
PARTICLE TECHNOLOGY AND FLUIDIZATION

Study of Catalyst Coke Distribution Based on Population Balance
Theory: Application to Methanol to Olefins Process

Hua Li
Dalian National Laboratory for Clean Energy, National Engineering Laboratory for MTO, Dalian Institute of Chemical Physics,

Chinese Academy of Sciences, Dalian, 116023, China

Xiaoshuai Yuan and Mingbin Gao
Dalian National Laboratory for Clean Energy, National Engineering Laboratory for MTO, Dalian Institute of Chemical Physics,

Chinese Academy of Sciences, Dalian, 116023, China

University of Chinese Academy of Sciences, Beijing, 100049, China

Mao Ye and Zhongmin Liu
Dalian National Laboratory for Clean Energy, National Engineering Laboratory for MTO, Dalian Institute of Chemical Physics,

Chinese Academy of Sciences, Dalian, 116023, China

DOI 10.1002/aic.16518
Published online January 10, 2019 in Wiley Online Library (wileyonlinelibrary.com)

A coke distribution model of catalyst particles in three-dimensional space was developed based on population balance
theory, and an analytic expression of coke distribution for zero-dimensional time-independent problem was deduced. The
expression shows that the coke distribution is determined by the average catalyst residence time, coke deposition
(or burning) rate, and coke distribution of catalyst inflow. The coke distribution model was further applied to the methanol to
olefins (MTO) process. The critical factors influencing coke distribution in MTO process, as well as the effect of coke distri-
bution on product selectivity, were investigated. Three scales of MTO fluidized bed reactor–regenerator systems, i.e., pilot-
scale, demonstration-scale and commercial-scale with the reactor diameter of 0.261, 1.25, and 10.5 m, respectively, were
simulated. The simulated results were in good agreement with the operation data. The model could be helpful in the opera-
tion optimization and reactor design. © 2018 American Institute of Chemical Engineers AIChE J, 65: 1149–1161, 2019
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Introduction

Catalysts are widely used in a variety of industrial applica-
tions, and the formation of coke, which causes catalyst deacti-
vation, is usually accompanied. For example, a number of
commercial processes encounter catalyst deactivation, includ-
ing steam reforming of natural gas, styrene production from
ethylbenzene, catalytic cracking of heavy oil fractions, metha-
nol to olefins (MTO) on SAPO-34, and solid acid alkylation
on a Y zeolite.1 For some processes, the catalyst particles
could have a certain coke distribution. Such as for both fluid
catalytic cracking (FCC) process and MTO process, the circu-
lating fluidized bed reactor–regenerator system is adopted,
where coke is deposited on the catalyst particles in the reactor
and then burned off in the regenerator, as shown in Figure 1.
The circulation of catalyst particles between the reactor and
regenerator inevitably leads to a distribution of catalyst

residence time in both the reactor and regenerator. Since coke
deposition is closely related to catalyst residence time, the
coke content on catalyst also demonstrates a distribution,
which could be quantified by a probability density function
(PDF) in mathematics. It has been found that, for some pro-
cesses, coke is not only an inert substance but also it is
involved in reactions, sometimes of the same type as those
leading to the main products of the process.1 Therefore, care-
ful control of the catalyst coke distribution is required to
enhance the catalytic performance in a reactor.

In order to describe the industrial processes where the coke
distribution could influence the reaction performance, special
attention should be paid to the calculation of the reaction rate.
The reaction rate of a population of catalyst particles should
be represented as

Ð
p(cc)r(cc)dcc, where cc is the coke content

on catalyst particles, p(cc) is the coke content PDF of the cata-
lyst population, and r(cc) is the reaction rate with coke content
cc. Generally, the reaction rate

Ð
p(cc)r(cc)dcc cannot be

replaced by the rate with an average coke content, i.e., r ccÞð ,
where cc is the average coke content of catalyst particles,
i.e.,

Ð
ccp(cc)dcc. In mathematics, only when r(cc) is a linear

function of cc, the value of
Ð
p(cc)r(cc)dcc equals r ccÞð . How-

ever, in real commercial processes, including FCC2 and
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MTO,3-5 the relation between r(cc) and cc is highly nonlinear.
Hence, the coke distribution becomes important for correctly
describing the reaction behavior of a population of catalyst
particles in fluidized bed reactor–regenerator system.
Age distribution approach has been traditionally used to

investigate the effect of coke distribution. This approach intro-
duces the so-called age distribution based on the perfectly
mixed assumption, i.e., E tð Þ¼ 1

τ exp − t
τ

� �
, to predict the reac-

tion rate by the formula
Ð ∞
0 r cc tð Þð ÞE tð Þdt, where cc(t) indi-

cates the relation of coke content with the residence time of a
particle in the fluidized bed. τ represents the average residence
time of catalyst particles. In modeling of the MTO process,
some researchers used the age distribution approach6,7 to
account for the influence of coke content distribution. How-
ever, the age distribution approach is an indirect method, and
could not show the physical picture in a much clearer way.
Most of the interested properties in the MTO process, such as
product selectivity, methanol conversion, and average coke
content, require the direct information of the coke distribution,
i.e., p(cc). It is necessary to develop a direct method, i.e., coke
distribution approach, to obtain coke distribution. The key of
age distribution approach is how to get the function E(t), and
how to map residence time to coke content of catalyst parti-
cles. Under the perfectly mixed assumption, the expression of
E(t) could be analytically derived, and the map function could
be easily obtained when the coke deposition rate has simple
relation with coke content. In this case, the age distribution
approach could give the same results as coke distribution
approach for zero-dimensional (0D) time-independent problem
when the inflow catalyst particles have a single coke content.
However, for space-dependent or time-dependent problem, or
when the inflow catalyst particles have a certain coke distribu-
tion, the derivation of E(t) or the mapping of t to cc is
extremely hard, if not impossible. In this connection, the coke
distribution approach is clearly superior over the age distribu-
tion approach and could provide a direct yet simple way to
investigate coke distribution in real MTO reactor.
The population balance theory or mass balance theory pro-

vides a powerful tool to obtain the PDF of coke distribution.
As early as 1964, Hulburt and Katz8 separated the coordinates
of a particle into two parts—a set of external coordinates
which specify the location of the particle and a set of internal
coordinates that specify the particle size and other aspects of
the particles quality as may be relevant; then they derived the
(time-dependent three-dimension [3D]) population balance

equation for particle size according to the conservation of
number density of particles in the phase space. In 1968,
Levenspiel et al.9 developed the general equations in terms of
mass balances to relate the particle size distributions with flow
rates of feeds and outflow streams in fluidized beds. The equa-
tions9, which are essentially based on the 0D particle popula-
tion and independent of time, have analytical solutions if
special boundary conditions are applied. All these works well
inspired us to develop our coke distribution equation. Here we
focus on the particle weight (catalyst plus coke), and the aim
of the current work is to obtain a clearer and simpler equation
of the coke distribution of catalyst particles, and then apply it
to MTO process.

The MTO process provides an alternative approach to pro-
duce light olefins from nonoil resources, and has become a sub-
ject of intense researches spanning catalyst synthesis, reaction
mechanism, reaction kinetics, process development, and reactor
scale-up.10,11 In August 2010, a commercial unit (600 kt/a of
ethylene and propylene production), based on the MTO tech-
nology (DMTO) developed by Dalian Institute of Chemical
Physics (DICP), was successfully started up in Shenhua’s Bao-
tou coal-to-olefins plant in north China.12 In the open literature,
various reactor and kinetic models, as well as computational
fluid dynamics (CFD) simulations, have been proposed for the
MTO process.3-7,13-16 Only a few took effect of coke distribu-
tion into account using age distribution approach.6,7

In this article, a (time-dependent 3D) coke distribution model
of catalyst particles based upon the population balance theory
was established, and an analytical formula of 0D time-
independent coke distribution was further obtained. Three scales
of reactor–regenerator systems of MTO process, i.e., pilot-scale,
demonstration-scale, and commercial-scale with reactor diame-
ters of 0.261, 1.25, and 10.5 m, respectively, were simulated.
All simulated results were compared with experimental values.
Here, a MTO kinetic model recently developed by our group5

was applied to derive the kinetic parameters, and the generic
fluidized-bed reactor (GFBR) model,17 which spans bubbling,
turbulent, and fast fluidization regimes, was used to describe the
flow state of the fluidized bed.

Coke Distribution Model

In this section, the coke distribution model is derived based
on the conservation of mass of catalyst particles.

Model

In order to describe the motion of a population of catalyst
particles, we first define the phase coordinates of catalyst parti-
cles. The coordinates of a particle could be separated into two
parts: a set of external rectangular Cartesian coordinates, i.e., x!

or xi (i = 1,2,3; in m), which specify the spacial location of
the particle; and an internal coordinate, i.e., coke content cc
(in dimensionless), which specify the mass ratio of the coke to
the particle. Then the corresponding velocities of the particle
could be obtained.

dxi
dt

¼ vi x
!, t
� � ð1Þ

dcc
dt

¼R ccð Þ ð2Þ

Here vi x
!, t
� �

(in m
s ) represents spacial velocities of the parti-

cle, and R(cc) (in 1
s) represents the coke deposition rate or coke

burning rate, and t (in s) is time.
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Figure 1. A reactor–regenerator system. The coke con-
tent grows in the reactor and decreases in the
regenerator.
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For a population of catalyst particles that occupy a volume
V(t), including the internal coordinate cc, the mass is con-
served, which could be expressed as following:

d

dt

ð
V tð Þ

ρcat x
!, t
� �

p x
!,cc, t
� �

dx1dx2dx3dcc ¼ 0 ð3Þ

where ρcat x
!, t
� �

(in kg
m3) represents the time-dependent mass

density of catalyst particles at location x
! and time t, and

p x
!,cc, t
� �

(in dimensionless) is the PDF of coke content. Here
ρcat x

!, t
� �

refers to the mass density of net catalyst particles, not
including the coke deposited on them. The function p x

!,cc, t
� �

possesses a property thatð
p x

!,cc, t
� �

dcc ¼ 1: ð4Þ

From Eq. 3, the following relation could be derived

∂ρcat x
!, t
� �

p x
!,cc, t
� �

∂t
+r� v! x

!, t
� �

ρcatðx!,tÞpðx!,cc,tÞ
� �

+
∂ R ccð Þρcatðx!,tÞpðx!,cc,tÞ
� �

∂cc
¼ 0:

ð5Þ

Equation 5 is a time-dependent 3D partial differential equation
(PDE) for the coke distribution model based on the catalyst
mass density. This equation could be solved by coupling with
other conservation equations, which may provide the informa-
tion of velocity and density of catalyst particles.

Time-dependent problem

In the simulations of a catalytic process, different assump-
tions, such as the completely mixing and plug flow, are com-
monly used to simplify the reactor model. The coke distribution
equation, i.e., Eq. 5, could be also simplified based on these
assumptions. In this subsection, the 0D and one-dimensional
(1D) time-dependent coke distribution models are obtained.
0D Coke Distribution Model. Fluidized bed reactor could

be viewed as 0D system, if catalyst particles in the bed are
assumed to be perfectly mixed. For such system, the simplified
form of Eq. 5 could be written as

∂ W tð Þpðcc,tÞ½ �
∂t

+Fout tð Þp cc, tð Þ−Fin tð Þpin cc, tð Þ

+W tð Þ∂ R ccð Þpðcc,tÞ½ �
∂cc

¼ 0,
ð6Þ

where W(t) (in kg) is the catalyst inventory in the bed, Fout(t)
(in kg

s ) is the outflow flux of catalyst particles, Fin(t) (in
kg
s ) is

the inflow flux of catalyst particles, and pin(cc, t)
(in dimensionless) is the PDF of inflow catalyst particles. The
three quantities W(t), Fout(t), and Fin(t) only refer to the mass
of the catalyst particles, do not include any coke deposited on
them. Assuming that the catalyst inventory, outflow flux, and
inflow flux are independent of time, and further Fin(t) = Fout(t)
(thus the two fluxes could be abbreviated by F, in kg

s ), we
could obtain

∂p cc, tð Þ
∂t

+
∂ R ccð Þpðcc,tÞ½ �

∂cc
¼ 1
τ
pin cc, tð Þ−pðcc,tÞ½ �, ð7Þ

where τ (in s) is the average residence time of catalyst particles,
i.e., τ¼W

F . If there is no catalyst flux for the bed, i.e., F ! 0
or τ ! ∞, the Eq. 7 could be written as

∂p cc, tð Þ
∂t

+
∂ R ccð Þpðcc,tÞ½ �

∂cc
¼ 0: ð8Þ

The above equation could also be applied to describe the
coke distribution of catalyst particles in a small region of a
fixed bed reactor, since all catalyst particles in the bed are
fixed, i.e., v!¼ 0.

1D Coke Distribution Model. For a plug-flow reactor, the
catalyst particles could be assumed to be transported along the
reactor axis (z-axis) with constant velocity, i.e., vz (in m

s ), and con-
stant catalyst density. Then the Eq. 5 could be simplified as

∂p z,cc, tð Þ
∂t

+ vz
∂p z,cc, tð Þ

∂z
+
∂ R ccð Þpðz,cc,tÞ½ �

∂cc
¼ 0: ð9Þ

Time-independent problem

In this section, 0D time-independent coke distribution equa-
tions are first obtained, and nonzero-dimensional time-
independent coke distribution equations are then derived.

0D Coke Distribution Equations. The time-independent
equation could be obtained from Eq. 7 as follows

d R ccð Þp ccð Þ½ �
dcc

¼ 1
τ
pin ccð Þ−p ccð Þ½ �: ð10Þ

From Eq. 10, we could derive the analytic solution of p(cc)
for R(cc) > 0 (see Supporting Information Appendix A).

p ccð Þ¼ 1
τR ccð Þ

ðcc
cmin
c

pin cinic

� �
e
−
Ð cc

cinic

1
τR sð Þdsdcinic ð11Þ

Here, cmin
c (in dimensionless) is the minimum coke content

of inflow catalyst particles. Similarly, we could obtain the
expression of p(cc) for R(cc) < 0 as follows

p ccð Þ¼ 1
−τR ccð Þ

ðcmax
c

cc

pin cinic

� �
e
−
Ð cinic

cc

1
−τR sð Þdsdcinic , ð12Þ

where cmax
c (in dimensionless) is the maximum coke content of

inflow catalyst particles.
If the inflow catalyst particles have only a single coke con-

tent, i.e., c0c , which represents that pin(cc) is a delta function,
i.e., pin ccð Þ¼ δ cc−c0c

� �
, the above two equations (Eqs. 11, 12)

could be simplified respectively as

p ccð Þ¼ 1
τR ccð Þe

−
Ð cc

c0c

1
τR sð Þds ð13Þ

p ccð Þ¼ 1
−τR ccð Þe

−
Ð c0c

cc

1
−τR sð Þds: ð14Þ

It is interesting that the PDF of coke distribution is identical
to the residence time distribution, i.e., 1

τ e
− t
τ, by setting R(cc) =

1 and c0c ¼ 0 in Eq. 13. If the relation of R(cc) with cc is
known, an explicit expression of p(cc) could be obtained from
Eqs. 13, 14.

Nonzero Dimensional Coke Distribution Equations. The
equation of nonzero-dimensional coke distribution can be
obtained from the 0D time-independent expression. Logically, if
we could get the PDF in an arbitrary cell in nonzero-dimensional
space, the PDFs of the whole space could be obtained.

Now, we focus on an arbitrary cell, denoted as P, in the
reactor. Catalyst particles in the cell are assumed to be per-
fectly mixed. For convenience, we define the catalyst inflow
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through each face f of cell P as Ff (kg/s), the PDF of the
neighbor cell which connected by face f as pNf ccð Þ (dimension-
less), and the mass of catalyst particles in the cell as WP (kg).
Note that the inflow term Ff which represents the flux leaving
from the neighbor cell is different with the net flux through
the face f. Then we could obtain the total mass of inflow or
outflow of cell P, i.e., FP ¼P

f F
f (its unit is kg

s ), and the aver-

age residence time of the particles in the cell, i.e., τP ¼WP

FP (its
unit is s). The PDF of cell P for R(cc) > 0 could be

pP ccð Þ¼ 1
τPR ccð Þ

ðcc
cmin
c

e
−
Ð cc

cinic

1
τR sð Þds

X
f

F f

FP
pNf cinic

� �� �
dcinic : ð15Þ

For R(cc) < 0, the PDF of cell P is

pP ccð Þ¼ 1
−τPR ccð Þ

ðcmax
c

cc

e
−
Ð cinic

cc

1
−τR sð Þds

X
f

F f

FP
pNf cinic

� �� �
dcinic :

ð16Þ
The derivation in this section can be viewed as an extension

of the derivation of section 0D Coke Distribution Equations.
By comparing Eq. 11 and Eq. 15, we could find that the two
situations are physically the same.

Application to MTO Process

In this section, the 0D time-independent model was applied
to the reactor–regenerator system of the MTO process, where
coke is deposited in the fluidized bed reactor [R(cc) > 0] and
burned off in the fluidized bed regenerator [R(cc) < 0]. The
catalyst particles in the reactor and regenerator are assumed to
be perfectly mixed.
The simplified scheme of a typical reactor–regenerator sys-

tem is shown in Figure 1. In Figure 1, W1 (in kg) and W0

(in kg) denote the catalyst inventory in the reactor and regen-
erator, respectively, and F (in kg

s ) represents the catalyst
circulation rate between the reactor and regenerator. At steady-
state, the catalyst circulation rate is equal to the rate of catalyst
inflow and/or outflow of each bed. The three quantities W1,
W0, and F only refer to mass of the catalyst particles, do not
including any coke that has been deposited on them. p1(cc)
(in dimensionless) indicates the PDF of coke content on cata-
lyst particles of the reactor, while p0(cc) (in dimensionless)
indicates that of regenerator.

Coke distribution

The PDF of the reactor is highly related to the coke deposi-
tion rate R1(cc). Based on the kinetics recently proposed by
Yuan et al.,5 the coke deposition rate could be expressed as

R1 ccð Þ¼ kds ccð Þ ð17Þ

where

s ccð Þ¼ cmax
c −cc ð18Þ

kd ¼ k8ρ̂
0:3
MeOH + k9ρ̂

0:3
C2H4

+ k10ρ̂
0:3
C3H6

+ k11ρ̂
0:3
C4H8

+ k12ρ̂
0:3
C5+

ð19Þ
s(cc) (in dimensionless) represents the content of the active

sites of the catalyst particle. Here cmax
c (in dimensionless) is

the maximum coke content of the catalyst particle. kd (in 1
s) is

the deposition rate constant, which is related to the densities

of methanol and olefins, ρ̂i (in
kg
m3) is the density of species

i which is calculated based on the voidage volume.5

In this work, the used coke deposition rate was obtained via
a MTO reaction kinetic model recently developed in our
group,5 in which the MTO reaction over SAPO-34 catalyst is
assumed to follow the advanced dual-cycle reaction mecha-
nism. In this model, both the olefins-based cycle and
aromatics-based cycle are denoted as virtual species, where
the former mainly accounts for the production of higher ole-
fins and the latter for lower olefins. The kinetic parameters
including coke deposition rate were derived by fitting experi-
mental data from laboratory scale fluidized bed reactor with
commercial DMTO catalyst.

From Eqs. 11, 17, we could obtain

p1 ccð Þ¼
ðcc
cmin
c

1

τ1kd cmax
c −cinic

� � cmax
c −cc

cmax
c −cinic

� � 1
τ1kd

−1

p0 cinic

� �
dcinic

ð20Þ
Then, we could have the average coke content in the

reactor.

cc1 ¼
ðcmax
c

cmin
c

ccp1 ccð Þdcc ¼ τ1kd
1 + τ1kd

cmax
c +

1
1 + τ1kd

ðcmax
c

cmin
c

cinic p0 cinic

� �
dcinic

ð21Þ
When the catalyst inflow of the reactor only has a narrow

cut of coke content, where the coke content is around c0c ,
which implied that the p0(cc) could be approximated by the
function δ cc−c0c

� �
, the Eq. 20 could be simplified as

p1 ccð Þ¼ 1

τ1kd cmax
c −c0c

� � cmax
c −cc
cmax
c −c0c

� � 1
τ1kd

−1

ð22Þ

And, the Eq. 21 could be written as

cc1 ¼ τ1kd
1 + τ1kd

cmax
c +

1
1 + τ1kd

c0c : ð23Þ

The burning rate R0 in the regenerator could be
expressed as

R0 ccð Þ¼ −kbc
m
c ð24Þ

where kb (in 1
s) is the burning rate constant, and

m (in dimensionless) is the order of reaction. Based on our
previous experimental results, we found that m is approxi-
mately 1, and kb could be expressed as a linear function of the
pressure of O2, i.e., kb ¼ kO2pO2 , where pO2 (Pa) is the pressure
of O2 and kO2 ( 1

Pas) is rate parameter. By setting m = 1, we
could derive the expression of p0 from Eqs. 12, 24 as
following

p0 ccð Þ¼
ðcmax
c

cc

1
τ0kbcinic

cc
cinic

� � 1
τ0kb

−1

p1 cinic

� �
dcinic ð25Þ

Now we could have the average coke content in the
regenerator.

cc0 ¼
ðcmax
c

cmin
c

ccp0 ccð Þdcc ¼ 1
1 + τ0kb

ðcmax
c

cmin
c

cinic 1−
cmin
c

cinic

� � 1
τ0kb

+ 1
" #

p1 cinic

� �
dcinic

ð26Þ
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Here, cmin
c equals zero, and then we could further obtain

cc0 ¼ 1
1 + τ0kb

ðcmax
c

cmin
c ¼0

cinic p1 cinic

� �
dcinic ð27Þ

In this subsection, we introduced the PDFs of coke content
and the average coke content in both reactor and regenerator
in MTO process. We could find that two constants, i.e., kd and
kb, play an important role in these calculations. The specific
scheme for calculating kd and kb is introduced in next
subsection.

Reactor model

The hydrodynamics of both reactor and regenerator is
described by the GFBR model.17 The fluidized beds, according
to the GFBR model, are divided into two parts, i.e., freeboard
and dense bed, as shown in Figure 2. The dense bed is further
divided into two parts: the dilute phase/region using the descrip-
tor “low-density” (L) phase, and the dense phase/region using
the descriptor “high-density” (H) phase. The L-phase represents
the bubble phase at low velocity and the core region at high
velocity, while the H-phase represents dense or emulsion phase
at low velocity and the outer annular region at high velocity.
Then the control equations of steady-state for L-phase and

H-phase in a fluidized bed could be represented as17

ψLuL
dCiL

dz
¼ψLDL

d2CiL

dz2
−kLHaIψL CiL−CiHð Þ+ψLriL , ð28Þ

ψHuH
dCiH

dz
¼ψHDH

d2CiH

dz2
−kLHaIψL CiH−CiLð Þ +ψHriH ,

ð29Þ

and the control equation for freeboard could be represented as

uf
dCif

dzf
¼Df

d2Cif

dz2f
+ rif : ð30Þ

Here, the three equations are 1D differential equations,
which neglect the changes of the concentrations along the
radial direction. In these equations, ψS (in dimensionless) rep-
resents the S-phase volume fraction, and uS (in m

s ) indicates

the superficial velocity of gas of S-phase, DS (in m2

s ) means the
axial gas dispersion coefficient of S-phase, CiS (in kmol

m3 ) is
the concentration of species i of S-phase, and riS (in kmol

m3s ) is
the average reaction rate due to coke distribution of S-phase.
Here, the subscript S denotes L, H, or f. Hereafter, we will
neglect the subscript L, H, and f for simplicity. kLH (in m

s )
represents gas interchange coefficient between L and H
phases, and aI (in 1

m) represents interphase transfer surface per
unit volume of gas in low-density phase.

The parameters ψ , u, D, as well as kLH and aI, could be pre-
dicted by the GFBR model (see reference [17] for details).
Therefore, we should focus our attention on the term ri , whose
expression could be written as

ri ¼
ðcmax
c

cmin
c

ri ccð Þp1 ccð Þdcc: ð31Þ

The rate of species i, i.e., ri(cc) (in kmol
m3s ), can be expressed

by linear sum of rates of reaction equations

ri ccð Þ¼
X
j

cjiℛj ccð Þϵ=Mi ð32Þ

where cji (in dimensionless) is coefficient of reaction equation,
ϵ (in dimensionless) is the voidage of the current phase, and
Mi (in

kg
kmol) is molar mass of species i. The rate of reaction

equation j, i.e., ℛj(cc) (in
kg
m3s), according to its relation with

coke content cc (see the reference [5] for details), could be
written in three forms

ℛj ccð Þ¼
kej s ccð Þ
kej s ccð Þϕ ccð Þ
kej ccϕ ccð Þ

8<
: ð33Þ

where s ccð Þ¼ cmax
c −cc (as defined in Eq. 18), and kej (in kg

m3s) is
effective rate parameter of equation j, which incorporate the
effect of densities of reactants and catalyst particles. ϕ(cc)
(in dimensionless) is deactivation function of catalyst

ϕ ccð Þ¼ exp −
cmax
c −ccric

cmax
c −cc

� �5

−
cmax
c −ccric

cmax
c

� �5
" #( )

ð34Þ

where ccric (in dimensionless) is a parameter of activation,
which could be calculated by the relation ccric ¼ 0:10
−0:021lnWHSV. WHSV (in kgMeOH

kg Cat h ) is the ratio of the metha-

nol influx of the reactor to the mass of catalyst particles in the
reactor.

From Eqs. 31–33, we could find that the effect of coke dis-
tribution on the reaction rates of species is embodied in three

terms, i.e.,
Ð cmax

c

cmin
c

s ccð Þp1 ccð Þdcc,
Ð cmax

c

cmin
c

s ccð Þϕ ccð Þp1 ccð Þdcc, andÐ cmax
c

cmin
c

ccϕ ccð Þp1 ccð Þdcc. For convenience, we denote them by

symbols s1 , sϕð Þ1 , and ccϕð Þ1 , respectively. Based on the rela-
tion cmax

c ¼ cc1 + s1 , we could get the expression of s1
from Eq. 21

s1 ¼ 1
1 + τ1kd

cmax
c −

1
1 + τ1kd

ðcmax
c

cmin
c

cinic p0 cinic

� �
dcinic ð35Þ

And the expressions of sϕð Þ1 and ccϕð Þ1 are given in Sup-
porting Information Appendix B.
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Figure 2. A sketch of GFBR model.17
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It is obvious that we cannot, based on the kinetics proposed
by Yuan et al.,5 replace the average rate

Ð
r(cc)p1(cc)dcc

by r ccÞð .
The whole system could be solved iteratively. A special

parameter is kd, which should be updated after solving three
control equations. From Eqs. 28–30, we could get the species
concentrations, as well as the corresponding rate of coke depo-
sition, along with the height of the reactor. This rate of coke
deposition, which changes with the height of the reactor, is the
local deposition rate dependent upon the local densities of spe-
cies and catalyst particles. Since the catalyst particles are
assumed to be perfectly mixed in the reactor, the value of
R1(cc) is in fact a mass averaged value of these local rates of
coke deposition. Then, based on Eq. 17, the kd could be
obtained by equation

kd ¼R1 ccð Þs1 : ð36Þ
Subsequently, the value of s1 , sϕð Þ1 , and ccϕð Þ1 could be

updated with new kd. Then we return to solve the control
equations, and the procedure is then iterated.

Results and Discussion
Time-independent coke distribution

In this section, we investigated some properties of time-
independent coke distribution for the reaction processes in
which the coke deposition (burning) rate is linearly dependent
on the coke content, such as MTO process based on our pro-
posed kinetics.5

0D Coke Distribution. From Eq. 11, it could be found that
the average catalyst residence time, coke deposition rate and
coke distribution of catalyst inflow determine the coke distri-
bution of the reactor. If the deposition (burning) rate is a linear
function of coke content, the first two factors, could be consid-
ered together as a single factor, which can be represented by a
dimensionless number, i.e., τ1kd (see Eq. 20). Here we intro-
duce the Dahmkohler number Γ1 ≡ τ1kd for convenience. If
the catalyst inflow has a single coke content, the dependence
of coke distribution upon Γ1 is given by Eq. 22. Figure 3
shows the change of coke distribution with Γ1, where cmax

c ¼
0:11 and c0c ¼ 0. It reveals that, if Γ1 = 1, the PDF of coke

content is constant, which means a uniform distribution of
coke content; if Γ1 < 1, the PDF is a monotonically decreasing
function, which shows the superiority of low coke content; if
Γ1 > 1, the PDF is a monotonically increasing function that
reflects the superiority of high coke content. It is critical to
choose an appropriate coke distribution of the reactor by set-
ting a suitable value of Γ1. It could further be found that Γ1 is
highly related to the average coke content cc1 , as shown in
Eq. 21, 23. These two equations are identical in nature, if we

regard
Ð cmax

c

cmin
c

cinic p0 cinic

� �
dcinic as cc0 . Figure 4 shows a monotoni-

cally increasing function of cc1 in regard to Γ1. More impor-
tantly, we could estimate Γ1 from the value of cc1 via the
following relation established based on experiments.

Γ1 ¼ cc1−cc0
cmax
c −cc1

ð37Þ

It also implies that, if we want to keep a certain average
coke content in the reactor, we could choose a suitable Γ1
based on Eq. 37 for the reactor. It is similar for regenerator,
see Eq. 27.

Another factor that could affect the coke distribution of the
reactor is coke distribution of catalyst inflow, i.e., p0(cc). This
could be investigated by observing the changes of PDFs in a
virtual circulating process of reactor–regenerator system,
which also means a numerical iteration process. As can be
seen in Figures 5 and 6, the results after two iterations are very
close to that for 3 and 10 iterations, which suggests that the
final steady-state of both reactor and regenerator could be
quickly reached after two numerical iterations at present study.
During the circulation, the average coke contents of both beds
are fixed with given values. Figure 5 shows the coke distribu-
tions of both reactor and regenerator, where the average coke
contents are fixed with 5.28% and 1.43%, respectively (here
cmax
c ¼ 11:7%, cmin

c ¼ 0:0%). We could obtain Γ1 = 0.60 from
Eq. 37. The coke distribution of the regenerator is first
assumed to be δ(cc − 0.0143), that is to say, all the catalyst
particles in the regenerator has a single coke content of 1.43%.
Such distribution of p0(cc) is displayed in Figure 5 by a blue
dashed line. At this coke distribution of catalyst inflow, we
could obtain the coke distribution of the reactor, i.e., p1(cc),
from Eq. 20, which is shown in Figure 5 also by a blue dashed
line. This p1(cc) then becomes the coke distribution of the

Figure 3. The relation of coke distributions with
Γ1 (Γ1 � τ1kd, cmax

c ¼ 0:11, c0c ¼ 0).
[Color figure can be viewed at wileyonlinelibrary.com]
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Figure 4. The average coke content as a function of
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inflow of the regenerator, and we could obtain new p0(cc) as
shown in Figure 5 by a red solid line, which now shows a cer-
tain distribution and becomes different to its initial setting
(a single coke content). At this p0(cc) distribution, we could
obtain new p1(cc), as shown in Figure 5 by a red solid line,
which also is different to the distribution in previous iteration.
The p1(cc) in the previous iteration, shown by a blue dashed
line, is a monotonically decreasing function, while the new
one has a maximum. For a further iteration, the profiles of
new PDFs of both beds, shown in green dash-dot lines, are
similar to the PDFs before this iteration, which means the
PDFs are close to convergence. Another situation where the
coke content in the reactor is fixed with 7.80% is also consid-
ered. The corresponding Γ1 is 1.63 based on Eq. 37. The simu-
lation of the circulating process is shown in Figure 6.
Different with our previous example, the convergent PDF of

current p1(cc) is a monotonically increasing function. It seems
that Γ1 = 1 also becomes a critical point for p1(cc), as shown
in Figures 5 and 6, where Γ1 equals 0.60 and 1.63,
respectively.

Nonzero-Dimensional Coke Distribution. For a nonzero-
dimensional problem, the coke distribution could be
influenced by back mixing flow of catalyst particles. The coke
distribution equations of such problem are given in
section Nonzero-Dimensional Coke Distribution Equations. In
this section, the effect of the back mixing of catalyst particles
was demonstrated by a simplified modeling reactor (Figure 7).

The reactor here is divided into two connected fluidized
beds, as shown in Figure 7. Each bed is assumed to have same
catalyst inventory of W1

2 , and the catalyst particles in each bed
are assumed to be perfectly mixed. The coke distributions of
two beds are represented by pF1 ccð Þ (dimensionless) and pS1 ccð Þ
(dimensionless), respectively. The back mixing flow of cata-
lyst particles between two beds is denoted by Fbm (in kg

s ).
From Eqs. 15, 20, we could obtain the coke distributions of

two beds (see Supporting Information Appendix C for details).

pF1 ccð Þ¼
ðcc
cmin
c

1

ΓF
1 cmax

c −cinic

� � cmax
c −cc

cmax
c −cinic

� � 1
ΓF
1

−1

pF,e0 cinic

� �
dcinic

ð38Þ

pS1 ccð Þ¼
ðcc
cmin
c

1

ΓS
1 cmax

c −cinic

� � cmax
c −cc

cmax
c −cinic

� � 1
ΓS
1

−1

pS,e0 cinic

� �
dcinic

ð39Þ

where

pF,e0 ccð Þ¼ Γ1,bm

Γ1 +Γ1,bm
p0 ccð Þ+ Γ1

Γ1 +Γ1,bm
pS1 ccð Þ ð40Þ

pS,e0 ccð Þ¼ pF1 ccð Þ ð41Þ

ΓF
1 ¼ΓS

1 ¼
1
2

Γ1Γ1,bm

Γ1 +Γ1,bm
ð42Þ

Here Γ1,bm � W1
Fbm

kd.
From Eqs. 38–42, it could find that Γ1, Γ1, bm, and p0(cc)

determine the coke distributions of the reactor when the cata-
lyst inventory and kd are identical for two beds in the reactor.
If Γ1, bm ! 0+, i.e., Fbm ! + ∞, all catalyst particles in two
beds of the reactor will be perfectly mixed, then the problem
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Figure 5. The coke distributions of reactor–regenerator
system.
The average coke contents of the reactor and regenerator
are fixed with 5.28% and 1.43%, respectively (cmaxc ¼ 0:117).
[Color figure can be viewed at wileyonlinelibrary.com]
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becomes a 0D problem. This could be observed according to
the following rule

lim
ΓA
1 !0 +

1

ΓA
1 cmax

c −cinic

� � cmax
c −cc

cmax
c −cinic

� � 1
ΓA
1

−1

¼ δ cinic −cc
� � ð43Þ

for cinic ≤ cc, which could lead to

lim
Γ1,bm!0 +

pF1 ccð Þ¼
ðcc
cmin
c

δ cinic −cc
� �

pS1 cinic

� �
dcinic ¼ pS1 ccð Þ ð44Þ

lim
Γ1,bm!0 +

pS1 ccð Þ¼
ðcc
cmin
c

δ cinic −cc
� �

pF1 cinic

� �
dcinic ¼ pF1 ccð Þ ð45Þ

Another extreme condition, i.e., Γ1, bm ! + ∞ or Fbm = 0,
means the two connected beds have no back mixing flow.
Figures 8 and 9 show the simulated PDFs of coke content

of two reactor–regenerator systems where the average coke
contents of two regenerators are fixed with 1.43%. In
Figure 8, with Γ1 = 0.6, the PDFs of coke content of the
regenerator are almost identical when Γ1,bm

Γ1
ranges from 0.01 to

100. However, the profiles of pF1 ccð Þ and pS1 ccð Þ vary with
Γ1,bm
Γ1

. When Γ1,bm
Γ1

¼ 0:01, the whole catalyst particles in the

reactor could be regarded as perfectly mixed, and the curves
of pF1 ccð Þ and pS1 ccð Þ coincide. With the increasing of ratio of
Γ1, bm to Γ1, the coke distribution of the first bed in the reactor
moves toward the lower coke content, and the distribution of
the second bed moves toward the higher coke content. When
the ratio of Γ1, bm to Γ1 larger than 10, both pF1 ccð Þ and pS1 ccð Þ
are nearly convergent, which means the back mixing flow of
catalyst particles between two beds could be neglected. The
situation with Γ1 = 3.0 is shown in Figure 9. However, there
exists a distinct difference between them. For Γ1 = 0.6, the
coke distributions of both beds in the reactor narrows with
increasing of the ratio of Γ1, bm to Γ1, as shown in Figure 8.
While for Γ1 = 3.0, the change of the profile shape of coke
distributions of two beds is relatively not obvious.

Simulations of MTO reactor–regenerator systems

The effect of the coke distribution on the real reactor–
regenerator systems was investigated in this section. Table 1
gives the parameters and operation conditions of three MTO
reactors of different scale, and the geometries of these reactors
are given in Supporting Information Appendix D. In our simu-
lation model, the diameter of each reactor is assumed to be
uniform, which is same with that of its dense phase part
(above the distributor). That is to say, the modeling pilot-scale
reactor assumed to have a uniform diameter of 0.261 m, the
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demonstration-scale reactor assumed to have diameter of
1.25 m, and the commercial-scale reactor of 10.5 m. The sim-
ulations combined the coke distribution model, MTO kinetic
model, and GFBR model (see section Application to MTO
Process for details). The parameter Γ1 is defined as the prod-
uct of average residence time and coke deposition rate, which
is actually the Damkohler number. The average residence time
τ for each reactor was predicted by the ratio of the catalyst
inventory W to catalyst flux F, i.e., τ = W/F. For all three
scales of reactors, the catalyst inventory W can be directly
measured based on pressure drop of the dense bed. The cata-
lyst flux F for both the pilot plant and demonstration unit can
be obtained according to the readings of the catalyst circula-
tion rate that is carefully calibrated before the experiments.
For commercial unit, the catalyst circulation rate is obtained
via the heat balance calculation in the MTO fluidized bed
regenerator. The rate constant of coke deposition kd is calcu-
lated by iteration, which is described at the last paragraph of
section Reactor Model.
Note that the coke distribution model was developed based

on mass balance, in principle it could be considered as a
generic model that can be used in a wide range. In real appli-
cation, however, it replies essentially on the coke deposition
rate and burning rate. MTO is a quite involved process with
complicated reaction network. As mentioned above, both the
coke deposition rate and burning rate were obtained based on
experiments carried out at laboratory-scale MTO fluidized bed
setups. The operation conditions of these experiments were
carefully chosen to cover the range of industrial operation con-
ditions. Even though, however, we would stress that the rate
data should be used with caution for operating conditions
beyond the experiments. Particularly the space velocity and
catalyst residence time have pronounced impact on the coke
deposition rate, and the used coke deposition rate works well
for WHSV in the range of 1.5–5.20 kg MeOH

kg Cat h and catalyst resi-

dence time not exceeding 3 h.
For the pilot-scale reactor, the effect of residence time on

the product selectivity was investigated by keeping catalyst
inventory of 9 kg and changing the catalyst inflow from 4 to
8.8 kg

h . By solving control equations of the reactor that based
on the proposed coke equations, the relation of Γ1 (Γ1 ≡ τ1kd)
and kd with the average residence time could be predicted, as
shown in Figure 10. Both Γ1 and kd are monotonically increas-
ing functions. It could be seen that the variation of deposition
constant kd is small, which only ranges from 0.95 to 0.98 1

h
when the range of average residence time between 1.02 and

2.25 h. The profiles of corresponding coke distributions could
be estimated from Figure 3 by the predicted values of Γ1.

Meanwhile, the simulated results of product selectivity and
methanol conversion also could be obtained, as shown in
Figure 11. It represents a feature of the effect of the coke dis-
tribution: though the corresponding average coke content cc1
ranges from 5.66% to 7.88% (Figure 12), the variations of
product selectivity are very small (Figure 11), which is far dif-
ferent from that of fixed fluidized bed (see reference [5] for
detail). The difference arises from coke distribution of reactor–
regenerator system and deactivation function ϕ(cc) of catalyst.
The product selectivity of a fixed fluidized bed is dependent
upon the coke content on catalyst particles, while the selectiv-
ity of a reactor–regenerator system is determined by both two
items, i.e., ccϕð Þ1 and sϕð Þ1 , where the coke distribution,
combined with deactivation function, plays an important role.
For a fixed fluidized bed, coke content cc, based on dual-cycle
mechanism, could represent the weight of importance of
aromatic-based cycle, and active site content s(cc),
i.e., cmax

c −cc, could represent the weight of importance of
olefin-based cycle. However, for a reactor-regenerator system

Table 1. The Operation Conditions of MTO Reactors of
Different Size

Parameters* Pilot-scale Demo-scale Commercial-scale

minlet
MeOH (kgh ) 18 2032 241,000

minlet
H2O (kgh ) 4.5 610 60,250

F (kgh ) 4–8.8† 351† 42,000§

W1 (kg) 9 501 56,000
T (�C) 466 500 475
P (MPa) 0.024 0.103 0.108
d (m) 0.261 1.25 10.5
h (m) 2.7 6.62 26.2

*Here, minlet
i denotes the inlet amount of species i, T represents the temperature,

P is the gage pressure, d the simplified diameter, and h the simplified height of
the reactor.
†The catalyst particles of inflow have zero coke content.
§The catalyst particles of inflow have average coke content of 1.43%.

Figure 10. The simulated Γ1 and kd as a function of resi-
dence time of pilot-scale reactor.
[Color figure can be viewed at wileyonlinelibrary.com]

Figure 11. The simulated selectivity compared with
experiment values.
The simulated values are plotted by solid lines, and the
experimental values are shown by discrete markers.
The simulated conversions of methanol and experimen-
tal values are all close to 100%. [Color figure can be
viewed at wileyonlinelibrary.com]
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ccϕð Þ1 and sϕð Þ1 , not cc1 and s1 , represent the weights of
aromatic-based cycle and olefin-based cycle, respectively.
These two terms could reveal the lower activity of catalyst
particles if the coke accumulates to a certain amount. It could
be found that the profile of ccϕð Þ1 is different with that of cc1 ,
because more coke content are grown into inactivity region
with the increasing of average residence time (within our
experiment range). Approximately, the quantity sϕð Þ1= ccϕð Þ1
could be used to represent the weight of two reaction cycles of
the reactor, as well as the product selectivity, while s(cc)/cc
may indicate that of fixed fluidized bed. From Figure 12, it
could see that the variation of sϕð Þ1= ccϕð Þ1 is more gentler
than s1=cc1 , which may interpret the small variation of product
selectivity.
Based on the pilot-scale condition given at Table 1, we also

could model the behavior for τ1 = 0.01–1 by increasing the
catalyst flux F. The simulation results were given in
Figure 13. The decreasing of residence time of catalyst parti-
cles could reduce the catalyst coke content and Γ1. And the
small Γ1 means that the catalyst particles with small coke con-
tent dominate in the reactor, as shown in Figure 3. For catalyst
particles with small coke content, the deactivation function

ϕ(cc) have value close to 1, and has little effect on reaction.
Therefore, in Figure 13, the product selectivity over average
coke content shows a similarity of that in a fixed bed reactor,
when the residence time is small.

For demonstration-scale reactor, the product selectivity and
methanol conversion were calculated based on control equations
and coke distribution equations. Figure 14 shows the comparison
of simulated results and the corresponding operation data. The
simulated values are in agreement with the corresponding opera-
tion data. The WHSV of the reactor is 4.1 kgMeOH

kg Cat h , and the aver-

age residence time is 1.43 h. The operation condition falls in
the range of the experiments by which the kinetic parameters
were fitted. Since in this reactor where the inflow catalyst par-
ticles have zero coke content, the Γ1 is the only factor that
determines the coke distribution. The simulated Γ1 of the dem-
onstration reactor is 1.91, which means that a large portion of
catalyst particles have high coke content, as shown in
Figure 3. The simulated average coke content is 8.20%, which
is close to the experimental result of 7.7%. And the predicted
ccϕð Þ1 is about 1.21%, which is much smaller than the aver-
age coke content, indicating that many catalyst particles fall in
the deactivation region. However, the amount of active cata-
lyst particles are still sufficient to fully convert the methanol
feed, thus the methanol conversion is nearly 100%, which is
close to the experimental results.

For commercial-scale reactor, the product selectivity and
methanol conversion were also calculated based on the same
equations. However, the inflow catalyst particles, different
with other two reactors, have a nonzero coke content. Then
p1(cc) and p0(cc) should be calculated simultaneously, as
described in last section, to obtain the correct results of
steady-state of the reactor–regenerator system. The solving
procedure is similar with that shown in Figure 6. When the
whole reactor–regenerator system reaches balance, Γ1 was
found to have a value of 1.80. It also indicates that most cata-
lyst particles, similar with demonstration-scale reactor, have
high coke content. The simulated average coke content is
8.07%, which is also close to the experimental value of
7.95%. The sϕð Þ1 and ccϕð Þ1 are predicted with 2.40 and

Figure 12. The simulated cc1 , s1 , ccϕð Þ1 and sϕð Þ1 as a
function of average residence time (left axis).
The ratio of s1 to cc1 , and the ratio of sϕð Þ1 to
ccϕð Þ1 are shown with right axis.
[Color figure can be viewed at wileyonlinelibrary.com]

Figure 13. The simulated selectivity (left axis) and aver-
age coke content (right axis).
The simulated conversions of methanol are close to 100%.
[Color figure can be viewed at wileyonlinelibrary.com]
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Figure 14. The comparison of the simulated selectivity
of products and average coke content with
the operation data of a 16 kt/a demonstra-
tion DMTO unit.
The simulated conversion of methanol is 99.97%, and
the corresponding operation data is 99.97%. [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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1.25%, respectively. The simulated product selectivity are in
good agreement with the corresponding experiment values, as
shown in Figure 15. The simulated conversion of methanol is
100.00%, which is close to the experiment value 99.92% too.
In MTO reaction over SAPO-34 catalyst, due to high activ-

ity of methanol, the methanol can easily be fully converted.
Thus, in all experiments reported in this article, the conversion
of methanol was almost 100%, which is consistent with our
simulation results for pilot plant, demonstration, and commer-
cial units. In fact within the application range of the rate con-
stants in our kinetic model, the change of Γ1 only has a minor
impact on the conversion of methanol. For example, for pilot
plant scale reactor, the variation of Γ1 from 1 to 2.2 shows a
negligible change of the conversion of methanol.
However, the product selectivity is dependent upon the coke

distribution, thus sensitive to Damkohler number Γ1. If the
inflow catalyst particles have no or negligibly small coke con-
tent, the coke distribution for different Γ1 is shown in
Figure 3. From Figure 3, it can be found that for Γ1 smaller
than 1 catalyst particles with light coke deposition dominates;
while as Γ1 becomes larger than 1, catalyst particles with
heavy coke deposition dominates. The slope of coke distribu-
tion function varies more rapid when Γ1 is larger than 1. This
means that for Γ1 > 1 on average the catalyst particles accu-
mulate more coke, which can, on the one hand, prompt prod-
uct selectivity and, on the other hand, accelerate the
deactivation of catalyst particles. The findings in Figure 3 can
confirm the results in Figures 11 and 13, in which we show
the change of product selectivity with residence time in pilot-
scale reactor as the deposition constant kd is almost constant in
the reactor. As can be seen, the variation of product selectivity
becomes more pronounced when Γ1 reduces from larger than
1 to smaller than 1 in pilot-scale reactor, which is consistent
with the results in Figure 3.

Coke distribution in scaling up the fluidized bed reactor

For most of catalytic processes including MTO and FCC,
the decay of activity of catalyst is directly related to the depo-
sition of coke on catalyst particles. In other words, the coke
content on any catalyst particle can, to a large extend, denote

its activity in these processes, which determines the product
selectivity and reactant conversion. Suppose that (a) the cata-
lyst particles in a fluidized bed are ideally mixed, and (b) the
mass transfer between gas and catalyst particle impose only a
minor impact on the reaction, the coke distribution is in princi-
ple the dominant factor determining the product selectivity
and reactant conversion. That is, the same coke distribution
will lead to similar product selectivity and reactant conversion.
In this connection, we argue that the coke distribution can be
used to scale up the catalytic fluidized bed reactor. Since the
Damkohler number Γ1 plays a key role for determining the
coke distribution when the initial coke content of the inflow
catalyst particles is sufficiently small, it may be used as the
key parameter for scaling up the fluidized bed reactor.

In MTO process, the mass transfer between gas and catalyst
has a relatively small impact on the reaction rate, thus, it is
possible to use the coke distribution to scale up the MTO flu-
idized bed reactor. In doing so, it is essentially to keep the
Damkohler number Γ1 constant for MTO fluidized bed reac-
tors at different scales. As shown above, our model can predict
the experimental results at various scales. We further analyze
the Damkohler number Γ1 for MTO reactors at different
scales. From Figure 10, it can be found that Γ1 for the pilot-
scale reactor is in the range of 1.0–2.2, and the Γ1 for an opti-
mal selectivity is around 2.0. For the demonstration reactor, a
relatively optimal product selectivity was obtained under the
operational condition as given in Table 1. The corresponding
Γ1 is 1.91, and the catalyst particles with high coke content
dominate according to the shape of the coke distribution as
shown in Figure 3. For the commercial-scale reactor, a rela-
tively optimal product selectivity was obtained with Γ1 of 1.80
whereas the inflow catalyst particles has a small coke content
of 1.43%. The consistence of the Damkohler number Γ1 for
MTO fluidized bed reactors at all three scales based on the
post prior analysis further confirms the role of the Damkohler
number Γ1 in scaling up of MTO fluidized bed reactor.

If the mass transfer between gas and catalyst particles pos-
sesses constraints, the Damkohler number Γ1 may not be the
only dominant parameter for scaling up the catalytic fluidized
bed reactor. In this case, the effect of gas–solid mass transfer
on scaling up needs to be considered, which in turns necessi-
tates the study of hydrodynamics of gas–solid two-phase flows
in fluidized beds. In this regard, either the simple GFBR
model or sophisticated CFD model, if validated by experi-
ments, can be used.

Conclusions

In this work, a coke distribution model for catalyst particles
in fluidized bed was developed based on population balance or
mass balance theory. A 3D time-dependent partial differential
equation, as well as some simplified equations, is proposed to
describe the PDF of coke content on catalyst particles. An ana-
lytic solution of coke distribution for 0D time-independent
problem is provided. And this solution is extended for solving
nonzero-dimensional time-independent problem.

For 0D time-independent problem, the coke distribution of
catalyst particle is dependent upon three factors, i.e., average
catalyst residence time, coke deposition (or burning) rate, and
coke distribution of catalyst inflow. For coke deposition rate
linearly dependent on coke content, the first two factors could
be considered together as a dimensionless number. Such as for
MTO process, these first two factors, based on our proposed
kinetics,5 are ascribed to the Dahmkohler number Γ1 (Γ1 ≡
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Figure 15. The comparison of the simulated selectivity
of products and average coke content with
the operation data of a 1.8 MMt/a industrial
DMTO unit.
The simulated conversion of methanol is 100.00%, and
the corresponding operation data is 99.92%. [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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τ1kd). When the inflow of catalyst particles has a single coke
content, Γ1 determines the PDF shape of the coke distribution:
it is monotonically decreasing if Γ1 < 1, monotonically
increasing if Γ1 > 1, and constant for Γ1 = 1. When the inflow
of catalyst particles has a wide distribution of coke content,
the effect of Γ1 on the shape of the PDF is more complex.
According to our simulations of a reactor–regenerator system,
it seems that Γ1 = 1 also becomes a critical point for the pro-
file of the PDF of coke content.
Research on the coke distribution is of great importance for

the system where coke plays an important role in reaction rate.
Such as for MTO process, the coke content determines the
product selectivity and affects methanol conversion. Therefore,
the experience obtained from a fixed fluidized bed cannot be
directly applied to a reactor–regenerator system. For MTO
reactor–regenerator system, the effect of coke distribution
could be represented by two parameters, i.e., sϕð Þ1 and

ccϕð Þ1 , which is different from fixed fluidized bed. We had
simulated three scales of MTO reactors, by combining the
coke distribution model, MTO kinetic model and GFBR
model. All simulated results were in good agreement with the
experimental data. This shows that the coke distribution model
can be potentially used to optimize the MTO fluidized bed
reactor design and operation. It may also be used for scaling
up some catalytic processes where the coke contents is deci-
sive to product selectivity and reactant conversion.
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Notation
cc coke content of catalyst particles, dimensionless
c0c single coke content of inflow catalyst particles, dimensionless

cmin
c minimum coke content of catalyst particles, dimensionless

cmax
c maximum coke content of catalyst particles, dimensionless
x
! spacial location of a catalyst particle, m
t time, s
τ average residence time of catalyst particles in the fluidized

bed, s
τP average residence time of catalyst particles of cell P, s

R(cc) rate of coke deposition or burning (a function of coke con-
tent), 1s

v
! spacial velocity of a catalyst particle, ms

p x
!,cc, t
� �

coke content PDF (probability density function) of catalyst par-
ticles in the bed (a function of spacial location, coke content
and time), dimensionless

p(cc, t) coke content PDF of catalyst particles in the bed (a function of
coke content and time), dimensionless

p(cc) coke content PDF of catalyst particles in the bed (a function of
coke content), dimensionless

pin(cc, t) coke content PDF of inflow catalyst particles (a function of
coke content and time), dimensionless

pin(cc) coke content PDF of inflow catalyst particles (a function of
coke content), dimensionless

pP(cc) coke content PDF of cell P (a function of coke content),
dimensionless

pNf ccð Þ coke content PDF of the neighbor cell that connected cell P by
face f (a function of coke content), dimensionless

E(t) residence time distribution function, 1s
ρcat x

!, t
� �

time-dependent mass density of catalyst particles at location x
!

and time t, kg
m3

W(t) catalyst inventory in the bed (a function of time), kg
W catalyst inventory in the bed, kg

Fin(t) inflow flux of catalyst particles (a function of time), kgs
Fout(t) outflow flux of catalyst particles (a function of time), kgs

F catalyst flux of the bed, kgs

Ff
catalyst influx through face f of cell P, kgs

FP
catalyst influx or outflow of cell P, kgs

z coordinate of reactor axis (z-axis), m
vz catalyst velocity along reactor axis (z-axis), ms

s(cc) active site content of the catalyst particle, i.e., cmax
c −cc,

dimensionless
kd rate constant of coke deposition, 1s
kb rate constant of coke burning, 1s
ψ phase volume fraction, dimensionless
u superficial velocity of gas, ms
D axial gas dispersion coefficient, m

2

s
Ci concentration of species i, kmol

m3

ri reaction rate of species i, kmol
m3s

kLH gas interchange coefficient between L and H phases, ms
aI interphase transfer surface (m2) per unit volume (m3) of gas in

low-density phase, m2 interface
m3 gas in low density phase

cji coefficient of species i of reaction equation j, dimensionless
Mi molar mass of species i, kg

kmol
ℛj(cc) reaction rate of reaction equation j, kg

m3s
ϵ voidage of the phase, dimensionless
kej effective rate parameter of equation j, kg

m3s
ϕ(cc) deactivation function of catalyst particles, dimensionless
ccric activation parameter of catalyst particles, dimensionless

WHSV the ratio of the methanol influx to the mass of catalyst particles
in the reactor, kg MeOH

kg Cat h

Γ1 Damkohler number, i.e., τ1kd, dimensionless

Subscripts and Superscripts

− mean value
0 regenerator (p(cc), W, τ, cc, R(cc))
1 reactor (p(cc), W, τ, cc, R(cc))
L low-density phase
H high-density phase
f freeboard
F first bed
S second bed
bm back maxing catalyst particles
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