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Abstract
Numerical study on three-dimensional (3D), incompressible, four-sided lid
(FSL) driven cavity flows has been conducted to show the effects of the
transverse aspect ratio, K, on the flow field by using a multiple relaxation time
lattice Boltzmann equation. The top wall is driven from left to right, the left
wall is moved downward, whereas the right wall is driven upward, and the
bottom wall is moved from right to left, all the four moving walls have the
same speed and the others boundaries are fixed. Numerical computations are
performed for several Reynolds numbers for laminar flows, up to 1000, with
various transverse aspect ratios. The flow can reach a steady state and the flow
pattern is symmetric with respect to the two cavity diagonals (i.e., the center of
the cavity). At Reynolds number=300, the flow structures of the 3D FSL
cavity flow at steady state with various transverse aspect ratio, i.e., 3, 2, 1,
0.75, 0.5 and 0.25 only show the unstable symmetrical flow pattern. The stable
asymmetrical flow pattern could be reproduced only by increasing the Rey-
nolds number that is above a critical value which is dependent on the aspect
ratio. It is found that an aspect ratio of more than 5 is needed to reproduce flow
patterns, both symmetric and asymmetric flows, simulated by using 2D
numerical models.

Keywords: 3D four-sided lid driven cavity flow, transverse aspect ratio,
multiple relaxation time lattice Boltzmann equation (MRT-LBE), laminar flow
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(Some figures may appear in colour only in the online journal)

1. Introduction

Vortex in a cavity flow where the fluid motion is driven by the selected moving wall
boundaries is an important benchmark study (Ghia et al 1982). The significance of this
problem is due to its industrial contexts, e.g., short-dwell coater and in melt spinning process
for production of microcrystalline material, and scientific research because it exhibits almost
all phenomena that possibly occur in incompressible flows: eddies, secondary flows, Taylor-
Görtler-like vortices, flow bifurcations, instabilities, transition, and turbulence. Thus, lid
driven cavity (LDC) flows have been studied extensively by numerical simulations (Burg-
graf 1966, Pan and Acrivos 1967, Ghia et al 1982, Chiang et al 1998, Shankar and Desh-
pande 2000) and laboratory experiments (Koseff and Street 1984a, 1984b and 1984c, Prasad
and Koseff 1989, Guermond et al 2002).

The pioneering analytical and numerical studies of this type flows were given by
Burggraf (1966) who computed steady flows driven by a uniform translation of the top wall
and by Pan and Acrivos (1967) who examined the flow structure experimentally by using a
photographic technique for two-dimensional (2D) rectangular cavities, but neglected the three
dimensional (3D) effects on the flow patterns. Experiments on circulation pattern of 3D cavity
flow with only one side is moving (hereafter call one-sided cavity flow) with various aspect
ratios (see section 3 for definition) was comprehensively reported for the effects of the end
wall on the fluid motion (Koseff and Street 1984a, 1984b and 1984c, Prasad and
Koseff 1989). In particular, a detailed review on 2D and 3D one-sided cavity flow has been
presented by Shankar and Deshpande (2000).

Two-sided cavity flow which is driven by the parallel (or perpendicular) motion of two
facing (or perpendicular) walls in 3D rectangular cavity with various aspect ratios, was firstly
investigated experimentally and numerically by Kuhlmann et al (1997), among others
(Albensoeder et al 2001, Blohm and Kuhlmann 2002). The results showed that a multiplicity
of flow patterns/states may occur because of the difference in aspect ratio and the Reynolds
number. Recently, a 2D two-sided cavity flow which is driven by the non-facing moving
walls for a square cavity and the 2D four-sided lid (FSL) driven cavity flow were reported by
Wahba (2009) to examine the multiple solutions and the Reynolds number for flow bifur-
cation. A total of three (one unstable symmetric and two stable asymmetric) solutions are
captured. The stability analysis of these three flow patterns was performed by Cadou et al
(2012). To analyze the 3D flow motion and estimate the 3D effects on the flow structure, the
two-sided non-facing lid (TSNFL) driven cavity flow has been extended to 3D by Beya and
Lili (2008) and Oueslati et al (2011).

Even though the FSL cavity flow was investigated numerically for its multiple solutions
in two dimensions at low Reynolds number (De et al 2009, Wahba 2009), corresponding
study in 3D has not been done. For 3D FSL, the top wall is driven from left to right, the left
wall is moved downward, whereas the right wall is driven upward, and the bottom wall is
moved from right to left, all the four moving walls have the same speed and the others
boundaries are fixed. In this study, lattice Boltzmann method (LBM) is used to simulate all
the 3D fluid flows. In contrast to the conventional numerical solution of macroscopic
equation, i.e., Navier–Stokes equation (NSE), LBM solves the macroscopic averaged prop-
erties and the evolution of the statistical distribution of microscopic particles in term of the
discrete kinetic theory. The advantages of using LBM include easy implementation of
boundary conditions, short codes, and natural parallelism (Succi 2001). Thus, LBM has been
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developed into an effective computational tool for simulating many complex fluid problems,
such as multiphase flows, porous media, turbulent flows, etc (Gunstensen et al 1991, Hou
et al 1995, 1996, Dardis and Mccloskey 1998, Li et al 2012). Recently, multiple-relaxation
time (MRT) LBE was proposed for improving the numerical stability (d’Humières 1992,
Lallemand and Luo 2000). It has been proved that the numerical stability of MRT-LBE is
indeed superior to that of early version of LBE for simulating 3D cavity flows (d’Humières
et al 2002).

The objectives of this study are to (a) simulate 3D FSL cavity flows and the effects of
transverse aspect ratio on the flow structure at steady states, (b) and capture the multiplicity of
steady solutions in 3D situation. To this end, the MRT-LBE with 3D nineteen velocity
directions (D3Q19) model is adopted, and the results are compared with other numerical
methods that solved the NSE.

The remaining part of this study is organized as follows. In section 2, the numerical
model of D3Q19 MRT-LBE is introduced briefly. In section 3, detailed results from MRT-
LBE model for the 3D FSL cavity flow are presented and analyzed. Finally, conclusions are
provided in section 4.

2. Numerical model

2.1. Multiple relaxation time lattice Boltzmann equation

The evolution equation of MRT-LBE (also called the generalized LBE or the moment
method) for M velocity directions in the D-dimensional space can be written as (d’Humières
et al 2002)

( ) ( ) ( ) [ ( ) ( )] ( )( )+ D + D - = - -a a a ab b b
-x e x x xf t t t f t M SM f t f t, , , , . 1i i i i

1 eq

Here, the right hand side of the equation (1) describes the particle collision process, the left
hand side represents the particle streaming process from the node xi to the nearest neighbor
node xi+eαΔt during one time step interval Δt with a velocity eα along the corresponding
direction α. In equation (1), fα (xi, t) indicates the particle distribution function at the location
xi and time t associated with the discrete particle velocities eα, and its moments are related to

Figure 1. The schematic of D3Q19 model for MRT at any node, ri, and the 19
velocities, eα, with α=0, 1, K, 18.
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the local macroscopic velocity u and density ρ as follows

( )å år r= =
a

a
a

a au ef f, . 2

In this study, we used the nineteen velocity model on three dimension cubic lattices
(D3Q19 model, see figure 1), and thus, the discrete particles velocities eα are defined as
(d’Humières et al 2002)

( )
( ) ( ) ( )
( ) ( ) ( )

( )
a
a
a

=
=

   = -
      = -

a

⎧
⎨⎪
⎩⎪

e
c
c c c
c c c

0, 0, 0 0,
1, 0, 0 , 0, 1, 0 , 0, 0, 1 1 6,
1, 1, 0 , 1, 0, 1 , 0, 1, 1 7 18,

3

where c=Δx/Δt stands for the magnitude of the discrete particle velocity, and Δx is the
dimensionless lattice length. For simplicity, Δx and Δt are set equal to 1, that is
c=δx=δt=1.

The corresponding collision matrix, S is given by (d’Humières et al 2002)

( ) ( )=S s s s s s s s s s s s s s s s s s s sdiag , , , , , , , , , , , , , , , , , , , 40 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

where si (i=0, 1, K, 18) stands for the relaxation rate corresponding to the nineteen
directions, s0=s3=s5=s7, s2=s10=s12, and s16=s17=s18. Since the incompressible
NSE could be deduced from the GLBE by using the Chapman-Enskog expansion, the
viscosity υ which is obtained from this expansion under the condition
s9=s11=s13=s14=s15=sυ=1/τ, where τ is the total relaxation time and related to
the viscosity, υ, as follows (d’Humières et al 2002)

( ) ( )u t= - Dc t0.5 . 5s
2

The transformation matrix M linearly transforms the PDFs, fα and the equilibrium PDFs,
( )

af
eq to the moments, mα and the equilibrium moments ( )

am ,eq that is, (d’Humières
et al 2002)

∣ ⟩ ( ) ( )r e p p=m e j q j q j q p p p p p m m m, , , , , , , , , 3 , 3 , , , , , , , , , 6x x y y z z xx xx ww ww xy yz xz x y z
T

where ρ stands for the mass density, also can be replaced by density fluctuation δρ=ρ−ρ0
for reducing the effects due to the round-off error in the LBE simulations, e is the kinetic
energy, ε is the kinetic energy square, jx, jy, and jz are the three components of the momentum
in the x, y, and z directions, respectively, qx, qy, and qz stand for the three components of the
energy flux in the x, y, and z directions, respectively, pxx is the dynamic pressure in the x
direction, pww is the dynamic pressure in z direction, pxy, pyz, and pxz are the symmetric
traceless viscous stress tensor, 3πxx, 3πww are the fourth-order moments, and mx, my, and mz

are the third-order moments (d’Humières et al 2002).
For the equilibrium value of moments ( )

am eq in D3Q19 model, mass density ( ) r=m ,0
eq

three components of momentum ( ) =m jx y z3,5,7
eq

, , are the conserved moments, and others are
the non-conserved moments. Thus, the equilibrium PDF, ( )

af
eq which corresponds to the

( )
am eq is defined as

( ) ( )( ) w r= +
⋅

+
⋅

-a a
a a

⎧⎨⎩
⎫⎬⎭

e u e u u
f

c c c
1

2 2
, 7

s s s

eq
2

2

4

2

2

where ωα is the weight parameters, ω0=1/3, ω1-6=1/18, ω7−18=1/36, =c c 3s
2 are the

lattice sound speed.
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2.2. Boundary condition

Since the 3D lid driven flow is performed in this study, the velocity boundary condition for
the moving walls is provided by bouncing the incoming PDFs back to its original position
with the additional momentum transfer, i.e., the modified link bounce back boundary con-
dition (d’Humières et al 2002)

( )¯
¯w r= +
⋅

a a a
ae U

f f
c

2 , 8
s

0
lid

2

where āf is the PDF of ¯ = -a ae e , Ulid stands for the velocity on the moving walls, e.g., the
lid speed. For the other stationary walls, the no-slip zero boundary conditions based on the

Figure 2. Schematic shows the 3D cavity flow driven by different number of moving
walls along the cavity (the same symbol U means they are the same). (a) Two-sided lid
(TSL) driven cavity flow, and (b) Four-sided lid (FSL) driven cavity flow. The
notations L, W, and L indicate the length, width, and height, respectively. The effects of
four different aspect ratios, K=W/L=0.25, 0.5, 0.75 and 1, are studied.
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mid-grid bounce back approach are applied, i.e., the physical boundary is specified in the
middle of the fluid nodes and the inner fictional ghost nodes.

3. Results and discussions

In this section, the MRT-LBE model is validated first by applying it to two published studies
of 3D LDC. One is the classical benchmark case, i.e., one-sided LDC, and the other is a
TSNFL cavity flow, as shown in figure 2(a). Then, the FSL cavity flow (figure 2(b)) is
investigated numerically. We also discuss the grid system adopted for all the simulations, the
grid independence study, and the results of the 3D FSL cavity flow with various transverse
aspect ratios.

3.1. Grid independence study

In order to correctly simulate the incompressible fluid flows (Mach number Ma=U/
cs<0.3) and to satisfy the numerical stability limitation (the dimensionless relaxation time τ
should be sufficiently larger than 0.5), the dimensionless lid driven velocity U=0.1 was
chosen for all moving boundary in all the simulations. Based on optimizing the linear stability
of the D3Q19 model (d’Humières et al 2002), the nineteen elements si of the collision matrix
other than sυ are given by: s0=s3=s5=s7=0, s1=1.19, s2=s10=s12=1.4,
s4=s6=s8=1.2, s16=s17=s18=1.98, and s9=s11=s13=s14=s15=1/τ. As
shown in table 1, the number of the lattice size (Lx, Ly, Lz) adopted in the x-, y- and z-direction
changes with the various transverse aspect ratios K=W/L as well as the Reynolds number
Re=UL/υ. In additional, the steady solution of the laminar flow is determined by the
following criterion, i.e., the relative error of velocity at two time-levels separated by n
(=1000) time steps decreases to the magnitudes of 10−8 or less,

( ) ( ) ( )
( ) ( ) ( )

( )å
- + - + -

+ +

- - -
-

⎡
⎣⎢

⎤
⎦⎥

u u v v w w

u v w
10 . 9i

n
i
n

i
n

i
n

i
n

i
n

i
n

i
n

i
n

1 2 1 2 1 2

2 2 2
8

Results of the grid independence study for the 3D one-sided (Re=1000) and two-sided
(Re=500) LDC with the aspect ratio K=1 are provided in table 2. The minimum mag-
nitude of the velocity (umin) and the corresponding position (zmin) where the umin occurs are
compared between two different grid systems to check the difference. Here we observe that
the differences between 1283 and 1443 lattice sizes in computing results are about 0.5%, and
thus, conclude that the grid size has no noticeable effect on model convergence. Here we only
discuss the grid independent on 3D one-and two-sided LDC, and 3D FSL will be given later,
in the 3.3 section.

Table 1. Lattice nodes adopted in the 3D one-sided, two-sided, and four-sided LDC
simulations with various aspect ratios at the steady solution for different Re.

K=0.25 K=0.5 K=0.75 K=1
Re (Lx, Ly, Lz) (Lx, Ly, Lz) (Lx, Ly, Lz) (Lx, Ly, Lz)

(one-sided) 400 (96, 96, 96)
1000 (128, 128, 128)
(two-sided) 500 (96, 24, 96) (112, 56, 112) (128, 96, 128) (128, 128, 128)
(four-sided) 300 (128, 32, 128) (96, 48, 96) (112, 84, 112) (112, 112, 112)
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3.2. Validation of present algorithm

For the one-sided cavity flow, two Reynolds numbers are selected: 400 and 1000 with K=1.
The horizontal and vertical velocity profiles, normalized by the reference velocity, on the
symmetry plane y=W/2, agree very well with those by solving the Navier–Stokes (NS)
equation (figure 3) given by Chiang et al (1998). The other test case is a 3D two-sided LDC
with K=1, 0.75, 0.50, and 0.25 at the same Re=500 (see figure 4) which also indicates an
excellent agreement. The curvature of velocity profiles decreases with the aspect ratio, this
means the kinetic energy is less transmitted from the driven walls to the cavity center, caused
by the fact that a small aspect ratio means a small contact surface, and hence, fewer driven
fluid particles, and finally a decrease of the kinetic energy transfer. It is also possible to
explain that this is because of the drag effect caused by the stationary end walls. Also, these
comparisons with the streamline plot provided by (Oueslati et al 2011) are excellent at the

Figure 3. Results of the simulated 3D one-sided LDC at Re=400 and 1000. (a)
Horizontal velocity profiles at x=L/2 on the symmetry plane, y=W/2, and (b)
vertical velocity profiles at z=H/2 on the mid-plane y=W/2.
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Table 2. Grid independency study for 3D one-sided and two-sided LDC with K=1.
Here the umin stands for the minimum magnitude of horizontal velocity on the sym-
metry plane, y=W/2, and the zmin corresponds to the position where umin occurs.

Resolution (Lattice nodes)

(96, 96, 96) (128, 128, 128) (144, 144, 144)

One-sided umin −0.265 662 −0.269 319 −0.270 684 902
(Re=1000) zmin 0.130 208 33 0.128 906 25 0.128 472 222
Two-sided umin −0.257 376 −0.259 930 864 −0.260 692 779
(Re=500) zmin 0.588 541 67 0.582 031 25 0.579 861 111

Figure 4. Comparison of present simulated results (lines) of 3D TSNFL for different
aspect ratios at Re=500 with the numerical results given by Oueslati et al (2011) (Δ :
K=1, , : K=0.75, : K=0.50, and d : K=0.25). (a) Horizontal velocity
profiles at x=L/2 on the symmetrical plane, y=W/2, and (b) vertical velocity
profiles at z=H/2 on the symmetrical plane y=W/2.
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various aspect ratio with Re=500. Two examples of this study simulated streamline plot are
given in figure 5 as the evidence. With the decrease in aspect ratio K, the central locations of
the two primary vortices move closer to the upper right and bottom left corner points, and the
two secondary vortices approach to the bottom right corner points.

3.3. Three-dimensional four-sided lid (3D FSL) driven cavity flow

At Re=300, the effects of transverse aspect ratio on the modeled 3D FSL flows at the steady
status are present with four ratios, K=1, 0.75, 0.5, and 0.25. The independent grid system
can be demonstrated by the negligible small difference (0.5%) for umin|[z/L>0.5] which

Figure 5. Streamlines of the 3D TSNFL for different aspect ratios on the symmetry
plane y=W/2 at Re=500, (a) K=1, and (b) K=0.25. The broken of some
streamlines is due to the 3D nature. In other words, a streamline goes into (or comes
from) the other plane.
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stands for the minimum magnitude of horizontal velocity for all z/L that are larger than 0.5
and umax|[z/L<0.5] which presents the maximum magnitude of horizontal velocity for all z/
L that are less than 0.5 (see figure 8).

Four primary vortices are formed with the symmetric patterns about the two cavity
diagonals (i.e., the center of cavity) on the mid-plane, y=W/2 (figure 6). It clearly shows
that the changing of the aspect ratio, i.e., from K=1 to K=0.25, affects the central location
of the vortices. The centers of the four vortices move out towards the upper corner and bottom
left corners as the decrease of K.

At Re=300, the current 3D MRT-LBE model can only simulate the unstable symmetric
solution produced by other 2D modeling (Wahba 2009). Although other 2D LBE modeling

Figure 6. Streamlines and velocity vectors (arrows) on the symmetry plane y=W/2 of
the 3D FSL cavity flow at Re=300 with different transverse aspect ratios. (a) K=1
and (b) K=0.25. These are similar to the unstable symmetric solution obtained by
other 2D simulations that solve the NS equation. Since the flow is symmetrical with
respect to the cavity center, only half of the results are plotted.
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Figure 7. Contours of the horizontal u, transverse v, and vertical w velocity components
for different aspect ratios (K=1 and K=0.25) at Re=300 on the symmetry plane,
y=W/2.
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results (Perumal and Dass 2011) which has a single relaxation time could obtain the multiple
solutions when the Reynolds number is fixed at 300, it may be caused by the stability effect
from the end stationary walls available in these 3D modeling effects. More discussion on the
multiple flow solutions for 3D FSL flow will be presented later.

The change of aspect ratio K also affects the u, v, w velocity components on the mid-
plane, y=W/2 (figure 7), especially the v component. With K=1, model simulated v
component is the most strongest, among other K values. Contours of v component show 8
vortices (six primary and two secondary vortices formed with symmetric patterns) on the mid-
plane, y=W/2. When K decreases to 0.25, it shows a total of 9 vortices. The two primary
vortices along the anti-diagonal direction are divided into three small vortices, and the other
primary vortices move closer to each other. In additional, the horizontal and vertical velocity
profiles on the symmetry plane, y=W/2, are also influenced by the aspect ratio (figure 8).

Figure 8. Simulated 3D FSL flow velocity profiles for different aspect ratios at
Re=300. (a) Horizontal velocity profiles at x=L/2 on the symmetry plane, y=W/
2, and (b) vertical velocity profiles at z=H/2 on the mid-plane y=W/2.
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As the decrease of the aspect ratio from K=1 to K=0.25, the reducing tendency in the
iso-surface of the transverse velocity component, v, for the specific value (−0.06) at
Re=300 can be observed in figure 9. It shows that the small aspect ratio (K=0.25) limits
the transfer of momentum from the moving lid into the cavity. As an extreme case for K=0,
there should have no any velocity at all in the cavity. The decreasing of K practically boosts
the importance of the stationary end walls, which pose a drag force on the fluid motion inside
the cavity. Here the iso-surface of kinetic energy, defined as Ke=0.5(|u|2+|v|2+|w|2),
also demonstrate the stationary end walls effect (figure 10).

3.4. Multiple steady solutions

It was pointed out in previous section that at Re=300 current MRT-LBE model will not
produce multiple solutions at steady state for 3D FSL flows. Multiple steady state solutions,
however, can be reproduced at different Re’s for different aspect ratios. Here let’s define the
critical Reynolds number (Rec) is the value for a FSL cavity flow to develop multiple steady
solutions when Re>Rec.

For MRT-LBM, the multiple steady solutions could be obtained by (1) changing the
Reynolds number, or (2) a slight change of the relaxation time when Re is close to Rec
(Perumal and Dass 2011). For the first approach calculations are performed for the Reynolds
varies from 100 to 400, and using a 1123 grid size with K=1. When Re�380, the

Figure 9. Iso-surface of the transverse velocity component v for the specific value
(v=−0.06) for different aspect ratios, K=1, 0.75, 0.50, and 0.25 (from (a) to (d)) at
Re=300.
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streamlines of 3D FSL flow are affected slightly by the different Reynolds number, but
basically it is maintaining the unstable symmetric pattern, as shown in figure 11(a). When
Re=381, the flow structure shows the bifurcation from the symmetry state to the asymmetry
state (figure 11(b)). Thus, the critical Reynolds number (Rec) for 3D FSL with K=1 is
identified as 380. This result is different with that observed from the 2D FSL study
(Rec=300) (Wahba 2009, Perumal and Dass 2011), which may be caused by the stability
effect from stationary end walls available in this 3D model.

Two possible asymmetry steady solutions at Re=381 (figures 11(b) and 12) show the
effect of a slight change of the relaxation time and viscosity, by slightly changing the non-
dimensional lid speed. These streamline patterns, however, are similar to these results given
by other 2D FSL at Re=300 (Wahba 2009, Perumal and Dass 2011).

For the reduced aspect ratio, i.e., K=0.75, 0.50 and 0.25, the lattice size on y-direction
will be decreased, and the numbers of lattices on x- and z-direction are unchanged. The
corresponding critical Reynolds numbers at different transverse aspect ratio are plotted in
figure 13. It can be seen that the Rec decreases with increasing aspect ratio, K, and it has a
obvious tendency that the critical Reynolds number of 3D FSL will be gradually close to
Re=300 for 2D FSL with the increase of K. The possible reason of this phenomenon may be
attributed to the fact that the wall effect (when K is small) can maintain the unstable flow
pattern with a high Reynolds number. With K increasing, the end wall effect is less important,
and thus, Rec decreases. For this reason, two large transverse aspect ratios, K=2 and 3 are
added for further checking this hypothesis. The corresponding grid resolutions are set as
(112×224×112) and (112×336×112), respectively. For K=2, the critical Reynolds

Figure 10. Iso-surface of the kinetic energy (Ke=0.06) for the different aspect ratios,
K=1, 0.75, 0.50, and 0.25 (from (a) to (d)) at the middle plane for Re=300.
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number is 325, and Rec=319 is captured for K=3. Here it demonstrates Rec of 3D FSL
becomes more and more close to Re=300 for 2D FSL. As well documented for having a
negligible end wall effect at the center plane, an aspect ratio of 5 is necessary (Chow 1959).
Unfortunately, it is impossible to extend K�4 because of the limitation on our current
computing resources. Nevertheless, results of this study also support a minimum aspect ratio
of 5 is required.

4. Conclusions

In this study, the 3D FSL cavity flow has been investigated numerically for analyzing the
effects of the transverse aspect ratio on the flow structure by using MRT-LBE with nineteen

Figure 11. Streamlines and velocity vectors (arrows) of 3D FSL cavity flow with K=1
near the critical Reynolds number, Rec, the reference lid driven velocity U is chosen
as 0.1.
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velocity directions model. The flow structure of the 3D FSL cavity flow in the steady state at
Re=300 with various transverse aspect ratio, i.e., K=3, 2, 1, 0.75, 0.50 and 0.25, has been
described. The streamlines and velocity vectors on the mid-plane, y=W/2, demonstrate the
presence of four primary vortexes with the symmetric patterns with respect to the two cavity
diagonals (i.e., the cavity center) for all K values.

When Reynolds number exceeds a critical value, the instabilities arise and this leads to
the flow field changed from symmetry to asymmetry, i.e., the flow bifurcation occurs. By
slightly changing the reference velocity for a slightly different relaxation time near the critical

Figure 12. Second steady solution (streamlines and velocity vectors) for 3D FSL cavity
flow at Re=381 with the aspect ratio K=1, the reference lid driven velocity U is set
equal to 0.09 for another asymmetry solution. The first asymmetry, steady solution is
shown as figure 11(b). All figures are symmetric with respect to the cavity center, at
grid (61, 61).

Figure 13. The relationship between the critical Reynolds number (Rec) and the
transverse aspect ratio.
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Reynolds number, the two asymmetry steady solutions of 3D FSL cavity flow could be
reproduced by this MRT-LBE model. In additional, the critical Reynolds number of 3D
modeling is very different from other 2D modeling results, it must be caused by the effect of
stationary end walls.
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