds to
the zeolite framework, the lower the adsorption strength of the
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Scheme 1. Schematic representation of the interaction of H2 with Li+:
(a) side-on; (b) end-on.
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Table 2
Geometry of the adsorption complex of H2 on Li+-FAU, Mulliken population analysis (electrons) and adsorption energies

Cluster model/H2 + Li(Z) RLi.H (Å) RH.H (Å) ��a(cm−1) q (H2) �E0 (kJ/mol)

Naked Li+ 2.029 (2.026 [11]) 0.755 (0.761 [11]) −67 0.172 25.03 (23.5 [11])
Naked Li+b 2.059 0.751 −7 0.072 8.12
Li+ at SI′ 2.308 0.753 −20 0.065 8.97
Li+ at SII 2.526 0.753 −40 0.048 5.90
Li+ at SIII 2.177 0.753 −13 0.075 11.69
Li+ at SIII′ 2.097 0.754 −65 0.084 12.15

a�� is the shift in harmonic stretching frequency of hydrogen with respect to the free molecule.
bThe end-on structure.

Fig. 3. Optimized geometry of the H2 molecule adsorbed on the (a) SI′ site (b) SII site (c) SIII site and (d) SIII′ site. The color code is as follows: white,
hydrogen; blue, Li cation; red, oxygen; yellow, silicon, and pink, aluminum. Bond distances in Å.

cation is. As pointed out above, here we find that the adsorption
energy decreases with increasing the Li–H distance.

The increase of the bond length of H2 induced by the adsorp-
tion on the Lewis acid site in the zeolite represents an activation
of the adsorbed molecule. Only a small degree of bond activa-
tion is observed for these sites, indicating a nonchemical inter-
action [43]. The H–H bond length varies by −0.001–0.003 Å in
the adsorption complexes; only the interaction with “bare” Li+
leads to an increase of the H–H length by 0.003 Å. The charge

transfer from the H2 molecule to the cation has been evaluated
by means of the hydrogen charge after the adsorption. It is well
known that the increase of the charge on the hydrogen (qH2)

corresponds to the increase of the electron transference, and
thus, to the increase of the Lewis acid site. So it can be stated
from the qH2 data listed in Table 2 that the acid strength of the
Li-FAU sites increases in the order of SII < SI′ < SIII < SIII′,
which shows a high consistency with the calculated adsorption
energy, the geometric parameters.
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The bond activation of the adsorbed H2 molecule leads to
the downshift of the intramolecular stretching frequency. The
stretching frequency of the free molecule is 4353 cm−1. This
results in a significant overestimation of the experimental fre-
quency by 192 cm−1 [44], which in turn leads to an underesti-
mation of the previous theoretical frequency by 31 cm−1 [12].
The discrepancy originates in the exchange-correlation func-
tional. Because the GGA functional [45] overestimates the bond
strength of H2, the frequency is higher than that experimen-
tally observed [12,44]. H–H stretching frequencies of adsorbed
species at 4286–4346 cm−1 are by about 7–67 cm−1 lower than
those in the free hydrogen molecules. The small bathochromic
shift (see Table 2) in H–H stretching frequency is in agreement
with the small H2 bond elongation.

4. Conclusion

The adsorption of hydrogen on Li-FAU zeolite has been in-
vestigated by means of density functional theory. DFT studies
reveal that Li+ strongly prefers the SI′ sites in the sodalite.
The coordination of H2 prefers the side-on structure. The Li+
cations at SIII′ sites have the highest adsorption energy among
the examined sites. By analyzing the adsorption energy, the ge-
ometric parameters, and the charge on the H2, we concluded
that the acidity of the Li-FAU sites decreases in the order of
SIII′ > SIII > SI′ > SII. The vibrational frequency of the H–H
stretching mode of the H2 molecule adsorbed in the cluster was
redshifted from that in free molecule. The small bathochromic
shift in H–H stretching frequency is in agreement with the small
H2 bond elongation.
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