
Appl. Math. Mech. -Engl. Ed.
DOI 10.1007/s10483-017-2194-9
c©Shanghai University and Springer-Verlag

Berlin Heidelberg 2017

Applied Mathematics
and Mechanics
(English Edition)

Multi-relaxation-time lattice Boltzmann simulations of lid driven

flows using graphics processing unit∗

Chenggong LI1,†, J. P. Y. MAA2

1. National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for

Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy

of Sciences, Dalian 116023, Liaoning Province, China;

2. College of William and Mary, Virginia Institute of Marine Science,

Virgina 23062, U. S.A.

Abstract Large eddy simulation (LES) using the Smagorinsky eddy viscosity model is
added to the two-dimensional nine velocity components (D2Q9) lattice Boltzmann equa-
tion (LBE) with multi-relaxation-time (MRT) to simulate incompressible turbulent cavity
flows with the Reynolds numbers up to 1×107. To improve the computation efficiency of
LBM on the numerical simulations of turbulent flows, the massively parallel computing
power from a graphic processing unit (GPU) with a computing unified device architecture
(CUDA) is introduced into the MRT-LBE-LES model. The model performs well, com-
pared with the results from others, with an increase of 76 times in computation efficiency.
It appears that the higher the Reynolds numbers is, the smaller the Smagorinsky constant
should be, if the lattice number is fixed. Also, for a selected high Reynolds number and
a selected proper Smagorinsky constant, there is a minimum requirement for the lattice
number so that the Smagorinsky eddy viscosity will not be excessively large.
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1 Introduction

The lattice Boltzmann method (LBM)[1–3] has been proved to be an effective computational tool for
simulating and modeling many complex fluid problems such as multiphase flows[4–5], porous media[6],
and turbulent flows[7–12]. In contrast to the conventional numerical solution of macroscopic equation,
i.e., the Navier-Stokes equation (NSE), the LBM represents the macroscopic averaged properties by the
evolution of the statistical distribution of microscopic particles in term of the discrete kinetic theory.
The main advantages of using LBM include easy implementation of boundary conditions, short codes,
and natural parallelism. Thus, the LBM has gained more and more attention recently[13].

Although the simplest LBM that used a single relaxation time (SRT) parameter, based on the Bhat-
nagar Gross Krook (BGK) approximation, has successfully simulated various hydrodynamics problems,
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it has some weaknesses, especially, the low numerical instability which leads to an unstable pressure os-
cillation throughout the entire computational domain. Therefore, the multiple relaxation time (MRT)
lattice Boltzmann equation (LBE) has been proposed for improving the numerical stability[14–17].

Generally, the LBM is used as a direct numerical simulation (DNS) method for low Reynolds
number (Re < 10 000) flows because the required computer memory is limited[18]. With the MRT-
LBE, cavity flows with high Reynolds numbers (up to 1×106) have been simulated[17]. With a further
higher Reynolds number, even the MRT-LBE method will become unstable, or the computation cost
will become too high. An improvement is to add the large eddy simulation (LES) technique to the
MRT-LBE model[7] so that the small scale turbulence will be mimicked using a suitable model, e.g.,
the Smagorinsky eddy viscosity model, but the large scale eddy can be directly simulated.

Because of the significant improvement of numerical stability of MRT-LBE and the use of LES
to model small scale eddies but directly simulate large scale eddies, these two approaches have been
combined together to simulate turbulent flows. Many good results show that the above approach
(hereafter called the MRT-LBE-LES model) is able to provide more accurate predictions of turbulent
flows[8–12,19].

However, the computation efficiency of an MRT-LBE-LES model for turbulent flows is still too
low to solve any practical flow problems unless a parallel computation can be used to accelerate the
simulation pace. Even though the parallel programs of LBM based on the message passing interface
(MPI) standard which requires an expensive computer clusters with hundred cores are available[12],
the initial investment is high, or the access is limited. Recently, the graphic process unit (GPU) has
been developed into an inexpensive and novel massively parallel computing device with tremendous
computational power and high memory bandwidth[20]. In particular, after NVIDIA introduced a general
purpose parallel computing platform and programming model called CUDA in November 2006, the
parallel programming on GPU becomes relatively easy for software developers familiar with a standard
programming languages such as C[21]. Thus, a GPU with CUDA has been installed in a personal
computer to accelerate many applications, such as computational finance, molecular dynamics, seismic
processing, and computational fluid dynamics[22].

Since an LBM updates a node only with the nearest neighbor nodes, this method can take advan-
tage of the massively parallel capability provided by GPU and CUDA. For example, the MRT-LBE
models[23–24] have been accelerated by using a NVIDIA 8800 Ultra graphics card with CUDA for
the simulation of the square array cylinders and the moving sphere in a pipe, respectively; the two-
dimensional (2D) lattice Bhatnagar Gross Krook (LBGK) codes’[25] computation efficiency has been
improved by using a NVIDIA GTX 280 CUDA-enabled graphics card. In this study, we develop a
GPU-based MRT-LBE-LES model for simulating turbulent flows. In order to evaluate the compu-
tation efficiency of GPU-based MRT-LBE-LES program and the ability of MRT-LBE-LES model to
simulate turbulent flows, 2D lid driven cavity flows for various Reynolds numbers, up to 107, are chosen
as test cases. Application of this GPU-based MRT-LBE-LES model for a three-dimensional (3D) weak
turbulent flow (with Re = 1×104) is also available[19].

This study is organized as follows. In Section 2, the LES with the Smagorinsky eddy viscosity
model is extended to the MRT-LBE. In Section 3, the implementation details of the MRT-LBE-LES
model with CUDA-GPU are introduced. In Section 4, the simulation results of 2D lid driven cavity
flows with the help of CUDA-GPU parallel computing are presented, and conclusions are summarized
in Section 5.

2 MRT-LBE with turbulence modeling

2.1 MRT-LBE

The MRT-LBE describes the fluid flow by using two processes: collision and stream processes of
particle distribution function (PDF), f, on each lattice node, r i, in which the collision step happens on
the moment space M , and the stream step is executed in the velocity space V . Although the details
are available in Ref. [15], a summary is repeated here to make this a completed study.

The evolution equation of MRT lattice Boltzmann model that can also be called the generalized
LBE or the moment method, for Q velocity directions on the D-dimensional lattice, can be written as

f(ri + eαδt, t + δt) = f(ri, t) − M−1 bS(m(ri, t) − m
(eq)(ri, t)), (1)
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where the bold symbols denote the Q-dimensional column vectors, i.e., f =(f0, f1, · · · , fQ−1)
T, m=(m0,

m1, · · · , mQ−1)
T, and the superscript T stands for the transposal operator. In Eq. (1), the left-hand

side describes the particle stream from the lattice node r i to the nearest location r i +eαδt at the
particle velocities eα along the α-direction with the time interval δt in the velocity space V . The
right-hand side of Eq.(1) represents the particle collision step, i.e., the relaxation process, executed
in the moment space M , in which the moment vector m(r i, t) returns to the local equilibrium value
m (eq)(r i, t) at a rate determined by the diagonal relaxation matrix S, and then, the transformation
matrix M (with size Q × Q) linearly transforms the PDF vector f to its moment vector m, that is,
m= M ·r and r= M−1·m.

Here, the MRT-LBE model with nine (i.e., α = 0, 1,· · · ,8) discrete particle velocities in the 2D
lattice (D2Q9 MRT-LBE model in Fig. 1) is selected, and these directions are defined as eα=0 =(0, 0),
eα=1−4 = c(cos((α−1)π/2), sin((α−1)π/2)), and eα=5−8 =

√
2c(cos((α−1)π/2+π/4), sin((α−1)π/2+

π/4)), where c=δx/δt stands for the magnitude of the particle velocity, and δx refers to the dimension-
less lattice length. For simplicity, δx and δt are set equal to 1, that is, c = δx = δt = 1. In particular,
the corresponding transformation matrix M is defined as

M =

2
6666666666664

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

3
7777777777775

. (2)

Fig. 1 Sketch of D2Q9 MRT lattice Boltzmann model

For the D2Q9 MRT-LBE model, the nine components {mα(r i, t)|α = 0, 1, · · · , 8} of the moment
vector m = (ρ, e, ε, jx, qx, jy , qy , pxx, pxy)T are set as the below order: m0=ρ is the mass density, m1

=e stands for the kinetic energy, m2= ε is related to the kinetic energy square, m3 = jx and m5 = jy

are the two components of the momentum, m4 = qx and m6 = qy stand for the two components of the

energy flux, and m7 = pxx and m8 = pxy are the stress tensors. The nine components {m(eq)
α (r i, t)|

α= 0, 1, · · · , 8} of the equilibrium moment vectors m (eq)=(ρ, e(eq), ε(eq), jx, q
(eq)
x , jy , q

(eq)
y , p

(eq)
xx , p

(eq)
xy )T

consist of two parts, i.e., the conserved moment that includes mass density m
(eq)
0 =ρ and two compone-

nts of the momentum m
(eq)
3 = jx, m

(eq)
5 = jy , and the non-conserved moments that are shown as

e(eq) = −2ρ + 3(j2
x + j2

y), ε(eq) = ρ − 3(j2
x + j2

y), (3a)

q
(eq)
x = −jx, q

(eq)
y = −jy, (3b)

p(eq)
xx = (j2

x − j2
y), p(eq)

xy = jxjy . (3c)
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Thus, the equilibrium PDF f
(eq)
α (r i, t) which corresponds to the equilibrium moments m (eq) is defined

as

f (eq)
α = ωαρ

“
1 +

eα · u
c2
s

+
(eα · u)2

2c4
s

− u2

2c2
s

”
, (4)

where ωα is the weight parameters, ω0 =4/9, ω1−4 =1/9, ω5−8 = 1/36, and cs = c/
√

3 stands for the
lattice sound speed. The macroscopic velocity u and the density ρ are functions of fα(r i, t), i.e.,

ρ =
8P

α=0

fα and ρu =
8P

α=0

eαfα.

In Eq.(1), the diagonal relaxation matrix S is given by

bS = diag(s0, s1, s2, s3, s4, s5, s6, s7, s8), (5)

where si (i =0, 1, · · · , 8) stands for the relaxation rate corresponding to nine velocity directions.
Since the incompressible NSE could be deduced from the MRT-LBE by using the multi-scale technique
Chapman-Enskog expansion, the viscosity υ, which is obtained from this expansion under the condition
s7 = s8= 1/τ where τ is the dimensionless relaxation time corresponding to the viscosity, is shown as

υ = c2
s δt(τ − 0.5). (6)

2.2 LES with D2Q9 MRT lattice Boltzmann model

In the LES, any physical variable of the government equations, e.g., f , is decomposed into a re-
solved component 〈f〉 and an unresolved component f ′ by using a filter function so that the filtered
equations for the large eddies (resolved component) could be directly computed, and the effects of the
smaller eddies (unresolved component) are replaced by using a selected model to represent it, e.g., the
Smagorinsky eddy viscosity, υt, model[7,26]. With the use of LES in the D2Q9 MRT-LBE, the total
viscosity υ is expressed as the sum of the molecular viscosity υ0 and the eddy viscosity υt, i.e., υ =
υ0 + υ

[7]
t . Thus, the corresponding total relaxation time τ can also be separated into two components:

τ = τ 0 + τ t = 3(υ0+ υt) + 0.5, where τ 0 =3υ0+ 0.5, and τ t = 3υt are the dimensionless relaxation
time. In the Smagorinsky model[26–27], the eddy viscosity υt is defined as

υt = (Csm∆)2S∗, S∗ =
p

2SijSij , (7)

where Csm is the Smagorinsky constant, ∆ stands for the filtered size, which is set as the lattice length,
i.e., ∆= δx = 1 because of the use of uniform lattice, S∗ is the magnitude of the shear strain rate tensor

Sij , and Sij=
“ ∂ui

∂xj

+
∂uj

∂xi

”.
2 can be computed directly from the second-order moments of PDF, Qij .

It has been proved[10] that

Qij =
X

eαieαj(fα − f (eq)
α ) = −2δtρc2

sSij

sxx

, i, j ∈ (x, y), (8)

where sxx is the relaxation rate for the second-order moments, pxx and pxy, that is, sxx = s7 = s8 =
1/τ . Thus, the eddy viscosity can be estimated as

υt = (Csm∆)2S∗ =
sxx

2c2
s ρδt

(Csm∆)2Q∗, Q∗ =
p

2QijQij , (9)

where the details on how to calculate Q∗ were given in Ref. [10].

By combining υ=υ0 + υt, τ = τ 0+τ t, and Eq. (9), the eddy viscosity can be obtained as follows:

υt = (−τ0 +
p

(τ0)2 + 6(ρδtc2
s )−1(Csm∆)2Q∗)/6. (10)

2.3 Boundary condition

For 2D cavity flows, the no-slip boundary condition, i.e., the half-way bounce back boundary
condition[12], is applied on all the boundaries. Because of the use of this boundary condition, the
physical boundary is specified between the fluid nodes and the inner fictional ghost nodes. Thus, the
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collision step is only applied on the fluid nodes. Because of this setup, the unknown PDFs of the fluid
nodes that are immediately inside of the boundary can be estimated as follows[12] :

fᾱ = fα + 2ωαρ0
eᾱUlid

c2
s

, (11)

where fᾱ is the PDF of e ᾱ=–eα, and Ulid stands for the velocity on the boundary, e.g., the lid speed or
zero for a stationary boundary.

3 Parallel algorithm (GPU-based MRT-LBE-LES model)

3.1 Introduction of CUDA
CUDATM is a parallel computing platform and programming model that enables the dramatic in-

crease in computing performance by using the power of a GPU. After the release of the CUDA, the
parallel computational technique based on GPU has been successfully used in various fields[21–22]. The
CUDA is designed to support various programming languages or application programming interfaces,
e.g., FORTRAN, C, MATLAB, and OPENCL. Thus, the researchers familiar with the standard pro-
gramming languages can easily code the CUDA programs for solving complex computational problems.
The software environment of CUDA consists of the CUDA Toolkit and the CUDA Software Develop-
ment Kit (SDK). The available operation systems include Windows XP, Vista, 7, Linux, Unix, and
Mac[21–22].

As shown in Fig. 2, a CUDA program consists of a host part that runs on the central processing
unit (CPU) side in serial and a device part that runs on the GPU side in parallel. The device part
code, called kernels, can be invoked by the serial code on the CPU side. The primary tasks of serial
codes include (i) initial clarifications, (ii) allocation and de-allocation memory spaces, and (iii) data
transmissions between the host memory and the device memory. When the data are transferred to
device memory, many threads (up to thousands) are launched by the kernel functions to exploit the
data parallelism. In order for an easy programming, these threads with independent one-dimensional
(1D), 2D, or 3D thread index are divided into many equally-shaped thread blocks according to the data
sizes, and these thread blocks are organized into 1D or 2D grid of thread blocks, as shown in Fig. 2.
Because of GPU hardware limitations, the number of threads in one thread block and the number of
thread blocks in a grid should be properly chosen.

Fig. 2 Heterogeneous CUDA programming model

3.2 Implementation details
The solving of an MRT-LBE model consists of three major calculation parts: (i) initialization, (ii)

collision, stream, and boundary processing, and (iii) convergence check, see the flowchart in Fig. 3(a).
The main task of the first part is to initialize all the variables, e.g., the PDFs and the corresponding
moments according to the velocity and Reynolds number. Since this is a one-time process and only
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spends little time, it is unworthy of the concurrent execution. The second part (i.e., collision, stream,
and boundary functions) is repeatedly calculated many times for updating all the PDFs. This part
takes about 98% of the total computing time in the CPU-only code, and therefore, this part is rewritten
as three kernels executed on the GPU device in parallel. The third part is to check convergence. For
laminar flows, the convergence is to check whether the results reach the steady state. For turbulent
flows, it is used for determining whether the lattice size or the Smagorinsky constant is enough. The
reason is that if the lattice size or the Smagorinsky constant is not right, the program will blow up
because the relaxation time is close to 0.5. The number of executions of this part is much smaller than
that for the second part, and does not have much advantage to be parallelized. Thus, it is run in serial
in CPU, see the flowchart in Fig. 3(b).

Fig. 3 Flow charts of sequential CPU-only program of MRT-LBE (a) and parallel GPU-based (b)

A 2D lid driven cavity flow deals the flow field within a square enclosure that is driven by a selected
uniform velocity on the top lid from left to right. All the other three walls are fixed. Cavity flows
are typically selected to verify a numerical scheme, and thus, it is used here again to demonstrate the
efficiency of GPU parallel computing. The cavity enclosure can be fitted by using a uniform lattice with
lattice units GX and GY in the x- and y-directions, respectively. In other words, there are (GX+1) and
(GY +1) nodes in the x- and y-directions, respectively. Although GX=GY in this special case, different
symbols are used to map the lattice to the thread. In order to have efficient parallel computation, two
ghost layers of nodes (solid circles in Fig. 4(a)) are added around the real boundary. The inner ghost
layer is to incorporate the half-way bounce back boundary condition into the LBM, and the outer layer
is used for improving the efficiency of using parallel computing in the GPU kernel with the minimum
‘if statement’. More details will be given later.

In the CPU-only program, the PDFs on the D2Q9 MRT-LBE model are often set as a 3D array,
such as f [x][y][k], where x and y stand for a node coordinate in the Cartesian system, i.e., 0 6 x 6 GX
and 0 6 y 6GY, and k indicates the nine different directions of particles moving. For the GPU-based
program, the 3D array is rewritten as nine 1D arrays on the host memory, i.e., f0[P ], f1[P ], · · · , f8[P ],
where P=(GX+1) ×y + x represents the node index because of the change of a 2D array into a linear
addressed memory stored in a 1D array by the row-major convention. Thus, the transfer from the 2D
node array to the 1D array starts from the bottom row and moves upward, as shown in Fig. 4(a). For
example, Node (3, 3) will change to Node ((GX+1) × 3+3). For avoiding the read-write conflict on the
GPU side, two sets of these nine linear 1D arrays, i.e., f0 old[P ], f1 old[P ], · · · , f8 old[P ] and f0 new[P ],
f1 new[P ], · · · , f8 new[P ], are allocated on device memory, one set for reading data, and another for
writing data.

After the transfer of data from the host to the device memory, one thread which has the general
index T=((GX+1) ×yglobal + xglobal) is mapped to a lattice node (GX+1) ×y + x, and these threads
are equally divided into many thread blocks in one grid, as shown in Fig. 4(b), where xglobal and yglobal
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are the global coordinates of one thread, xt and yt stand for the local coordinates of one thread in
one thread block, xb and yb are the coordinates of one block in the grid, and xt and yt stand for the
numbers of threads in the x- and y-directions in one block, respectively. Thus, the global coordinates
of a thread, xglobal and yglobal, are defined as xglobal=xb × xt+ xt and yglobal=yb× yt +yt, and each
thread block has xt × yt threads which is chosen by the node assignment.

+

-

Fig. 4 Uniform physical lattice and corresponding threads and thread blocks for lid driven flows
simulated using D2Q9 MRT-LBE-LES model

In our GPU-based program, three kernels are repeatedly invoked for particles: collision, stream,
and boundary condition processing, respectively.

Case 1 Collision kernel

This kernel is responsible for the particle collision. Since the particle collisions happen only on the
fluid nodes, the computation is only carried out on fluid nodes. As a consequence, the execution of
collision kernel is done simultaneously in GPU instead of using a ‘for loop’ in the CPU-only program.
Herein, since each thread is mapped to a fluid node, only one ‘if statement’ is used in the collision
kernel for choosing the threads that correspond to the fluid nodes. The eddy viscosity is computed by
Eq. (10) before the calculations of the post-collision moments of PDFs in the above process.

Case 2 Stream kernel

This kernel is responsible for particle streaming. The particles on all fluid nodes will propagate to
the adjacent nodes after the particle collisions on each fluid node, and the PDFs on these fluid nodes
that are next to the boundary nodes are still unknown, e.g., the fluid nodes on the x = 2 column,
as shown in the left part of Fig. 4(a), where the solid arrows stand for the post-stream PDFs in the
arrow directions. For example, only three fluid nodes, i.e., (2, GY –3), (3, GY –3), and (3, GY –2),
will give particles with the north, northwest, and west directions to the corner fluid node (2, GY –2),
respectively. Thus, on the (2, GY –2) node, there are three solid arrows in the north, northwest, and
west directions, respectively. No arrows in the other directions on this node show that the PDFs with
the other directions are unknown. It is the same to the hatched box on the left side of Fig. 4(a), e.g., the
boundary node (1, GY –1) only receives particles from the fluid node (2, GY –2), and so one solid arrow
is on it. The stream process can also be viewed as one set of nine procedures, i.e., the PDFs with the
same direction on the all fluid nodes are given to the neighbor nodes, totally eight directions (the PDFs
with the e0-direction are at rest). In this kernel function, the nine procedures can be simultaneously
performed by the corresponding threads on GPU because only the fluid nodes give particles to the
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adjacent nodes. In addition, one thread mapped with the selected fluid node has the thread index T =
(GX +1) × (yglobal) + xglobal. Therefore, the thread indexes of the nearest eight neighbor nodes can
be searched by the equation N=(GX+1) × (yglobal + δt × eα) + (xglobal + δt × eα), where α =1,
2, · · · , 8. Note that δt = 1 and the two components of discrete particle velocity eα are either 0 or 1.
Thus, δt and eα are only used to find the thread indexes of neighbor nodes.

Case 3 Boundary kernel
The kernel is responsible for boundary conditions, i.e., after the stream kernel, all the unknown

PDFs on the fluid nodes are updated using Eq. (11). In the CPU-only program, this process can be
easily performed even without ’if statement’ by returning the PDFs with e ᾱ, which has been updated on
the boundary in the stream step, back to the unknown PDFs with eα on the fluid nodes. Unfortunately,
in the GPU-based program, the implementation of the above procedure needs too many ‘if statements’
for choosing the specified threads that correspond to the lattice nodes. This leads to a significant loss
of the parallel efficiency. In order to avoid this, another outer ghost layer is introduced (see Fig. 4(a)).
The approach proposed in this study is that the PDFs which have the direction of the dotted and solid
arrows on the hatched box of the right wall (the GX –1 column) give back to the adjacent left fluid
nodes for updating all the unknown PDFs according to Eq. (11)( see the right part of Fig. 4(a)). For
example, on the node (GX –1, 2), the solid arrow with the southeast direction is for returning to the
solid arrow with the northwest direction on the node (GX –2, 3), the solid arrow with the east direction
is for returning to the solid arrow with the west direction on node (GX –2, 2), and the dotted arrow
with the northeast direction is for returning to the dotted arrow with the southwest direction on node
(GX –2, 1), where the solid and dotted arrows on the right wall are the PDFs that have and have
not been updated in the stream step, respectively. In this process, even though the PDFs with the
directions of the dotted arrows are assigned to the opposite PDFs of the neighbor nodes (the dotted
line arrows on the GX –2 column), it has no effect on the results due to the fact that no changes happen
on the PDFs of the fluid nodes, and the macroscopic variables are computed by the PDFs of the fluid
nodes only. This has the advantage that the half-way bounce back boundary condition could be easily
rewritten as the GPU kernel, and the parallel efficiency of GPU program can be improved significantly
by using a minimum ‘if statement’. The additional lattice nodes only request a small extra amount of
memory and a negligible small computing time for data copying.

With all that implemented, the massive parallel computing can be used more smoothly, and the
efficiency of the MRT-LBE-LES program is excellent for numerical simulations of the 2D lid driven
flow. With the capability of using the same double precision in the GPU and the CPU programs, they
have the same accuracy.

4 Results and discussion

4.1 2D lid driven laminar cavity flow

Here, the numerical experiments on 2D cavity flows with Re =100, 400, 2 000, 7 500, 8 400 (i.e.,
the laminar flow) are performed for testing the GPU-based program of the D2Q9 MRT-LBE-LES
model with Csm=0. The dimensionless uniform top driven velocity in the lattice Boltzmann system,
Ulid, is set to be equal to 0.1, and the Reynolds number is defined as Re = UlidLref/υ, where υ is the
dimensionless kinetic viscosity of the fluid, and Lref=GX –3=GY –3 is the dimensionless characteristic
length used in the lattice Boltzmann system, where the extra 3 is from the half-way bounce back
boundary condition and the extra layer for a better parallel efficiency to process the half-way bounce
back boundary condition in the GPU kernel. Therefore, the total lattice units in each line are GX.

A uniform lattice unit of 259 (i.e., GX=GY =259, Lref=GX –3=256) is selected in the x- and y-
directions, respectively. The nine components in the diagonal collision matrix are given by s0 = s3 =
s5 = 0, s4 = s6= 1.2, s1 = s4 – 0.1, s2 = s1 – 0.1, and s7= s8= 1/τ . The steady situation of a laminar
flow can be claimed if the difference of normalized kinetic energy, δ, between two consecutive checking
times is less than a small value, e.g., 10−12,

δ =

vuut 1

N

NX

i=1

((un+1
i − un

i )2 + (vn+1
i − vn

i )2)/((un+1
i )2 + (vn+1

i )2). (12)

For laminar flows, the simulation results (except for Re =8 400 because no data can compare with
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it) at the steady situation (i.e., velocity profiles at the center of cavity, see Fig. 5) agree well with the
reference[18,28–30]. The velocity profiles change from a smooth curve at low Re to a nearly straight
line with sharply bends near the boundaries at high Re. The locations of the primary and secondary
vortices for different Reynolds numbers also agree well with the references[18,28–30] (see Table 1).

Fig. 5 D2Q9 MRT-LBE-LES model simulated velocity profiles for laminar cavity flows through ge-
ometric center

Table 1 Comparisons of calculated coordinates for primary vortex (xc, yc) and two secondary vor-
tices, left: (xl, yl) and right: (xr, yr)

Re xc yc xl yl xr yr

100

Ghia et al.[28] 0.617 2 0.734 4 0.0313 0.039 1 0.945 3 0.062 5

Hou et al.[18] 0.619 6 0.737 3 0.039 2 0.035 3 0.945 1 0.062 7

Present 0.617 2 0.738 3 0.039 1 0.035 2 0.944 9 0.062 5

400

Ghia et al.[28] 0.554 7 0.605 5 0.050 8 0.046 9 0.890 6 0.125 0

Hou et al.[18] 0.560 8 0.607 8 0.054 9 0.051 0 0.890 2 0.125 5

Present 0.558 6 0.609 4 0.054 7 0.050 8 0.886 7 0.125 0

2 000

Hou et al.[18] 0.525 5 0.549 0 0.090 2 0.105 9 0.847 1 0.098 0

Du et al.[30] 0.523 4 0.546 9 0.085 9 0.097 7 0.847 7 0.097 7

Present 0.523 4 0.550 8 0.085 9 0.105 5 0.843 8 0.097 7

7 500

Ghia et al.[28] 0.511 7 0.532 2 0.064 5 0.150 4 0.781 3 0.062 5

Hou et al.[18] 0.517 6 0.533 3 0.070 6 0.152 9 0.792 2 0.066 7

Du et al.[30] 0.515 6 0.535 2 0.066 4 0.152 3 0.796 9 0.066 4

Erturk[31] 0.513 7 0.532 2 0.064 5 0.152 3 0.791 0 0.065 4

Present 0.515 6 0.535 2 0.066 4 0.152 3 0.793 0 0.066 4

In this study, the maximum Reynolds number of 2D lid driven cavity flows which can be computed
with the steady solution is 8 400. To obtain the steady solution for the cavity flow with a higher
Reynolds number (i.e., Re > 8 400), the number of lattice size is increased to 3 0752 for allowing the
cavity flow to have steady solutions[31] . However, we observe that the solutions are not convergent but
oscillating with time. This suggests that the 2D lid driven cavity flow field is unstable when Re is larger
than 8 400, and the time-averaged results should be used to judge whether the solution converges to a
steady state.

4.2 2D lid driven cavity turbulent flow
As Re > 8 400, the computed instantaneous velocity of the lid driven flow will oscillate despite

the selection of large lattice units. This indicates the start of changing flow pattern from laminar to
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turbulent flows. For a fixed number of lattice unit, e.g., 2592 lattice units, the D2Q9 MRT-LBE-LES
model with Csm= 0 will continue to produce results, although unstable, until Re > 29 796. At that
time, the fluctuation is too large, and the program crashes because the relaxation time τ is too close
to 0.5. This suggests that keeping increasing the lattice units can make the relaxation time sufficiently
larger than 0.5, and thus, it is possible to use the MRT-LBE model for turbulent flows. However, the
higher the Reynolds number (i.e., the larger the lattice number), the more the computational cost, and
even with the help from a GPU, the computation cost will be too high to do the task on a personal
computer for large (more than 3 3002) lattice sizes. That is the reason to implement the LES for
simulating high Reynolds number flows with a reasonably selected coarse lattice.

To evaluate the efficiency and capability of the GPU-based MRT-LBE-LES program in simulating
turbulent flows, the 2D lid driven flows with five high Reynolds numbers, i.e., 5×104, 1×105, 5×105,
1×106, and 1×107 are checked. The dimensionless driven velocity at the lid Ulid is still 0.1. Since the
instantaneous velocity field is fluctuating with time, it is impossible to find a stable flow field unless the
time-averaged flow is used. The selection of duration for taking average may depend on the following
factors: the number of lattice units, the Smagorinsky constant, the initial running time before taking
time average, and the duration of average. Here, we find that the initial running time of 500T (where
T = Lref/Ulid) and averaged time of 150T are sufficient to warrant a stable time-averaged 2D lid driven
flow. A longer initial running time and longer average time make little difference in the time-averaged
velocity profile. Thus, the initial running time and duration for average are set as 500T and 150T ,
respectively, for all cases. This is one of the major differences compared with the early studies[7,17].

In addition, possible values for the Smagorinsky constant, from 0.05 to 0.3, are tested to address its
effects on the time-averaged results. Different lattice units are also checked to examine its effect. For
checking the computation efficiency in different thread numbers, the lattice nodes are arranged as a
multiple of 16, i.e., 1282, 2562, 5122, · · · , 3 0722 lattice nodes. The selection of the finest lattice units,
i.e., 3 0722 is limited by our graphic card memory.

The results suggest that the Smagorinsky constant Csm has great effect on the time-averaged ve-
locity, if the lattice units are the same for the fixed Re (see Fig. 6). For instance, the results with
Csm =0.07 are close to those given by Chai et al.[17], but smaller than the results with Csm=0.14 on
the 1272, 2552, and 5112 lattice units. It may be because that as Csm increases, the eddy viscosity
also increases, and thus, the momentum can be further transferred into the cavity. It appears that
for the same Csm, there is a minimum requirement for the lattice units. For example, with Csm=0.07
and Re =5×104 and 1×105, the time-averaged velocity profiles show that the selected minimum lat-
tice units, i.e., 1272, is acceptable, but it may be too coarse to provide comparable results for higher
Reynolds numbers. For Re =5×105 and 1×106, the results on the 5112 lattice units are better to match
with the results of Chai et al.[17] when compared with that using 2552 lattice units, and the lattice
units of 1272 is not acceptable at all.

After the Smagorinsky constant and the number of lattice are determined, the model computed
streamlines are constructed (see Fig. 7). For Re=5×104 and Re=1×105, it can be seen that a primary
vortex dominates the entire flow field with several secondary vortices appearing in the three corners,
and the shapes and locations of these secondary vortices will change vastly with time. Although only
one primary vortex dominates the entire flow field, the center for the primary core is relatively stable
for Re = 5×104, but the center starts to rotate for Re =1×105, and these secondary vortices fluctuate
more. When Re increases to 5×105, it appears that a secondary vortex may be released from the
boundary and moves into the area mainly occupied by the primary vortex. When Re=1×106, two
primary vortices rotate around the cavity center, and more and more secondary vortices are produced
in corners. Generally, as Re increases, the flow field becomes more turbulent and more oscillatory.

For further evaluating the eddy viscosity term in the D2Q9 MRT-LBE-LES model, the simulations
of 2D cavity flows at Re = 1×107 are performed with 2552, 5112, and 1 0232 lattice units. Because
there are no other numerical or/and experimental data at this high Reynolds number, no comparison
of velocity profiles can be made. The numerical results show that the time-averaged velocity is also
greatly affected by the Smagorinsky constant Csm for the same lattice size at the fixed Re (see Fig. 8).
It is assumed that for Re = 1×107, Csm should be slightly reduced, and thus Csm=0.065 is selected for
the three different lattice sizes. It is also observed that the instantaneous streamline contour plots are
very different after the 500T initial running.

As the lattice units increase but no change on Csm, the primary vortex is split and gradually replaced
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with many secondary vortices (see Figs. 9 and 10(a)). This may be due to the use of the same Csm for
different lattice numbers. Since Csm∆ is corresponding to the mixing length[26], the maximum length
is limited to ∆ (for the traditional mixing length hypothesis, the length could be much larger, e.g., half
of the water depth). For this reason, the Smagorinsky eddy viscosity model only addresses small scale,
local eddy viscosity, and cannot describe the variation of eddy viscosity globally. For a fixed Reynolds
number, if the lattice number is small, the physical lattice length ∆ represents must be large. For this
reason, Csm∆ should increase as the lattice number decreases. If the local turbulent eddy viscosity
becomes excessively large, it will affect the velocity and produce unrealistic velocity profiles. As a
consequence, the selection of lattice size will affect the simulation results for a fixed Csm. This also
explains why the time-averaged velocity increases with Csm when the lattice size remains unchanged
(see Fig. 6).

Fig. 6 Comparisons of GPU model simulated time-averaged horizontal ((a), (c), (e), (g)) and vertical
((b), (d), (f), (h)) velocity profiles at center of turbulent cavity flows with Re = 5×104, 1×105,
5×105, and 1×106, where circles are simulation results given by Chai et al.[7] using MRT-LBE
model without LES
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Fig. 7 Model simulated instantaneous streamlines at selected Reynolds numbers after initial running
time 500T

4.3 Performances of MRT-LBE-LES with GPU
In order to accelerate the 2D MRT-LBE-LES program, a personal computer (AMD Phenom II

1100T CPU) with 16 GB memory and one CUDA-enable graphic card (GTX 580) is built for this
purpose. The GTX 580 has 512 CUDA cores and 192.4 GB/s memory bandwidth and can deliver over
0.2 TeraFLOPs in double precision operations. The software environment for the computer consists of
Windows XP professional 64bit, CUDA Toolkit version 4.1, and GPU driver 286.19[21] .

When taking time-average to show the mean velocity field, as the typical approach for turbulent
flows, the time-averaged flow pattern is expected (see Fig. 10(b)). In contrast with the instantaneous
streamlines plot, these small vortices, except those at the three corners, are smoothed out by taking
time-average over a sufficiently long period, e.g., 150T . Moreover, the total kinetic energy k defined as
k = 〈(u′)2+ (v′)2〉/2, for this high Re (1 × 107) is much stronger than that for the cavity flow with
Re=1 × 105 (see Fig. 11), where the notation 〈 〉 stands for the time averaged over 150T , and u′ and
v′ are the velocity fluctuations in the x- and y-directions, respectively.

The computational efficiency of lattice Boltzmann simulations is often measured according to how
many million lattice nodes could be updated per second (MLUPS)[23–25]. Since the calculation of the
eddy viscosity has negligible effect on the MLUPS, the 2D lid driven flow at Re =7 500 is taken as
the example (see Table 2). In general, the calculation efficiency of GPU-based program increases with
the number of threads per block, but Table 2 indicates that the efficiency is about the same when
more than 32 threads per block are used. The best performance is achieved with 128 threads per block
for different grid sizes. The comparison of MLUPS between GPU-based (128 threads) and CPU-only
program on the 5122 lattice shows a ratio of 338/4.317, about 78 times improvements.
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Fig. 8 Comparisons of GPU model simulated time-averaged horizontal ((a), (c), (e)) and vertical
((b), (d), (f)) velocity profiles at center of turbulent cavity flows with Re=1×107 for two
Smagorinsky constants, Csm=0.065 and 0.14, in which lattice numbers are different among
subplots

Table 2 Comparisons of performance in MLUPS of CPU-only and GPU-based programs on simula-
tion of 2D cavity flow at Re =7 500 and averaged for 10 000 iterations using double precision
floating point

Domain size
CPU

GPU (thread per block)

(lattice node) 16 32 64 128 256 512

2562 5.791 160 293 295 310 310 303

5122 4.317 160 306 326 338 321 298

1 0242 4.503 172 332 337 337 329 297

2 0482 4.660 169 320 329 335 332 312

3 0722 5.802 171 316 319 326 322 312
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Fig. 9 Instantaneous streamlines after initial run time, 500T , for cavity flow with Re=1×107 and
Smagorinsky constant Csm=0.065

Fig. 10 Comparison of streamlines for Re=1×107 with lattice units= 1 0232 and Smagorinsky con-
stant Csm= 0.065 after 500T

Fig. 11 Comparisons of turbulent kinetic energy contours for 2D cavity flows with Re = 1× 107 and
Csm = 0.065

5 Conclusions

In this study, the implementation of D2Q9 MRT-LBE-LES model based on the CUDA technology
is presented, and the numerical codes are validated by the 2D lid driven flows over a large range of
Reynolds numbers.
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For the 2D lid driven flows at low Reynolds numbers, i.e., laminar flows, the results agree well with
the numerical results from the others. The maximum Reynolds number of 2D cavity flows which can
be simulated for the steady solution by using the MRT-LBE-LES model is Re = 8 400. When the flows
are changed from laminar flows to turbulent flows, i.e., Re =5×104, 1×105, 5×105, 1×106, and 1×107,
the time-averaged variables should be used because the instantaneous variables are always fluctuating.
The modeling results show that MRT-LBE-LES model can well simulate the 2D lid driven flows at
high Reynolds numbers, up to 1×107.

As the change of Csm and lattice number may alter the local eddy viscosity, the entire flow field will
be affected. As the increase of Csm or the decrease of physical lattice size roughly means the increase of
local eddy viscosity (if the shear strain rate tensor remains the same), excess momentum transfer from
the top lid to the water below increases the mean velocity, and thus, larger and probably unrealistically
large velocity may result. This implies that there is a minimum requirement on the lattice number,
which depends on the Reynolds number, for successful simulations of turbulent flows. More studies are
necessary to clearly address this issue.

Since the double precision floating point is used in the CPU-only and GPU-based program, there
is the same computational accuracy. An increase of 76 times in computation speed when compared
with CPU-only codes shows that the GPU massively parallel computation method is excellent. This
advantage could be further enhanced if the limitation caused by the GPU hardware, e.g., 0.2 TeraFLOPs
in double precision FLOPs and 1.5GB memory for the GTX 580 graphic card, is relaxed. Simulations
with finer resolutions (e.g., 4 0962) lid driven flows or 3D turbulent flows with Re > 1×104 will become
possible. Other alternatives, e.g., use of multiple GPUs, or a better GPU, e.g., Tesla C2050, or a new
GPU-architecture, Kepler, which delivers 3 to 4 times better double precision FLOPs performance,
when compared with that for a GTX 580, is possible.

Since using a CUDA-enabled GPU and a regular desktop PC is inexpensive, smaller, and less
power-demanding than a cluster with multi-CPU, the LBM with CUDA-GPU technique can be more
frequently applied for simulating fluid dynamic phenomena.
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