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In view of the significance of non-spherical and permeable particles in liquid-solid and gas-liquid-solid reactors
in industrial processes, it is essential to understand and quantify the rheological properties ofmultiphase flows in
these processes. In this study, we investigate the shear viscosity of dilute suspension containing elliptical porous
particles at low Reynolds number Re ofO(0) by use of a modified lattice Boltzmannmodel. The fluid flow around
and inside an elliptical porous particle is described by the volume-averaged macroscopic governing equations.
The relative viscosity is calculated for an elliptical porous particle rotating in a two-dimensional (2D) simple
shear flow, based on the relation between the shear stress and the second order moments of non-equilibrium
particle distribution function. The effects of porous structure of the elliptical particle on the viscosity and flow
field are investigated with different axis ratios in detail. Our results demonstrate that the relative viscosities of
dilute suspension containing elliptical porous particles increase linearly with solid volume fraction at various
Darcy number for particles with varying axis ratios. Moreover, a simple empirical expression for intrinsic viscos-
ity is proposed as a function of Darcy number.
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1. Introduction

Liquid-solid and gas-liquid-solid flows are frequently encountered
in multiphase reactors in a wide variety of industrial processes. It is
therefore essential to study the interaction between fluid and solids in
these processes, which aim ultimately at the understanding of rheolog-
ical properties that are critical for design and operation of liquid-solid
and gas-liquid-solid reactors. Among the rheological properties of
fluid flow, the viscosity, which is a measure of resistance to the friction
between different fluid layers or between fluid flow and boundary
walls, has attracted considerable interests for centuries. For example,
over a century ago, Einstein studied the viscosity of dilute suspensions
containing solid spheres and proposed the well-known Einstein's vis-
cosity formula [1]. Despite its widespread applications, the Einstein's
formula actually demonstrates that themacroscopic rheological proper-
ties of multiphase flow are closely related to the underlying physics at
micro scale when hydrodynamic interaction is dominant. According to
Einstein's formula, the relative viscosity of dilute suspensions contain-
ing solid spheres can be calculated via

ηr ¼ μ�=μ f ¼ 1þ η½ �ϕ ð1Þ
where μ ∗ is the viscosity of suspension, μf is the viscosity of pure fluid, ϕ
is the solid volume fraction, [η] is the intrinsic viscosity which is equal
to 2.0 in 2D and 2.5 in 3D case [2], and ηr is the ratio of viscosity of
suspension to that of pure fluid, i.e., the relative viscosity. However,
the Einstein's viscosity formula, which is based on the non-interacting
suspensions, can only be used for spherical particles at very low solid
volume fraction, usually ϕ b 0.02. This limits its applications in multi-
phase reactors as, in practical liquid-solid and gas-liquid-solid flows,
solid volume fraction, particle shape and particle permeability will af-
fect the viscosity.

Many studies considered the effect of particle shape on viscosity of
suspensions. Jeffery extended the Einstein's viscosity formula to the sus-
pension containing solid ellipsoidal particles at low Rewhere the effect
of inertia can be neglected [3]. It has been shown that the viscosity can
be similarly expressed as a formula as Einstein's but a revised factor
which varies with the initial configurations needs to be incorporated.
Yamamoto et al. studied numerically the effects of various factors on
the intrinsic viscosity of dilute suspension of rodlike particles in a simple
shear flow at low Re, such as orientation angle, rotation orbit and aspect
ratio of particles [4]. Recently, Huang et al. studied the shear viscosity of
suspension of prolate and oblate spheroids by lattice Boltzmann simula-
tions for Re ofO(100). They found that both axis ratios of solid ellipsoids
and Re affect the intrinsic viscosity significantly [5]. As for high solid vol-
ume fraction, Krieger and Thomas [6] developed a semi-empirical
model for viscosity of suspension of randomly monodispersed hard
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spherical particles with a maximum solid volume fraction ϕm. Mueller
et al. [7] measured the rheology of suspensions of monodisperse
particles of varying aspect ratios for solid volume fraction from dilute
to highly concentrated by experiments, and the derived empirical relati-
onships can be used to predict the rheology of suspensions of prolate
particles well. There are also many different numerical methods ado-
pted by researchers to calculate the viscosity of suspensions [8–10].
However, the effects of the particle shape and solid volume fraction on
the viscosity of suspensions are only limited to the solid impermeable
particles in above studies.

In practice, the porous and permeable particles are widely found in
either industrial or natural processes [11,12]. The porous structure of
these particles can affect the interaction between particles and fluid,
and thus influence the rheological properties of the particle-fluid sys-
tem [13]. Joseph and Tao carried out a theoretical analysis on the inter-
actions between a porous particle and the viscous fluid, though at low
Re, they found that the effect of permeability of a porous sphere on
drag force is equivalent to the reduction of the radius of an impermeable
sphere [14]. Bhattacharyya et al. applied a two-dimensional flowmodel
to investigate the flow field and solute transport through and around a
porous cylinder at Re of 1 to 40 [15]. It turned out that the drag force on
the porous cylinder reduces monotonically with the increase of Re and
decrease of Da. Shahsavari et al. [16] studied the steady viscous flow
past and through a porous cylinder between two parallel plates by the
commercial software COMOLMultiphysics 4.3a, and discussed the effect
of Da, Re and blockage ratio on the flow pattern. Recently, the dynamics
of porous particle in a simple shear flowwas investigated by theoretical
analysis and numerical simulation [13,17,18]. Their results revealed that
the flow patterns inside and outside particles significantly depend on
the permeability [13,17,18]. Even though the permeability has little ef-
fect on the rotation behavior of porous particle in Stokes flow regime
[17], the role of permeability cannot be neglected as the increase of
fluid inertia [18]. Later, Xu et al. investigated numerically the effects of
permeability on shear viscosity of suspension of one porous spherical
particle in shear flow at Re ≤ 40 [13]. Results showed that the intrinsic
viscosity only depends on the Darcy number, and changes linearly as
the increase of log(Da) at high Darcy number regime. However, the var-
iation of intrinsic viscosity would be more complex for the suspension
of elliptical or ellipsoidal particles [5], especially for the porous ones.

Therefore, we focus on the viscosity of suspension of an elliptical po-
rous particle in a 2D simple shear flow at low Reynolds number. To de-
scribe fluid flows outside and inside moving porous particle, we adopt
the volume-averaged macroscopic governing equations with the tran-
sient and nonlinear inertial term [19], which could be reduced to the
Darcy's law and Brinkman equation under the Stokes flow conditions.
Amodified single relaxation time lattice Boltzmannmodel is used to nu-
merically solve the correspondingmacroscopic equations. The effects of
the permeability and axis ratio of the elliptical porous particle are inves-
tigated in the shear flow. Our numerical results reveal that the relative
viscosity of suspension changes linearly with solid volume fraction at
various Da for different axis ratios of elliptical particle and the perme-
ability can influence the intrinsic viscosity significantly.

2. Method

2.1. Governing equations

In this work, an elliptical porous particle rotating in a 2D simple
shear flow is considered. The computational domain is set with a
width of W and a height of H = W/2. The simple shear flow is driven
by the two boundingwallsmoving in the opposite directions at constant
velocity Uwith Re=0.08. The Reynolds number is defined as Re= Γd2/
νwhere Γ is the shear rate with Γ= 2U/H. d is the characteristic length
and ν is the kinematic viscosity of fluid. The volume-averaged macro-
scopic equation in terms of intrinsic phase average velocity, which can
include the effects of fluid inertia [19], is used to describe the fluid
flow around and inside the porous particle. The macroscopic equations
are derived frommicroscopic equations averaged in a representative el-
ement volume (REV) scale which is much smaller than the particle and
much larger than the size of pore structures.

∇∙bu f N
f ¼ 0 ð2Þ

ρ f
∂bu fN

f

∂t
þ bu fN

f ∙∇bu fN
f

" #
¼ −∇bpf N

f þ μ∇2bu f N
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where ρf is the fluid density, μ is the fluid viscosity, and b ufN
f and bpfN

f

are the intrinsic phase average velocity and pressure, respectively. Note
that the subscript f refers to the fluid phase. The intrinsic average is de-
fined by
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where Vk and V denote the volume of k-phase and the volume
of representative element, respectively. ψk refers to a quantity of k-
phase. The total body force Fm in Eq. (3) can be calculated via
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εμ
K
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where ε stands for the porosity of the porous particle, K is the perme-
ability of porous particle which can be further related to Darcy number,
Da= K/D2, where D presents the characteristic length of porous parti-
cle, Vp is the intrinsic phase average velocity of particle phase, Fε stands

for the geometric function calculated via Fε ¼ 1:75=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
150ε3

p
. It should be

noted here that the permeability and porosity are used to describe the
porous structure inside particle. In our work, we correlate permeability
Kwith porosity ε via K= ε3dp2/[150(1− ε)2], where dp denotes the char-
acteristic diameter of filling grains inside the porous particle, which
takes the value of 100 μm, following references [15, 17]. The first and
the second terms of the right side of Eq. (5) present the linear and non-
linear drags due to the presence of porousmedia, and the last term ρfG is
the external body force. Through adjusting the value of permeability,
the governing equations can formulate both the porous region and
pure fluid outside. Therefore, it does not require any explicit boundary
condition at the interface between fluid and porous region.

2.2. Numerical method

A modified lattice Boltzmann model is used to solve the volume-
averaged macroscopic equations because of its easy implementation,
accuracy and natural parallelism for simulating complex particle two-
phase flows [20–22]. For simplicity, the intrinsic phase average velocity
of fluid phase bufN

f is denoted by u. Therefore, the lattice Boltzmann
evolution equations can be written as

f α xþ eαδt ; t þ δtð Þ− f α x; tð Þ ¼ −
1
τ

f α x; tð Þ− f eqα x; tð Þ� �þ δt Fα x; tð Þ ð6Þ

where fα(x,t) and fα
eq(x, t) are, respectively, the particle density distribu-

tion function and the equilibrium distribution function at position x for
time t. Here, eα is the velocity configuration in α direction, τ is the relax-
ation time, and δt is the time step which usually is set to be one. The
D2Q9model is used in Eq. (6), and the equilibriumdistribution function
fα
eq and the force term Fα are given by
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Fig. 1.Angle and angular velocity of rotation of the elliptical particle atRe=0.08 andDa=
10−12 as a function of dimensionless time Γt.
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whereωα refers to theweight parameter, i.e.,ω0 ¼ 4
9,ω1−4 ¼ 1

9, andω5−8

= 1/36. The macroscopic properties are calculated via

ρ ¼
X8
α¼0

eα f α ð9Þ

ρu ¼
X8
α¼0

eα f α þ 1
2
δtρFm ð10Þ

Owing to the equation's quadratic nature, u can be given by [23].

u ¼ v

d0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d20 þ d1 j v j

q þ Vp ð11Þ

where v is the temporal variable, which is defined as

ρv ¼
X8
α¼0

eα f α þ 1
2
δtρG−ρVp ð12Þ

The two parameters d0 and d1 can be calculated via

d0 ¼ 1
2

1þ 1
2
δt
εv
K

� 	
ð13Þ

d1 ¼ 1
2
δt
ε2 Fδffiffiffiffi

K
p ð14Þ

2.3. The interaction between particle and fluid

To compute the motion of particle in the fluid, the Newton equa-
tions and Euler equations are adopted to describe the translational
and rotational behavior, respectively. The hydrodynamic drag
force exerted on particles by surrounding fluid can be calculated
via both the stress integration method [24] and momentum-
exchange method [25]. It is shown that the momentum-exchange
method is reliable, accurate, and easy for implementation in terms
of drag force calculation. Thus in this work the momentum-
exchange method is used as in Ref. [25].

The drag force F exerted on solid body by fluid can be expressed as

F ¼ ∑all xb∑α≠0eα ~f α xb; tð Þ þ ~f α xb þ eαδt ; tð Þ
h i

� 1−w xb þ eαδtð Þ½ � ð15Þ

where xb is the position of boundary node inside the solid particle, α is
the direction from fluid node to boundary node, and α is the direction
opposite to α. w(i, j) is a scalar array the value of which is set to be 0
when the lattice node (i, j) is occupied by fluid, and 1 when the lattice
sites are inside the solid particle. Correspondingly, the torque acting
on particle can be obtained by

Tp ¼ xb−Rð Þ � F ð16Þ

where R is the mass center of the particle.

3. Model validation

In this section, ourmodel is first validated by three cases: the free ro-
tation of an elliptical particle in a simple shear flow, the simple shear
flow around a fixed elliptical porous particle, and the shear viscosity of
suspension of a freely rotating circular particle. In the simulations, we
consider a neutrally buoyant porous particle, which means the particle
density is set the same as fluid density.
3.1. The rotation of an elliptical particle in a simple shear flow

In this case, we simulate an elliptical particle freely rotating in a 2D
simple shear flow at Re=0.08 and Da=10−12. When the Darcy num-
ber is set to be significantly small (Da=10−12), the porous particle can
be approximately treated as a solid particle. The elliptical particle with
the major axis of 2a and minor axis of 2b is located in the center of the
flow field with H = 20a. In this test case, we assume a = 2b. The char-
acteristic length for elliptical particle is set to be 2a as in Ref [26]. We
first check the grid independence by considering major axis 2a = 32,
48, 64 lattice sizes. The angular velocity oscillates dramatically at some
time steps when the major axis is resolved by 32 lattices. When the
major axes are resolved by 48 and 64 lattices, the relative errors of com-
puted angular velocities in both cases are within 0.5% and agree well
with the analytical results by Jeffery. For saving computing resources
and time, we finally choose the major axis resolved by 48 lattices in
this test. Periodic boundary conditions are adopted to formulate the
boundaries of fluid flow, and non-equilibrium bounce-back schemes
[27] are used to describe boundaries in the bounding wall directions.

Jeffery developed an analytical solution for a solid elliptical particle
freely rotating in a simple shear flow. The analytical expressions for
the angle (orientation) and angular velocity of during the rotation are
given by

χ ¼ tan−1 a
b

tan
abΓt

a2 þ b2

� 	
ð17Þ

_χ ¼ Γ
a2 þ b2

a2 cos2χ þ b2 sin2χ
� �

ð18Þ

respectively. Fig. 1 shows the angle χ normalized by π racian and angu-
lar velocity _χ normalized by shear rate Γ of the elliptical particle at Re=
0.08. As can be seen from Fig. 1, the angular velocity _χ of the elliptical
particle changes periodically with time which is normalized by the
shear rate Γ, and the angle χ increasesmonotonously. It is demonstrated
that our results for Re=0.08 agree well with Jeffery's analytical results
[3], whichmeans ourmodel is capable of capturing the accurate angular
velocity and angle of rotating particle in a simple shear flow.

3.2. Torque on a fixed elliptical porous particle in a simple shear flow

In this second test case, we further investigate the simple shear flow
around a fixed elliptical porous particle. The analytical solution of the
torque exerted on an elliptical porous particle is given by
Masoud et al. [17]



Fig. 4. The relative viscosity of suspension of an elliptical porous particle of (a) A= 1 and
(b) A = 2 at various Da.

Fig. 2. Dimensionless torque as a function of dimensionless permeability for a fixed ellipse
of various axis ratios.

111J. Liu et al. / Powder Technology 354 (2019) 108–114
T ¼ 2πμΓb2
I2 βð Þ
I0 βð Þ ð19Þ

and β is calculated by

β ¼
ffiffiffiffiffiffiffiffiffiffiffi
ab=K

q
ð20Þ

where I2 and I0 are themodified Bessel function. Fig. 2 shows the torque
normalized by 2πμΓa2 as a function of the permeability normalized by a
× b for the fixed elliptical porous particle with different axis ratios. As
can be seen, the simulated torque of the fixed porous particle well
catches the analytical results. For a/b = 1, i.e. one circular particle, the
maximum deviation appears at β = 7 with the relative error of 2.99%.
As for the elliptical porous particles, the maximum deviation is about
4.28% for a/b= 4 at β= 20 and 1.51% for a/b= 2 at β= 2. The devia-
tions can be considered as the numerical errors and are acceptable in
terms of modelling validation. In this case, the implementation of per-
meability has been validated.

3.3. Shear viscosity of the suspension of a circular porous particle

We also obtained the shear viscosity of suspension of a single cir-
cular particle freely rotating in a simple shear flow at Re = 0.08 and
Fig. 3. The relative viscosity of suspension of a circular porous particle at Re=0.08 and Da
= 10−12 as a function of solid volume fraction.

Fig. 5. The intrinsic viscosity of suspension of elliptical porous particle of axis ratio A=1as
a function of Da.



Table 2
The fitting parameters for correlation in Eq. 23

Parameters Intrinsic viscosity of
a/b = 1

Intrinsic viscosity of
a/b = 2

Intrinsic viscosity of
a/b = 4

m 2.01 2.26 3.54
n 27.6 7.47 7.16

Fig. 7. The intrinsic viscosity of suspension of elliptical porous particle of axis ratio A=4as
a function of Da.

Fig. 6. The intrinsic viscosity of suspension of elliptical porous particle of axis ratio A=2as
a function of Da.

Table 1
The intrinsic viscosity of elliptical porous particles with different axis ratios for various Da.

Da Intrinsic viscosity of
a/b = 1

Intrinsic viscosity of
a/b = 2

Intrinsic viscosity of
a/b = 4

1.0000 ×
10−01

0.0974 0.876 1.40

3.1623 ×
10−02

0.447 1.31 2.12

1.0000 ×
10−02

0.929 1.68 2.66

3.1623 ×
10−03

1.35 1.92 3.01

1.0000 ×
10−03

1.63 2.06 3.22

3.1623 ×
10−04

1.79 2.14 3.33

1.0000 ×
10−04

1.88 2.18 3.40

3.1623 ×
10−05

1.92 2.21 3.44

1.0000 ×
10−05

1.95 2.22 3.46

3.1623 ×
10−06

1.96 2.23 3.47

1.0000 ×
10−06

1.97 2.23 3.48
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Da = 10−12. The relative viscosity can be calculated via

ηr ¼
vs
vf

¼ bσN

ρvf Γ
ð21Þ

wherebσNrefers to the time and space averaged shear stress [5]. The
shear stress could be calculated by the second-order moments of
non-equilibrium particle distribution functions,

σ xð Þ ¼ − 1−
1
2τ

� 	X
f neqα eαxeαy ð22Þ

where fα
neq = fα − fα

eq stands for the non-equilibrium particle distri-
bution function, and eαx and eαy refer to the x- and y-component of
eα, respectively. The particle diameter D is resolved by 40 lattices.
The solid volume fraction is controlled by changing the scale of the
flow field. As shown in Fig. 3, the relative viscosity increases linearly
with the increase of solid volume fraction, which is consistent with
the Einstein's formula, i.e. ηr = μ ∗/μf = 1 + 2.0ϕ. The consistency
validates our model in simulating the shear viscosity of suspensions.

4. Results and discussion

In this section, we study the free rotation of a neutrally buoyant el-
liptical porous particle in a 2D simple shear flow. The effects of perme-
ability on the shear viscosity of suspension are investigated with three
different axis ratios, i.e. A= a/b=1, 2 and 4. All the simulations are car-
ried out with the minor axis resolved by 36 lattices after grid indepen-
dence verification.

For comparison, Fig. 4(a) and (b) show the relative viscosities of sus-
pensions of the elliptical porous particlewith axis ratios A=1and 2, re-
spectively. The shear viscosities are measured based on Eqs. (21) and
(22) for the elliptical porous particle freely rotating in a simple shear
flow. As shown in Fig. 4(a), the relative viscosity ηr of the suspension
of one circular porous particle increases linearly with the solid volume
fraction ϕ at various Da ranging from 10−12 to 10−1. When Da is equal
to 10−12, the particle approaches to one solid particle, the relation be-
tween relative viscosity and solid volume fraction can be well fitted as
ηr = 1.0 + 2.0ϕ, which is in good agreement with Einstein's formula
in 2D case. As the axis ratio increases to A = 2, as can be seen from
Fig. 4(b), the relative viscosity is still a perfect linear function of the
solid volume fraction for Da = 10−12, which can be fitted as ηr = 1.0
+ 2.3ϕ with the square of correlation coefficient of 0.9998.

The slope of the linear fitting function denotes to what extent the
relative viscosity varies with the solid volume fraction. In this work
the slope is named as intrinsic viscosity following some recent literature
[4–6,13,17]. From our simulation results, the intrinsic viscosities of sus-
pensions of elliptical porous particles of axis ratios A = 1 and 2, and 4
are 2.0, 2.3, and 3.5 for Da = 10−12, respectively. The differences be-
tween these intrinsic viscosities are caused by particle ellipticity,
which can be further explained by the flow patterns. In fact, the results
of Jeffery et al. [3] and Huang et al. [5] confirmed that the intrinsic vis-
cosity for suspension of an elliptical solid particle rotating in a simple
shear flow changes with the ellipticity (i.e. (a − b)/a) of particles. As
can be observed, both the results from our simulations and literature
show that the intrinsic viscosity changes with the ellipticity of particles
monotonously. Fig. 4 also shows that with the increase of Da, the slopes
of the functions between the relative viscosity and solid volume fraction



Fig. 8. Streamlines and vertical velocity contours for simple shear flows past a freely rotating elliptical porous particle for the same orientation at variousDa: (a) Da=10−6; (b) Da=10−5;
(c) Da=10−4; (d) Da=10−3; (e) Da=10−2; (f) Da=10−1.
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decrease. For each Da, the relative viscosity increases monotonously
with the solid volume fraction and there is a good linear relationship be-
tween them. Furthermore, the intrinsic viscosity for elliptical porous
particle of axis ratio A = 2 is larger than that of circular particle at cor-
responding Da. This may also be caused by particle ellipticity.

The intrinsic viscosities of suspensions of an elliptical porous particle
as a function of Da for three different axis ratios are shown in Figs. 5–7.
Results reveal that the intrinsic viscosities decrease monotonously with
the increase ofDa. In thiswork, based on the data shown in Figs. 5–7,we
propose a simple formula to correlate the intrinsic viscosity with the
Darcy number

bηN ¼ m

1þ n� Da2=3
ð23Þ

wherem is the intrinsic viscosity of suspension of the elliptical solid par-
ticle and the value of which can be obtained by LBM simulations of in-
trinsic viscosity of suspensions containing elliptical solid particles. The
parameter n is a fitting constant which will change for different axis ra-
tios A. The values ofm are 2.01, 2.26 and 3.54 for elliptical solid particles
of axis ratios A = 1, 2 and 4, respectively. Through fitting with least
square method, the values of n take the values of 25.69, 6.90 and 6.54
for the elliptical porous particle of axis ratios A = 1, 2 and 4, respec-
tively. We stress that the proposed formula of the intrinsic viscosity
can work well for suspensions containing porous elliptical particles
with the axis ratios of 1 to 4. For axis ratio beyond this range, it should
beusedwith caution. Table 1 lists the intrinsic viscosities of elliptical po-
rous particle with three different axis ratios for various Da and Table 2
summarizes the fitting parameters of Eq. (23).
Fig. 9. Streamlines and vertical velocity contours for simple shear flows past a freely rotating ell
= 4.
Wealso plot streamlines and vertical velocity contours ofDa ranging
from 10−6 to 10−1 for the elliptical porous particle of axis ratio = 2
freely rotating in a simple shear flow at the same orientation in Fig. 8.
It is argued that, for a solid elliptical particle, the shear layer close to
the bounding walls moving in the opposite directions exerts a positive
torque on the particle which is in favour of particle rotation, and the re-
circulation region in the middle of the channel exerts a negative torque
which resists the rotation of this particle [28]. Besides, there is a third
fluid layer near and around the particle surface that transfers momen-
tum frommoving bounding walls and recirculation region to the parti-
cle. However, for a porous particle, there are some streamlines that
would penetrate and pass through the particle. As can be seen in Fig. 8
(a)-(f), with the increase of Da, there are more streamlines passing
through the elliptical porous particle which means more fluid can pen-
etrate through the porous media. And the flow patterns are similar to
the simple shear flow past an impermeable elliptical particle in Ref.
[28]. Furthermore, it is also demonstrated in Fig. 8 that, the larger the
Da, the smaller the recirculation region of the flow. This in turn leads
to a reduced negative torque exerted by the recirculation region on
the porous particle. Therefore, the dynamic behaviors of the particle
are different with various Da and the intrinsic viscosity will change
accordingly.

Finally, the streamlines and vertical velocity contours for the ellipti-
cal particle with different axis ratios at Da= 10−1 are presented in Fig.
9. The rotations of particles at the three cases are at steady state. For
comparison, the particles in these three cases are at the same orienta-
tion angle. Results demonstrate that with the increase of axis ratios,
the recirculation region of fluid flow is getting larger. The negative
torque exerted by recirculation fluid on the particles may be influenced
[18], and thus the interaction between elliptical particles and fluid differ
iptical porous particle atDa=10−1 with different axis rations A: (a) A=1; (b) A=2; (c) A
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in these three cases. Therefore, the rheological properties of the sys-
tems, for example, intrinsic viscosity, change.

5. Conclusions

In this work, we adopt a modified lattice Boltzmann model to solve
the volume average macroscopic equations to simulate the rotation of
one elliptical porous particle in the shear flow. The shear viscosity of
this porous particle-fluid system is calculated by the non-equilibrium
particle distribution functions. Firstly, we validate the lattice Boltzmann
model by simulating an elliptical particle freely rotating in a simple
shear flow, the torque acting on a fixed elliptical porous particle and
the viscosity of suspension of a solid circular particle rotating in a simple
shear flow. All the results agree well with the analytical solutions and
the available results in the literature. Then, we mainly study the effects
of permeability on the shear viscosity of suspension of an elliptical
porous particle with different axis ratios. Our results confirm that
Einstein's viscosity formula is only applicable to particles of solid circu-
lar particles. As for suspension of elliptical porous particle, the relative
viscosity increases linearly with the solid volume fraction at various
Da. As for intrinsic viscosity of suspension of elliptical porous particles
of different axis ratios, we propose a general simple formula. Our results
also demonstrate thatmore fluid can penetrate porous particlewhenDa
is higher. The recirculation fluid regions increase with the axis ratios,
and the change of intrinsic viscosity may be caused by recirculation
fluid flow.
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