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Covalent organic frameworks (COFs) represent an important class of crystalline porous materials with

designable structures and functions. The interconnected organic monomers, featuring pre-designed

symmetries and connectivities, dictate the structures of COFs, endowing them with high thermal and

chemical stability, large surface area, and tunable micropores. Furthermore, by utilizing pre-

functionalization or post-synthetic functionalization strategies, COFs can acquire multifunctionalities,

leading to their versatile applications in gas separation/storage, catalysis, and optoelectronic devices.

Our review provides a comprehensive account of the latest advancements in the principles, methods,

and techniques for structural design and determination of COFs. These cutting-edge approaches enable

the rational design and precise elucidation of COF structures, addressing fundamental physicochemical

challenges associated with host–guest interactions, topological transformations, network interpenetration,

and defect-mediated catalysis.

1. Introduction

Covalent organic frameworks (COFs) constitute a fascinating
class of porous materials, first developed in 2005 by O. Yaghi
and colleagues as a novel type of crystalline covalent organic
polymer.1 Since then, COFs have rapidly gained attention and
spurred the emergence of an interdisciplinary research field
focused on their design, synthesis, and application. Unlike
metal–organic frameworks (MOFs) that rely on metal–ligand
coordination to form the porous framework,2,3 COFs are based

on the strong and stable covalent linkages between molecular
building blocks, resulting in remarkable thermal and chemical
stability.4 This provides unprecedented opportunities for the
design and creation of pre-determined porous structures with
desired sizes, densities, and interconnectivity of pores.5–8

The architecture of COFs is fully pre-designable, based on
reticular chemistry that involves the symmetries and connectiv-
ities of molecular monomers linked by covalent bonds. This
results in polymeric networks beyond zero-dimensional (0D)
supramolecules and ranging from one-dimensional (1D) to two-
dimensional (2D) and even three-dimensional (3D) spaces,
depending on the kind of molecular linkage.9–12 Of particular
interest are 3D COFs, which are constructed using high-valence
molecular monomers such as 4-connected Td-symmetric build-
ing blocks and 8-connected D4h-symmetric ones.13–15 These
frameworks possess exceptional surface area, low density, and
abundant functional sites accessible to guest molecules, mak-
ing them highly desirable for practical applications such as
catalysis and gas adsorption/separation. However, their crystal-
lization poses significant challenges and often requires rigor-
ous synthesis protocols, especially for those monomers with
functional groups.16,17

In order to fully unlock the potential of COFs, it is crucial to
address the key challenges facing this field. The challenges
include (i) precisely designing polymer networks with targeted
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architectures, porosities, and topologies based on the symmetries
and connectivities of molecular building blocks, (ii) exploring the
structural design rationale and underlying logic behind polymer
network construction to achieve target functionalities, and
(iii) explicitly elucidating the structure of COFs and retrieving
multi-dimensional correlated structural, chemical, and electro-
nic information across spatial, time, energy, and momentum
dimensions.18–20 Achieving this level of understanding is not
without technical hurdles. For instance, COFs are highly fragile
and subject to electron beam irradiation damage, making it
challenging to achieve high spatial resolution characterization
using modern electron microscopy techniques.21–23 However,
by overcoming these obstacles, we can unravel the physical origin
of fascinating phenomena taking place on the surfaces/inter-
faces, as well as within the bulk porosities and defects of COFs,
including topological transformations, host–guest interactions,
network interpenetration, and defect-mediated catalysis.24,25

In the realm of open framework materials, such as MOFs,
zeolites, and COFs, designing structures with desired porosity
and functionality is a critical task. This task is guided by the
principles of reticular chemistry, which involves building open
frameworks through the linkage of molecular building blocks
via chemical bonding.26 While each type of material has its own
unique building units with matched geometries (i.e. TO4 tetra-
hedra for zeolites, secondary building units (SBUs) for MOFs,
and molecular monomers for COFs), the molecular design
principle of COFs sets them apart from linear, hyperbranched,
or cross-linked polymers. This design principle facilitates the
pre-designing of primary and advanced COF structures to an
unprecedented degree.26 Over the past decade, the discovery of new
COF structures has evolved from scientific intuition and traditional
trial-and-error experimental approaches to high-throughput predic-
tive approaches from the viewpoint of materials genome initiative
(MGI).27 These recently developed high-throughput approaches,

assisted by advanced computational tools like machine learning
(ML) and encoded multi-dimensional information spanning from
topological to chemical spaces, are capable of predicting, screening,
and optimizing hypothetic COF structures at an unparalleled scale
and rate.24 This significantly expedites the innovation of new net-
works and allows the construction of large databases for COFs.
These high-throughput approaches have been successful in
predicting numerous unreported topologies and new structures
that outperform widely recognized benchmark materials in
various applications, including catalysis and gas storage.28

Structural determination of COFs is critical, and an ideal
structural elucidation technique for COFs should be capable of
determining their structures and dynamics across multiple scales
and dimensions, with high spatial, temporal, and energy resolu-
tions. Although spectroscopic techniques can deliver high-energy
and temporal resolution to obtain fingerprint structural informa-
tion on functional groups or species in COFs, their spatial resolu-
tion is limited. Diffraction-based techniques using X-ray or
electron incidence can extract periodic structural information from
Bragg scattering, providing high spatial resolution with sophisti-
cated crystallographic strategies,29 while the different scattering
abilities of elements allow the discrimination of chemical informa-
tion within the frameworks. Electron diffraction techniques with
nanofocusing capability enable the characterization of COF nano-
crystals, circumventing their crystallization issues, though low-
dose or cryogenic strategies are required to minimize electron
beam damage to the organic frameworks.30 While diffraction-
based crystallographic techniques can offer spatially averaged
information over the periodic network, they cannot directly resolve
local structural information such as surface, interface, defects, and
partial disorder. Accordingly, they may have limitations in unravel-
ing fundamental questions related to host–guest interactions,
network interpenetration, and defect-mediated catalysis. Modern
imaging techniques, such as scanning probe microscopy (SPM),
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allow direct molecular-level or even atomic-level imaging of con-
ductive and/or low-dimensional structures like supramolecules, 1D
COFs, and 2D COFs. Transmission electron microscopy (TEM)
offers a more general solution to structural elucidation for most
types of COFs, though inherent issues arising from the low
electron scattering abilities and beam damage of these organic
frameworks need to be tackled.31 TEM provides a powerful
platform that integrates the capabilities of multi-dimensional
correlated structural, chemical, and electronic information
retrieval at high spatial resolution.32–35 Recent advances in the
development of high-performance electron detectors enable
various low-dose imaging techniques, such as direct detection
cameras (DDC)-high resolution transmission electron microscopy
(HRTEM),36 integrated-differential-phase-contrast (iDPC)-STEM
and electron ptychography,37,38 providing unprecedented
opportunities in direct imaging of beam-sensitive low-contrast
crystalline and non-crystalline organic polymers.

This work reviews the fundamental concepts, principles and
advanced techniques for the structural design and determina-
tion of COFs. It aims to unravel the rationale and underlying
logic behind polymer network construction towards target
functionalities and structure–property relationships for diverse
applications.

2. Structural design
2.1. General principles for structural design

The theory and methods of reticular chemistry originated in the
1950s,39 but their renaissance came at the very beginning of this
century right after the explosive growth of MOF chemistry.40 In
the last century, the understanding of covalent bonding in
organic molecules led to the development of a fully rational field
of research in organic synthesis. However, covalently linked
organic macromolecules, with the exception of linear 1D poly-
mers, remained largely unexplored. The synthesis of the first COF
that attains stacked 2D structures was achieved through rever-
sible formation of boroxine and boronate ester bonds.1 Subse-
quently, Yaghi et al. synthesized the first 3D COF, 3D COF with
interpenetrated networks, and 3D COF woven by organic threads
in 2007, 2013, and 2016, respectively.41–43 In the 15 years since
the discovery of 2D and 3D COFs, a plethora of novel COF
structures have been reported, featuring diverse linkage chemis-
tries, structure types, and pore metrics.

Most COFs can be rationally designed and synthesized based
on the basic principles of reticular chemistry. Reticular chemistry
is fundamentally topological science, specifically with periodic
nets that provide a blueprint for constructing crystal networks
using multi-connected molecular building blocks under the
stoichiometric condition. These nets are essential for designing
crystals with specific properties.40 Such periodic nets are called
underlying nets as they characterize the architecture of the whole
structure. The combinatorial topology of a periodic net for a COF
network is actually an abstraction of the geometrical properties
where the concept of continuity, without distortions such as bend-
ing, twisting or affine transformations, is decisive. The underlying

topology of a net may be designated by the three-letter symbols
from the reticular chemistry structure resource (RCSR)44 and
realized by diverse embeddings.45 In this sense, similar to MOFs
and zeolites, COF networks with different embeddings can be
well deconstructed stepwise to faithfully determine their under-
lying net and associated topology (Fig. 1a),13 via computer
programs like Systre26 and TOPOS.46 The design of COF net-
works, from a bottom-up perspective, can be well predicted and
constructed based on the symmetry and connectivity of polytonic
molecular monomers towards the formation of topologies with a
minimum number of kinds of vertices and links (Fig. 1b).21

The structural design rationale of COFs may be categorized
into three different levels: (i) the network dimensionality (asso-
ciated with monomer symmetry and connectivity), (ii) the net-
work porosity (associated with the embeddings, topology, local
order) and (iii) the network functionality (associated with both
functional groups and metal sites). Beyond the 0D supramole-
cules, the COF networks span from 1D to 3D spaces when
choosing different organic molecular monomers as building
blocks, which are dictated by either linear, planar or stereoscopic
shapes and different node-valency (Fig. 1c).

Specifically, 1D COFs consist of (quasi-)linear covalent
linkages with two or more reactive sites that are confined in
the one-dimensional direction and may exhibit noncovalent
interactions, such as p–p interactions and hydrogen bonding,
spanning the rest two dimensions. However, the high structural
anisotropy and entropy-driven random packing of organic units
pose major challenges in synthesizing molecular crystals of 1D
COFs.10 Nonetheless, upgrading the structural dimensionality
is possible through the packing of 1D COF molecular chains to
induce local structural order as shown in Fig. 1c. For the
construction of 2D COFs, the utilization of linear and/or planar
monomers (e.g. triangle, square, and rectangle shaped mole-
cular nodes) limits the expansion of the organic linkages within
the 2D plane, and thus creating 2D frameworks that adopt
diverse topologies.50 In general, stiff monomers may lead to
more rigid 2D COFs with better crystallinity and higher surface
area, arising from improved alignment and packing of the
monomers within the framework.51 There is a wide availability
of organic monomers with stiff backbones that meet these
criteria, and they often constitute p-systems within the poly-
meric framework that may adopt 2D topologies including hcb,
sql, hxl, kgm and kgd.52 These 2D organic layers may also
upgrade the structural dimensionality through stacking and
introduce local structural order (Fig. 1c). For instance, the AA
stacking mode with the eclipsed configuration of the 2D polymeric
framework that adopts hcb topology leads to local structural order
along the third dimension and the formation of bnn topology. On
the other side, the AB stacking mode with the staggered configu-
ration leads to local structural order along the third dimension
and the formation of gra topology.53 The construction of 3D COFs
usually involves the stereoscopic molecular monomers with high
valency, such as 4-, 6- and 8-connected stereoscopic nodes with Td,
D3h, D3d, C3 and D4h symmetries.54–57 The combination of these
stereoscopic molecular nodes (e.g. tetrahedron, cube, triangular
prism and quadrangular prism shaped molecular nodes) along
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with other types of planar or linear nodes creates COFs that adopt
dia, bcu, bor, ctn, and pts topology.58 Furthermore, the major
challenge in designing and synthesizing 3D COFs is very limited
choices of multiply connected stereoscopic molecular monomers
as building blocks, especially for those with high-valency,
which imposes severe constraints in evoking structural diversity
compared with other open framework materials like MOFs. The
recent development of high-valency molecular nodes, such as
8-connected stereoscopic nodes, has greatly enriched the 3D COF
repertoire.59 Many 3D COF frameworks inevitably adopt entangled
configurations that exhibit local structural order beyond the 3D
structure and involve multiple interpenetrated networks displaced
from each other (Fig. 1c).

The above-mentioned underlying framework topologies can
be realized by diverse embeddings and allow the design of porosity
(i.e. the size and shape of the micropores) that plays a critical role in
determining the performance of COFs in various important applica-
tions such as gas adsorption/separation and catalysis. There are
generally three major strategies in the porosity design of COFs:

(i) The choice of embeddings. Even by adopting an identical
net with a specific topology, the porosity of a COF structure can
be well tailored by employing molecular nodes with different
sizes. Alternatively, molecular nodes in the framework can be
replaced by different types of augmented building blocks that
possess inherent porosity to introduce multimodal porosity
(Fig. 1d).47,48

(ii) The choice of topologies. Depending on the kind of mole-
cular linkage, identical molecular nodes may lead to different
types of topologies and thus porosities. As a typical example,
the in-plane linkage of K-shaped molecular nodes may lead to
the formation of 2D frameworks dictated by either tju, pyu or
tsu topologies as schematically illustrated in Fig. 1d. The
porosities of these diverse COF types are markedly distinct,
both in size and in shape.17

(iii) The effects of stacking and entanglement. The stacking and
entanglement of existing COF networks upgrade the structural
dimensionality of these networks from 2D or 3D spaces, and
thus modulate the porosities. For 2D networks, the eclipsed-type

Fig. 1 Fundamental construction and design principles of COFs. (a) and (b) Construction and deconstruction schemes of model COF networks. (a),13

(b)21 Modified with permission. Copyright 2022, 2023, American Chemical Society. (c) Topology design principles from monomers with diverse
symmetries to COF lattices with different network dimensionalities. (d) Porosity design principles based on the effects from embedding, topology and
local order. Reproduced with permission.17,47–49 Copyright 2022, 2019, 2015, 2017, American Chemical Society, Elsevier, Royal Society of Chemistry. (e)
Functionalization-based synthesis strategies.
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(AA) stacking mode usually leads to straight micropores, while
the staggered-type (AB) stacking mode leads to segmented
micropores (Fig. 1d).49 On the other side, the entanglement of
3D COFs entails the interpenetration of networks and signifi-
cantly reduces the pore size.22

The introduction of functional groups and metal sites
endows the COFs with diverse functionalities (Fig. 1e). From either
the bottom-up or peer-to-peer perspective, these two strategies can
be generally achieved through pre-synthetic modification (pre-SM)
or post-synthetic modification (post-SM).60 In pre-SM, functional
groups or metal sites can be introduced into the molecular
monomers before molecular linkages are formed through con-
densation. However, this approach may not be suitable for all the
cases due to the incompatibility of the functionalized molecular
monomers with the synthetic conditions of COFs. In contrast,
post-SM introduces functionalities into the frameworks of pre-
synthesized COFs through diverse bond formation reactions,
such as azide–alkyne cycloaddition, Williamson ether synthesis

reaction, esterification of the hydroxyl group and amidation of the
carboxyl group.61–63 This approach allows the introduction of
application-oriented and site-specific functionalities that cannot
be simply integrated by pre-SM strategies. However, due to the
extremely slow solid–liquid reactions and diffusion restrictions of
molecular precursors, complete functionalization of the whole
COF framework is usually challenging, especially for those pre-
cursor molecules exceeding the pore size of the COFs.64,65

2.2. Structural design based on reticular chemistry

Following the above-mentioned three levels of design rationale
for COFs, achieving optimal porosity and functionality within
the target dimensions should be the primary focus of structural
design. Enormous insights into the structural design and
synthesis guided by reticular chemistry and topological science
can be gained from the fundamental principles and rich
experience of other open framework materials like MOFs and
zeolites. As summarized in Fig. 2, engaging a specific topology,

Fig. 2 Construction diagram of COFs guided by reticular chemistry principles and based on the symmetry and connectivity of monomers, common
types of covalent linkages as well as the topologies of the target COF networks. The construction rationale (i.e. stoichiometric construction) is based on
the geometry and connectivity match of monomers labelled with corresponding uppercase and lowercase letters of the Greek alphabet, respectively.
The underlying topologies of target networks are shown below the monomers with lowercase Greek labels.
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diverse embeddings are realized by pre-designable molecular
monomers dictated by different shapes and interconnected via
various types of covalent linkages.48

The linear, planar and stereoscopic multiply connected
molecular monomers that adopt linear, polygonal or polyhedral
shapes are endowed with multiple symmetrically distributed
reactive sites. Many bond formation reactions allow the creation
of diverse covalent linkages between these reactive sites and
entail the targeted construction of COF networks guided by
geometry alignment. Typical covalent linkages include:

(i) Boronate ester linkages that exhibit high thermal stability
and are formed by the condensation reaction between a boronic
acid and a diol or a hydroxyl group with a base or transition
metal catalyst.66–68 (ii) Triazine linkages that exhibit high
chemical stability and are formed by the self-condensation of
nitrile with an acid or base catalyst.69–71 (iii) Imine linkages that
are stable and formed by the condensation reaction between an
amine and an aldehyde or ketone with an acid or base
catalyst.72–74 (iv) Ketoenamine linkages that involve the formation
of a double bond between a carbon atom in the keto (CQO)
group of one monomer and a nitrogen atom in the enamine
(CQN) group of another monomer.75 (v) Imide linkages that are
typically formed through the reaction of an amine and an acid
anhydride with a base catalyst.76 (vi) Amide linkages that are
typically difficult to obtain via the usual condensation reaction of
an amine with a carboxylic acid, and are formed through the
direct oxidation of the imine linkages.77 (vii) Olefinic linkages
that are formed by the cross-coupling reaction between two
alkenes with a base or transition metal catalyst, or by the aldol
condensation of an aldehyde with an activated methyl group
under a base.78 (viii) Ester linkages that are formed by the
esterification reaction between an alcohol and a carboxylic acid
with an acid catalyst, or by the condensation reaction between an
alcohol and a reactive acid derivative, such as an acid chloride or
anhydride.79,80

COF networks are constructed through the covalent bonding
of molecular monomers that possess symmetrically distributed
functional groups as reactive sites. These functional groups
facilitate the formation of various covalent linkages between
the monomers. Based on the reported types of covalent linkages
(such as imine, boroxine anhydride, boroxine ester, boro-silicate,
triazine, hydrazone, aminal), functional groups (such as –CHO,
–NH2, –OH, –CONHNH2, –CN, –COCl, –NH–, –Cl, –(CO)2O,
–COCl, –C5H5N), and point symmetries of the monomers (such
as C2, C3, C4, Td, Dnh), a multi-element construction diagram of
COF network topologies can be generated using the design
principles of reticular chemistry. This figure, as shown in
Fig. 2, provides direct guidance for the chemical synthesis of
COF networks with desired underlying topologies through the
corresponding chemical reactions between functional groups.

Integrating the symmetry and connectivity of monomers,
common types of covalent linkages as well as the network
topologies of the target COFs, a full construction diagram of
COFs based on the concept of reticular chemistry can be
generated as clearly illustrated in Fig. 2. Specifically, the 1D
COFs for 2,2,4C3 topology can be constructed by covalent

linkages in the [C2 + C2] (Fig. 1c), possibly through either imine,
triazine, aminal or boroxine anhydride linkages as in Fig. 2.1,81–83

These 1D COFs possess a high degree of freedom in molecular
packing, and act as candidates to construct non-centrosymmetric
crystals.84 Meanwhile, the 1D COFs may further act as basic units
to construct 2D COFs through the formation of interchain
covalent linkages.84,85 2D COFs can also be constructed based
on the topology diagrams with molecular monomers dictated by
C2, C3, C4 and C6 symmetries. For example, hexagonal 2D COFs
for hcb topology can be created in either [C3 + C2],86 [C2 + C2 + C2]
or [C3 + C3] manner with different pore sizes and p-orderings.87,88

These networks are constructed based on covalent linkages
including imine linkages between 1,1,2,2-tetrakis(4-amino-
phenyl)ethene (ETTA) and 1,3,5-triformylbenzene (TFB), and
b-ketoenamine linkages between 1,3,5-tris(40-aminophenyl)-
benzene (TAPB) and 1,3,5-triformylphloroglucinol (TFP)
monomers.83,89 Tetragonal 2D COFs for sql topology can be
created through the combinations of [C4 + C2] and [C4 + C4].90,91

Unlike 2D COFs, the involvement of stereoscopic nodes with
Td point symmetries has greatly diversified the monomer
combinations, thus enriching the networks for 3D COFs.22

The [Td + C3] and [Td + Td] diagrams can be used to create the
ctn or bor networks, characterized by non-interpenetrating
structures.41,92 These networks are constructed by covalent linkages
including imine and boroxine ester linkages between hexahydroxy-
triphenylene (HHTP) and tetra(4-dihydroxyborylphenyl)silane
(TBPS), tetra-(4-anilyl)methane (TAM) and tetra(4-formyl-
phenyl)silane (TFS).93 The dia network can be constructed by
the [Td + C2] diagram and belongs to the largest family of 3D
COFs.92 This network is constructed by covalent linkages includ-
ing imine linkages between pyromellitic dianhydride (PMDA)
and tetra(4-aminophenyl)methane (TAPM).94 Moreover, the srs
net is formed using the [Td + C3] diagram, with SiCOF-5 being an
example that attains a two-fold interpenetrated network.95 The
pts network can be constructed via the [Td + C2] and [Td + C4]
diagrams, characterized by a multi-fold interpenetrated
structure.96 Quite rarely, the [C2 + C3] diagram may also lead
to the formation of 3D COFs with the underlying topology of
ffc.27 Additionally, the involvement of high-valency stereoscopic
nodes in the construction of 3D COFs may further lead to an
outburst of new 3D COF topologies. By integrating 6-connected
stereoscopic nodes, the stp, ceq, and hea networks can be
constructed through the [D3h + C4], [D3h + C3], and [D3h + Td]
combinations respectively, including imine linkages between
2,3,6,7,14,15-hexakis(40-formylphenyl)triptycene (HFPTP) and
1,3,6,8-tetrakis(4-aminophenyl)pyrene (TAPPy),97 imine linkages
between HFPTP and 1,3,5-tris(4-aminophenyl)triazine (TAPT),98

as well as imine linkages between HFPTP and tetrakis(4-amino
biphenyl)methane (TABPM).97,99–102 More recently, by introdu-
cing a new type of high-valency quadrangular prism (D4h)
stereoscopic node with a connectivity of eight, a two-fold inter-
penetrating 3D COF network with bcu topology can be derived.22

Moreover, the tty network can be readily constructed via the
[D4h + C4] combination, including imine linkages between ((3,6-
difluorobenzene-1,2,4,5-tetrayl)tetrakis(azanetriyl))octakis([1,10-
biphenyl]-4-carbaldehyde) (FBTA-8CHO) and TAPPy (Fig. 1c).54
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The comprehensive topological information for COF structures
spanning 1D to 3D spaces is encoded in the RCSR database,
which provides important guidance for both the deconstruction
and topological analysis of existing COF networks as well as the
construction and structural prediction of unknown networks.58

The porosities of a COF with a given topology are well
tunable through embeddings from the following perspective:
(i) the pore size modulation of COFs can be achieved by
manipulating the molecular size or chain length of the organic
molecular monomers. Tri(4-formacylphenoxy)-1,3,5-triazine
(TRIF) was subject to Schiff base condensation with different
types of amine building blocks towards the formation of
–CQN– bonds and construction of three different 2D COFs,
namely COF-SDU1, COF-SDU2 and COF-SDU3, by using TRIF as
a N-rich aldehyde building block, and p-phenylenediamine
(PA), hydrazine hydrate, and terephthalic dihydrazide (TPDH)
as amine building blocks with pore sizes of 37 Å, 31 Å, and 44 Å
respectively.47 (ii) Introducing augmented molecular nodes
further allows the creation of the multimodal pore structure
of COFs. For example, Yang et al. reported the synthesis of 2D
COFs by upgrading each node in the unimodal hcb net to
triangular augmented units towards the formation of the bimodal
hcb-a net. Specifically, two types of arylene-ethynylene macrocycles
(AEMs) are used as augmented units to replace the HHTP mono-
mer and create secondary micropores in addition to the 32 and
38 Å primary mesopores respectively (Fig. 1d).48 Similarly, McGrier
et al. reported the incorporation of two types of C3-symmetric and
p-conjugated dehydrobenzoannulenes (DBAs) as augmented
nodes with inherent pore sizes of 3.9 Å and 5.4 Å, respectively,
into the 2D COF networks that adopt hexagonal mesopores with a
size of 39 Å and 54 Å.103

Even with identical combinations of molecular monomers,
diverse types of interconnectivities of these monomers lead to
different topologies of COFs that attain distinct pore size and
shape. Based on three types of pre-synthesized metallosalphen-
based monomers, self-polycondensation of these M-Salphen
‘‘two-in-one’’ monomers under solvothermal conditions creates
the corresponding M-Salphen-COFs (M = Ni, Cu, Zn). Depend-
ing on the kind of interconnection, these K-type monomers have
yielded three distinct pore size distribution 2D COF topologies
in both theoretical design and practical synthesis (Fig. 1d).17 In
2020, Zhang et al. have shown that the topology of 2D COFs can
be regulated by switching their linkage conformations. This can
be achieved by introducing or eliminating intramolecular hydro-
gen bonding in the substituents of an identical molecular
monomer. Through this approach, two highly crystalline 2D
COFs with either kgm or monoclinic sql topology with different
porosities of 12 and 27 Å were synthesized.104

The local stacking order of 2D COFs also affects the porosity
design. Cui et al. have achieved synthetic control over the
stacking of layers and chemical stability of 2D COFs by imple-
menting a multivariate approach to manage interlayer steric
hindrance. Through the co-condensation of triamines with or
without alkyl substituents (ethyl and isopropyl) and a di- or tri-
aldehyde, 2D COFs were created, with AA, AB, or ABC stacking
order. The pore sizes in these 2D COFs are greatly influenced by

their stacking order, ranging from 10 to 8.1 Å based upon
diverse types of stacking order.105 The impact of network
interpenetration of COFs on their porosity lies in the redis-
tribution of pore size and pore volume. With the introduction
of a high-valency quadrangular prism (D4h) stereoscopic node
possessing a connectivity of eight, Peng et al. proposed two 3D
COFs with interpenetrating structures, namely ZJUT-2 and
ZJUT-3. This approach has been utilized to create two isoreti-
cular 3D imine-linked COFs, with pore sizes of 12 and 18 Å for
ZJUT-2 and 12 and 16 Å for ZJUT-3 respectively (Fig. 1d).22

Grafting diverse functional groups into COF networks as
active sites serves as an effective functionalization strategy,
endowing COF networks with enhanced performance in various
applications such as gas adsorption/separation, energy storage,
optoelectronics, and catalysis (as shown in Fig. 1e). For instance,
–NO2 groups increase the charge density and oxidizability of
COFs, thereby enhancing the host–guest interactions and gas
storage capacity.106–108 Similarly, –SH groups enhance the ther-
mal stability and reduce the electrical resistance of COFs, making
them well-suited for use in supercapacitors.109–112 Additionally,
–C6H4NH2 groups promote charge transfer and light absorption
in COFs, facilitating photoelectric conversion and photocatalytic
reactions.113,114 The –CONH2 group, when grafted into COF
networks, exhibits superior heavy metal uptake capacity in terms
of saturation adsorption (Fig. 1e).115–119 Another functionalization
strategy involves metal site docking to COF networks. In addition to
providing active sites, metal sites in COFs can significantly alter the
electronic structure, catalytic activity, chemical stability, and optical
properties. For example, positively charged metal cations have a
strong affinity for CO2 molecules, with Li+ sites in COFs attaining
the strongest binding energy with CO2 molecules. This enhances
CO2 adsorption capacity and selectivity towards improved CO2

capture and storage performance.120,121 The introduction of Fe sites
may increase the electrical conductivity of the network, thereby
enhancing the energy storage capacity of COFs.111,120,122 Metal sites
not only serve as adsorption sites but also integrate adsorption
ability into COF networks through charge transfer effects. For
instance, Cu sites in COF-506-Cu impart positive charges to organic
polymeric backbones, enabling the combination of adsorption and
anion exchange functionalities for the uptake of anionic dyes.123–125

The structural design of COFs holds immense significance,
as the interplay between structure and properties is intricately
intertwined, governed by the fundamental principle of the
‘‘structure–property relationship.’’ In pursuit of specific applica-
tions, it becomes imperative to elucidate the essential structural
features exclusively relevant to the desired functionality. This
knowledge serves as a guiding framework for the precise mole-
cular- or atomic-level design of COFs. When focusing on applica-
tions involving the catalytic conversion of small molecules, the
pore size and functional groups assume paramount importance
as key structural features. These features can be intentionally
manipulated through precise selection of molecular monomers,
strategic construction of covalent linkages, and deliberate mod-
ifications of functional groups. For example, 3D microporous
BF-COF-2 features a rectangular pore with dimensions of 7.7 �
10.5 Å2, enabling it to efficiently catalyze the conversion of
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benzaldehyde (with a molecular size of 6.1 � 8.7 Å2) into
2-benzylidenemalononitrile with a high conversion rate of 98%.
In contrast, for 4-phenylbenzaldehyde (with a molecular size of
6.1 � 13.3 Å2), the conversion rate is only 2–4%. This discrepancy
is attributed to the selective diffusion of molecules through the
channels of COFs, facilitated by the deliberate manipulation of
pore size and its distribution that dictate the mismatch between
molecular size and pore aperture.126 Moreover, the effects of
functional groups in COFs are also significant. Three isostruc-
tural COFs were synthesized by incorporating various functional
groups, namely 2,20-dimethoxyl-3,30,5,50-tetrakis(4-aminophenyl)-
biphenyl (OMe-TPBP)-COF (methoxy group), OMe-OH-TPBP-COF
(methoxy and hydroxy groups), and OH-TPBP-COF (hydroxyl
group). These tailored modifications of COFs were introduced
to create specific docking sites inside their micropores, which
entails great impact on the catalytic conversion of small mole-
cules. The reaction yields for the three types of COFs towards the
CO2 cycloaddition with epoxides were 91%, 89%, and 48%.127

On the other side, the metal site is usually regarded as an
essential structural feature when targeting gas adsorption
applications. The types and locations of metal sites anchored
onto the COF network are well tunable by either pre-SM or post-
SM approach from the bottom-up and peer-to-peer perspectives
(Fig. 1e). For instance, the introduction of Li metal sites by post-SM
into nanoporous COFs has yielded impressive results, enhancing
the CO2 adsorption capacity of COF-102 to 409 mg g�1 and that of
COF-105 to 344 mg g�1 under standard conditions (298 K and 1
bar).121 Similarly, the incorporation of Eu(III) into COOH-3D-COF
by post-SM has significantly improved its adsorption capabilities,
with an increased adsorption capacity of up to 211.4 mg g�1 for
9,10-phenanthrenequinone (PQ) and a notably higher PQ recovery
rate (B97% compared to B60% for metal-free COOH-3D-COF).128

For energy applications, such as supercapacitors, batteries,
fuel cells, and photo- and electro-catalysis, extended p-conjugation
of the COF network becomes an essential structural feature
because it is closely related with fast charge transport and collec-
tion properties required to couple with not only the fast migration
or insertion/extraction of metal ions during fast charging and
discharging processes but also rapid chemical reactions at active
sites. For example, Singh et al. harnessed the chemical stability
and extended p-conjugation of thiazole-linked COFs, enabling the
thiazole-linked COF electrode to undergo more than 5000 cycles in
Li-organic batteries.129 In addition, compared to imine- or
arylhydrazone-linked COFs, which exhibit relatively low stability
and poor p-delocalization, olefin-linked COFs demonstrate excel-
lent stability and photo-electrochemical performance.78

In most cases, the identification of crucial structural features
dictating the properties of COFs has heavily relied on experience
or scientific intuition. However, this approach proves to be
inefficient and time-consuming, as the underlying structure–
property relationship can only be revealed and validated after-
wards using more robust experimental or theoretical tools such
as QM/MM calculations. To overcome these limitations, emer-
ging techniques empowered by flourishing ML methods offer a
promising avenue as introduced in the following section. By
leveraging diverse ML-enhanced high throughput methods and

techniques, these structural features can be effectively utilized
as descriptors, enabling more accurate, efficient, and targeted
structural design and screening of high-performance COF mate-
rials tailored for specific applications.

2.3. Structural design enhanced by machine-learning

In addition to the design rationale of reticular chemistry for
COF networks, which is based on the symmetry and connectivity
of polytonic molecular monomers, there are pioneering works
that enable the screening and prediction of COF materials for
specific applications using ML methods.130–132 ML can be
defined as a branch of artificial intelligence (AI) that develops
algorithms and models capable of learning from data to make
predictions or decisions without being explicitly programmed.
At its core, ML relies on the analysis of large datasets to uncover
patterns, correlations, and underlying structures. By iteratively
adjusting model parameters based on training data, ML algo-
rithms optimize their predictive performance, allowing them to
generalize well to unseen data.

In the field of materials science, ML provides a versatile
toolbox for tackling the challenges of material discovery,
design, and characterization.133–136 By utilizing a variety of
algorithms, researchers can extract valuable insights from large
amounts of experimental and computational data. The devel-
opment of accurate predictive models can identify novel mate-
rials with desirable properties and accelerate the design and
optimization process. One of these is represented by the afore-
mentioned MGI, which was first proposed in 2011 and focuses
its research on developing high-throughput computational
tools and using ML to predict the properties and behaviors of
materials faster and more accurately to accelerate innovation in
advanced materials.137,138 MGI is a pioneering effort aimed at
expediting the development of advanced materials. By harnes-
sing the power of ML, MGI enables the extraction of valuable
insights from vast volumes of experimental and computational
data, thereby driving accelerated progress in materials research
and innovation. The development of accurate predictive models
can identify novel materials with desirable properties and
accelerate the design and optimization process.

The general research process of ML encompasses several key
steps, including data collection, preprocessing, selection of data
description methods, selection of ML models, model interpreta-
tion, and application. These steps collectively determine the
prediction accuracy, interpretability, and generalization ability
of the ML model as schematically illustrated in Fig. 3.139–141

(i) Data collection and preprocessing. The effectiveness of ML
heavily relies on the quality of data used for training. For research
focused on COFs, obtaining high-quality COF datasets is crucial
for achieving better training results. However, acquiring such
data can be challenging, and it may be necessary to perform
preprocessing steps such as data cleaning, normalization, and
feature engineering to ensure that the data are suitable for
effective ML model training. Specifically, data cleaning entails
identifying and rectifying inaccurate, incomplete, irrelevant,
duplicated, or improperly formatted data. Normalization comes
into play when the features of ML models have different ranges,
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and it involves scaling the dataset to ensure uniformity. On the
other hand, feature engineering is the process of leveraging
domain knowledge to restructure the data and create ‘‘features’’
that optimize ML algorithms.

(ii) Selection of data description methods. How COFs are
described is an important factor that influences the perfor-
mance of the ML models. In the process of ML, the descriptor
usually plays a crucial role in establishing a meaningful corre-
lation between the input and output data. This correlation is
necessary to ensure that the COF materials are accurately
described and that the resulting models can effectively deduce
their target topologies, geometries, and properties. The more
accurately and comprehensively the COFs are described, the
better the prediction effects can be achieved. In addition to the
cases of descriptors that can be calculated rapidly to determine
the properties of COFs, abstract material representation with-
out actual structural information may also be used through a
representation scheme considering essential constituents and
structural features of COF networks (i.e. molecular monomers
and topologies of COFs).

(iii) Selection of ML models. Selecting suitable ML algorithms
is essential for building high-performance models. Researchers
need to carefully consider various ML algorithms such as

decision trees (DT), random forests (RF), support vector machines
(SVM), or deep learning methods like deep neural networks,
depending on the specific objectives and characteristics of the
COF dataset. Furthermore, hyperparameter optimization is neces-
sary to fine-tune the models and achieve optimal performance.145

(iv) Model interpretation. Interpreting the ML models is
crucial for gaining insights into the structure–property relation-
ships of materials. Models with high interpretability can pro-
vide valuable information to researchers, helping them
understand the underlying factors and mechanisms that con-
tribute to the properties of COFs. Interpretation techniques
such as feature importance analysis (FIA), shapley additive
explanation (SHAP) values, or local interpretability methods
(LIM) can be employed to gain a deeper understanding of the
model’s decision-making process.

In summary, the performance and capabilities of an excel-
lent ML model are determined by the quality of training data,
suitable data description methods, and appropriate selection
of ML algorithms. In practical research and applications,
researchers need to consider these three aspects comprehen-
sively, make informed choices, and optimize accordingly
to obtain high-quality predictive results and a deeper under-
standing of the problem.

Fig. 3 The flowchart of ML enhanced structural design for COFs, which involves data collection and preprocessing, selection of data description
methods, and model interpretation and application. Modified with permission.141–144 Copyright 2021, 2022, 2022, 2019, American Chemical Society,
Royal Society of Chemistry.
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2.3.1. Data collection and preprocessing. In materials
chemistry research, data are an important yet challenging
resource, and the quality and suitability of data are crucial for
the success of ML. It is necessary to gather a significant amount
of data and property information on COFs and perform neces-
sary preprocessing tasks, such as data cleaning, noise removal,
and handling missing values and outliers. Data are frequently
encountered by researchers, but are also one of the most
difficult resources to access. Obtaining a complete and trust-
worthy set of experimental data typically requires extensive
experimental work and data curation, and there are greater
difficulties in openly sharing these data. Additionally, the
variability of experimental results among different research
groups often arises due to uncontrollable experimental variables,
making it difficult to establish convincing conclusions. These
challenges have resulted in slower progress in the development of
ML in the field of materials science compared to the field of
computer science.

Fortunately, despite these difficulties, a number of open-
source COFs databases have emerged to advance ML in the
materials domain. In 2018, Smit et al. first introduced an open-
source COF structure database called the hypothetical covalent
organic framework (hypoCOF), which has been updated to its
third edition as of today.146 A collection of 69 840 COFs gener-
ated in silico from 666 different organic linkers were presented,
forming both 2D layered and 3D configurations. The researchers
investigated the potential use of these frameworks for methane
storage by employing grand-canonical Monte Carlo (GCMC)
simulations to calculate their deliverable capacities (DCs).147

The genomic covalent organic framework (GCOF) is a database
that encompasses a library of genetic structural units (GSUs) and
a collection of COFs obtained through materials genomics
methods.27 The GSU library comprises 130 units categorized as
center, linker, and functional group, offering diverse geometries
and chemical compositions for building COFs. The GCOF data-
base contains a total of 471 990 structures, including 166 684
2D-COFs in various net topologies (e.g., hcb, sql, kgm) and
305 306 3D-COFs in different frameworks (e.g., srs, bor, ctn).
Researchers can leverage this database for high-throughput con-
struction of COFs and targeted synthesis, finding applications in
materials science and chemistry.

Both hypoCOFs and GCOFs are based on high-throughput
density functional theory (DFT) calculations, providing optimized
structures and computed properties. Currently, they represent
almost the only way to obtain large-scale COF property data. In
terms of data quantity, computational properties obtained
through quantum mechanics (QM) or molecular mechanics
(MM) calculations, under a unified methodology, are more
suitable for COF databases used in ML research compared to
experimental material data. However, the process of constructing
databases for COFs poses an inherent challenge. The feasibility of
the calculations used in theoretical computations heavily relies
on the methods and basis sets employed, but verifying every data
point experimentally is not always possible for material scientists.
Hence, it becomes essential to construct open-source databases
using COFs collected from the literature as well.

The CoRe COF database, introduced by Tong et al. in 2017,
has collected a total of 613 experimental COFs with solvent-free
and disorder-free structure files. This database has served as a
valuable resource for studying the structure–property relation-
ships of COFs, particularly for Kr/Ar, Xe/Kr, and Rn/Xe
separations.148 The database enables researchers to investigate
the performance and capabilities of COFs in gas separation
applications, specifically focusing on the aforementioned gas
pairs. By utilizing the CoRe COF database, researchers can gain
insights into the potential of COFs for gas separation processes
and advance their understanding of the underlying structure–
property relationships in COFs.

The CURATE database is designed to offer users access to
high-quality, refined data from experimental sources. Currently,
the database contains detailed information on 417 COFs, a
subset of which have undergone structure optimization using
DFT calculations.146 296 porous COFs were evaluated for carbon
capture and storage (CCS) through the simulation of CO2 and N2

isotherms.
While the COF databases discussed earlier provide experi-

mental data from the literature with higher feasibility and richer
information compared to theoretical calculations, a few hundred
data points are often insufficient to support large-scale ML
training. Moreover, experimental data from different sources
may involve complex environmental factors that make it challen-
ging to compare the data. Ideally, a high-throughput MGI plat-
form for COF material synthesis and characterization would
enable the feasible acquisition of a large volume of experimental
results under unified experimental conditions. However, a more
practical and realistic approach would be to explore strategies for
‘‘augmenting’’ the limited data further. To address the challenge
of data scarcity, several approaches can be considered.

(i) Data augmentation. Techniques such as data interpola-
tion, extrapolation, or generation of synthetic data can be
employed to increase the size of the existing dataset. This can
help to enhance the diversity and coverage of the data.149

(ii) Transfer learning. Knowledge and models trained on
related open-framework materials (e.g. zeolites or MOFs) or
larger datasets can be leveraged and transferred to COFs. This
approach can help to overcome data limitations by utilizing
pre-existing knowledge and models.149,150

(iii) Active learning. By intelligently selecting a subset of
samples for experimental characterization and validations based
on model predictions, researchers can iteratively update and
refine their models. This approach optimizes the use of limited
experimental resources.151

(iv) Collaboration and data sharing. Encouraging collabora-
tion among researchers and sharing of experimental data can
lead to the accumulation of a larger and more diverse dataset,
which can subsequently support more extensive ML studies.
While the ideal scenario of a high-throughput experimental
platform is desirable, these alternative approaches can help
expand and utilize the existing limited data to drive advance-
ments in COF research and enable more robust ML studies.

2.3.2. Selection of material descriptors. The choice of
descriptors to characterize COFs is crucial in ML research.
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Suitable descriptors can enhance model performance, increase
interpretability, and even advance the understanding of struc-
ture–property relationships in materials. Descriptors should meet
certain requirements.140,152,153 First of all, descriptors should
provide an accurate representation of the material without con-
flicting with existing knowledge about the material. They should
truthfully describe the material properties based on the available
understanding. In addition, descriptors should be unique, mean-
ing that each structure should correspond to a distinct set of
descriptors. This uniqueness ensures that each COF is repre-
sented uniquely and avoids redundancy in the descriptor space.
Also, descriptors should entail generalization across elements,
meaning they should be applicable to all target materials within
the research domain. They should capture common features and
trends across different COFs, enabling the study of diverse
materials. Furthermore, descriptors should be measurable or
calculable with acceptable cost. They should be based on mea-
surable quantities or computable properties of COFs, ensuring
practicality and feasibility in experimental or computational
settings. Ideally, descriptors should be continuous variables
rather than discrete variables, as continuous descriptors entail
a more detailed and nuanced representation of COF properties,
enabling fine-grained analysis and prediction.

Descriptors that satisfy the above characteristics are not
rare, and both structural information and some property infor-
mation of the material can be used as descriptors. In general,
from the perspective of the object being described, descriptors
can be categorized into material structure descriptors and
material property descriptors according to the recorded mate-
rial information, and environmental descriptors, i.e., descrip-
tors that do not describe the material itself, can also be added
in some special studies. In practice, a mixture of these types of
descriptors is often used to more fully characterize COFs. From
the perspective of descriptor forms, they can be divided into
geometric, topological, chemical, and energy-based descriptors.

(i) Geometric descriptors. These descriptors are fundamental
metrics that relate to the target properties of COFs, such as pore
size/volume, surface area, and density.

(ii) Topological descriptors. In addition to these basic metric
descriptions, topological descriptors provide a more comprehen-
sive representation of complex structural features of COFs. Topo-
logical data analysis (TDA) methods have been developed to
effectively describe and deduce topological information associated
with the intricate micropore environments in porous materials,
including micropore typology, morphology, and connectivity.157,158

(iii) Chemical descriptors. Chemical descriptors can be com-
piled concurrently with the aforementioned descriptors to
jointly consider both the compositional properties (e.g. atomic
number) and the physicochemical properties of COFs (e.g.
electronegativity, polarizability, ionization energy, dipole, quad-
rupole, and higher moments).

(iv) Energy-based descriptors. These descriptors enable the
direct representation of crucial interactions that are closely
linked to COF properties. For instance, the energy histogram of
the potential energy landscape upon grid sampling is widely
utilized to describe host–guest interactions between adsorbates

and porous materials, facilitating the successful prediction of
high-performance porous structures in gas adsorption and
separation applications.141

In 2020, Li et al. reported a study utilizing ML methods to
screen COFs for application in heating, cooling, and ice making.
They selected descriptors including largest cavity diameter (LCD),
accessible surface area (ASA), available pore volume (Va), helium
void fraction (VF), Henry’s law constant (KH), and adsorbent
density (r). Using a RF model, they successfully predicted various
high-performing COFs and MOFs for use in adsorption-driven
heat pumps (AHPs). Among these descriptors, KH describes the
solubility property of COFs, while the remaining descriptors,
such as LCD, ASA, Va, VF, and r, are structural descriptors that
capture various aspects of the material’s structure.156

In 2021, Kumar et al. reported a study on the synthesis of
COFs using sustainable solvents. In this study, they employed
ML approaches for the first time to predict the surface area of
COFs based on solvent and amine precursor descriptors. The
researchers constructed a dataset consisting of 43 measured
surface area data points and 2639 calculated descriptors. They
utilized partial least squares regression and principal compo-
nent analysis (PCA) to analyze the dataset and reduce the
dimensionality of the correlated features.

A study on predicting the adsorption capacity of COFs was
published by Yang et al. in 2021.142 The researchers selected a
set of descriptors, including LCD, ASA, Va, percent elemental
composition, and other structural or property descriptors, and
trained multiple ML models using these descriptors. Another study
conducted by Zhou et al. focused on using ML to design COFs for
efficient catalytic hydrogen evolution reaction (HER). The research-
ers used a set of 23 features, including the ionic radii, electronega-
tivity, electron affinity energy, and first ionization energy of the
metal, to describe the COFs. After applying the gradient boosting
regression (GBR) algorithm for feature selection, they identified 12
most important features for further analysis. The GBR model was
then trained on these calculated features to predict DG�O�DG�OH,
which represents the difference in free energy between adsorbed
oxygen and adsorbed hydroxyl species.159

2.3.3. Selection of ML models. Classical machine learning.
Classical machine learning (traditional ML) is based on statis-
tical principles, and the following briefly describes algorithms
commonly used for COF research.

(i) Decision tree (DT). A DT is a commonly used ML algorithm
for classification and regression problems. It constructs a tree by
selecting the best splitting criterion to partition the dataset into
different subsets. DTs are easy to understand and interpret, and
they can handle various types of data, while also being robust to
missing values and outliers. However, DTs are prone to overfitting,
especially with larger depths. Overfitting occurs when the model
performs well on the training set but poorly on unseen data.160,161

(ii) Random forest (RF). An RF or random decision forest
(RDF) is an ensemble learning method for classification,
regression and other tasks that operates by constructing a
multitude of DTs at the training time. Each DT is trained using
a random subset of the training data and a random subset of
the features. It repeats the process of building multiple
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independent DTs and obtains the final output through voting
or averaging of predictions, which reduces the overfitting of
datasets and improves the performance. RF can handle high-
dimensional and large-scale data, exhibits robustness against
missing values and outliers, and allows for the assessment of
feature importance.162 However, it has poor interpretability and
may not perform well with time series data that have temporal
dependencies.163

(iii) Support vector machine (SVM). SVM is an algorithm for
linear classification and regression in high-dimensional
spaces, and with the addition of a kernel function, it is possible
to carry out classification and regression tasks on nonlinearities.
SVM is a powerful classifier that possesses the ability to handle
nonlinear classification, robustness, and interpretability. However,
it comes with higher computational complexity for large datasets,
sensitivity to parameter selection, and requires additional hand-
ling for multi-class problems. In practical applications, it is
important to consider the advantages and disadvantages of SVM,
and perform appropriate parameter tuning and extensions based
on specific circumstances to achieve optimal performance.

(iv) Artificial neural networks (ANN). An ANN is an algorithm
that simulates the functioning of nerve cells in living organ-
isms, and which constructs artificial neurons into a neuronal
network according to certain relationships, and uses the algorithm
to simulate signaling between neurons. Theoretically, a suitable
ANN can fit any nonlinear function. An ANN can have multiple
hidden layers, allowing for the abstraction and representation of
input data through sequential computation and information
propagation.164 It possesses powerful learning capabilities, adapt-
ability, and parallel processing capabilities. However, it requires a
large amount of training data and computational resources, as
well as careful structural design and parameter tuning.

(v) Boosting. In ML, boosting is an ensemble meta-algorithm
for primarily reducing bias, and also variance in supervised
learning, and it is a family of ML algorithms that convert weak
learners to strong ones. Boosting is a powerful ensemble
learning algorithm that enhances predictive performance and
robustness, while offering flexibility and feature selection cap-
ability. However, it is sensitive to noise, requires longer training
time, and necessitates careful parameter tuning. When apply-
ing the Boosting algorithm, it is important to consider its
strengths and weaknesses, and make appropriate adjustments
and optimizations based on specific circumstances.

(vi) Partial least squares (PLS). PLS regression is a statistical
method that bears some relationship to principal components
regression (PCR); instead of finding hyperplanes of maximum
variance between the response and independent variables, it
finds a linear regression model by projecting the predicted
variables and the observable variables to a new space. Because
both the X and Y data are projected to new spaces, the PLS
family of methods are known as bilinear factor models.

Deep learning. Deep learning is a ML algorithm based on
multi-layer ANNs that are able to analyze complex patterns and
relationships in data, and it is inspired by the structure and
function of the human brain and turns out to be the most
promising and efficient ML research method.

(i) Graphical neural network (GNN). GNNs are neural networks
that can efficiently extract information from graph structures, in
which the convolutional layer is able to extract the potential
information in the graph structure, which is widely used in the
direction of computer vision. The strength of a GNN lies in its
ability to effectively handle unstructured graph data and per-
form complex reasoning and learning based on node and edge
relationships.165 It can capture local structural patterns and
global topological features among nodes, enabling more precise
graph analysis and prediction.166 However, for large-scale graph
data, the GNN exhibits high computational complexity, necessi-
tating considerations for algorithm optimization and computa-
tional resources.

(ii) Transformer. The transformer model is a deep learning
model based on the attention mechanism,167 which is com-
monly used in natural language processing tasks such as
semantic recognition and translation. In recent years, the
transformer model has emerged as a high-performance model
such as for bidirectional encoder representations from trans-
formers (BERT) and Graphormer after development.168,169

(iii) Generative deep learning model. Generative modeling is a
ML model used to generate new samples similar to training
data or to generate new data. The goal of a generative model is
to learn the probability distribution of the data and generate
new data points by sampling from that distribution. Common
generative models are variational auto-encoder (VAE), genera-
tive adversarial network (GAN), and generative pre-trained
transformer (GPT).

Practically, these deep learning ML models have enabled the
efficient exploration of high-performance gas adsorption por-
ous materials.170–173 As the state-of-the-art ML model, deep
learning achieves excellent prediction results while reading
only the structural information of the material as much as
possible, which further reduces the computational cost for the
material design. Notably, a deep learning based GNN modelling
platform for materials chemistry has been well established
recently,174 which would greatly facilitate the development of
application-oriented high-performance COF materials in the
near future. The characteristics, advantages and disadvantages
of the ML model mentioned above as well as the problems to be
paid attention to when applying in the field of COFs are listed
in Fig. 5.

Up to now, most studies that deploy ML algorithms for the
structural design of open-framework materials are supervised,
which involves training a ML model using labeled data. In con-
trast, allowing ML input–output pairs to autonomously cluster
materials and search common characteristics among materials in
a high-dimensional material space from different perspectives can
help researchers understand their conformational relationships
from a new perspective. While unsupervised ML studies have been
applied in organic chemistry, particularly with pharmaceutical
small molecules, this approach remains relatively uncommon in
the field of COF structural design.175–177

In addition, the rapid development of generative modeling
has enabled the computational design of novel compliant
materials for COFs, which already has a rich application in
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organic chemistry and is emerging in the materials field.178,179

The available generative models, such as VAE, GAN, GPT, etc.,
already have sufficient capability to learn the structure and
nature features and generate the corresponding new COF
structures according to the desired properties or applications.
However, it is worth noting that the application of these models
requires large amounts of data and high computational power,
as well as validation and experimental verification of the model
results to ensure their accuracy and reliability.

2.3.4. Applications. ML algorithms have proven to be
highly effective in the high-throughput discovery of new COF
structures designed for high-performance applications. By utilizing
the vast amount of existing data on discovered COF topologies,
experimentally synthesized structures, and their associated perfor-
mance data in various applications, the rational structural design
of new COFs can be significantly enhanced with the integration of
ML methods. For instance, Zhong et al. have proposed GSUs with
reactive sites for gene partition of COFs, and developed a con-
struction method called quasi-reactive assembly algorithms
(QReaxAA) that mimics COFs’ natural growth processes for struc-
ture generation (Fig. 4a). This genomic COF construction method

efficiently generates new COF structures, facilitating high-
throughput computational material design and experimental
synthesis of structures with unreported topologies. The targeted
synthesis of two 3D-COFs and two 2D-COFs demonstrates the
applicability and reliability of the proposed methods, which not
only provide tools for high-throughput material construction but
also contribute to a greener and more efficient material develop-
ment paradigm.27

Another important application of ML in materials science is
the screening of high-performance structures and topologies
for various applications. By training ML models based on vast
amounts of properties or performance data, researchers can
predict the properties or performance of millions of hypothe-
tical structures for effective material screening, among which
optimal ones can be further experimentally synthesized and
tested to validate their properties and performance. For exam-
ple, Cao et al. combined ML and molecular simulation to
design optimal COFs for reversed C2H6/C2H4 separation before
experimental resources are devoted (Fig. 4b).143 The results of
this work can provide molecular-level insights for the structural
design and synthesis of new COFs that can directly eliminate

Fig. 4 (a) High-throughput topology design and construction of COFs achieved using materials genomics methods. Modified with permission.27

Copyright 2018, Springer Nature. (b) Combining ML and molecular simulations for screening optimal COF structures tailored for gas separation
applications. Modified with permission.143 Copyright 2022, American Chemical Society. (c) Using high-throughput molecular simulations to calculate the
gas storage and deliverable capacities of COFs. Modified with permission.154 Copyright 2021, Elsevier. (d) ML aided computational screening of COFs to
identify superior COF structures for gas capture. Modified with permission.155 Copyright 2022, American Chemical Society. (e) High-performance COFs
for heating, cooling and ice-making were identified through high-throughput computational screening based on large classical Monte Carlo simulations
in ML. Modified with permission.156 Copyright 2020, American Chemical Society. (f) Enabling intelligent ML: automated feature engineering, pipeline
matching, parameter tuning, and model selection for building accurate ML prediction models. Modified with permission.142 Copyright 2021, American
Chemical Society.
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low concentrations of ethane from C2H4/C2H6 mixtures. Zhang
et al. began with high-throughput molecular simulations to
calculate the methane storage (6.5 MPa) and deliverable
(6.5–0.58 MPa) capacities of 404 460 COFs at 298 K. The
complete dataset with 23 features was then randomly divided
into a training set and a test set in the ratio of 20 : 80 for
evaluating the predictive capabilities of several ML algorithms.
The transportable capacities of the best COF structures were
found to be superior to those of various adsorbents reported so
far (Fig. 4c).154 Yang et al. conducted computational screening
on 516 experimental COFs to identify the superior SBUs for wet
flue gas separation by ML (Fig. 4d).155 ML also plays a critical
role in screening high-performance COF-based catalysts and
other functional materials. By training ML models on large
datasets of known catalysts, researchers can predict the proper-
ties of hypothetical catalysts and identify those with desirable
properties for specific chemical reactions. For example, Deng
et al. utilized a combination of comprehensive DFT calculations
and ML techniques to systematically investigate the OER
activity of a range of simplified model catalysts. Interestingly,
their findings revealed that certain Fe–N3O and Co–N2O2 model
catalysts, which had not been previously explored experimen-
tally, exhibited superior catalytic performance for OER. On the
other side, Li et al. reported an approach to identify the high-
performing structures of COFs for heating, cooling, and ice-
making by high-throughput computational screening based on
GCMC simulations and ML (Fig. 4e).156

Traditional ML models have been successfully used to
predict essential synthetic descriptors from high-throughput
ones that impact the structure and properties of target materials,
providing guidance for the design of COFs. For example, the PLS
ML model was used to explore green, sustainable solvents for
COF synthesis. The first step was to predict the specific surface
area of COFs using ML. Then, 43 COFs were synthesized in
different green solvent environments, and their specific surface
areas were measured. High-throughput theoretical calculations
were used to obtain 2639 descriptors for ML training. After
performing PCA and PLS regression, a trained ML model was
obtained with an R2 value of 0.83.144 Additionally, a binary classifi-
cation model was used to predict whether COFs are crystalline or
amorphous, achieving a classification accuracy of 0.87. Feature
analysis revealed that descriptors related to the solvent and amine
precursor were the most important in predicting these two features.
These results are significant in understanding the effect of solvent
on COF performance and advancing the use of green solvents in
COF synthesis. Generally, instead of the very labor-intensive and
time-consuming trail-and-error material design and screening pro-
cesses based on experimental validations or conventional computa-
tional algorithms, ML models allow the highly accurate and cost-
effective application-oriented screening of COF materials. However,
building robust prediction models is critical to analyze the test
datasets. The selection of appropriate model architecture, training
process, regularization method, and hyperparameters would have
significant impact on the final performance of the ML algorithm,
which is quite difficult and requires advanced data processing and
analysis skills.139

Recently, automated machine learning (Auto ML) that effec-
tively integrates the data preprocessing, feature engineering, algo-
rithm selection, and model parameter optimization steps has
become a research hotspot.180 It allows the automated selection
of best combination of model parameters, which thus entails
automatic feature engineering, pipeline matching, parameter
adjustment, and model selection towards the construction of an
accurate ML prediction model.142 In this sense, Auto ML signifi-
cantly facilitates the application of ML and outperforms traditional
ML algorithms. Yang et al. used Auto ML to analyze the working
capacity of CH4 based on 403 959 COFs. They found that the tree-
based pipeline optimization tool not only eliminates complex data
preprocessing and model parameter tuning but also outperforms
traditional maximum likelihood models. Auto ML provides an
extremely time efficient approach for screening COFs compared
with traditional GCMC simulations (Fig. 4f).142

2.4. Challenges and opportunities

The relationship between the key characteristics of COFs and
their specific application performance is crucial for the design
and utilization of COF materials. The pore structure of COFs,
including pore size, pore volume, and pore distribution,
directly influences their performance in applications such as
gas adsorption, separation, and energy storage.181 Surface area
has a direct impact on gas adsorption, catalytic reactions, and
electrochemical properties. Additionally, chemical functional
groups can be adjusted to tailor the affinity of COFs for specific

Fig. 5 A comparison of diverse machine learning models, addressing their
advantages, disadvantages, and issues for application in the field of
COFs.142–144,151–154
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applications such as gas adsorption, catalytic reactions, or
molecular recognition. The electronic structure of COFs affects
their conductivity, light absorption, and electrochemical per-
formance, which are critical for applications like photovoltaics,
photocatalysis, and electrochemistry.182 Furthermore, the ther-
mal stability and environmental adaptability of COFs play a
crucial role in applications under high-temperature conditions
or in diverse humidity and atmospheric environments. The
design of COFs has undergone significant advances, particularly
from the aspects of topologies, porosities, and functionalities.
However, the constantly evolving requirements for application-
oriented COF synthesis pose major challenges in transforming
the structural design approach towards more targeted, compre-
hensive, and accurate construction of COF networks. These
challenges can be broadly classified into three aspects.

First, the current structural design approach for COFs, based
on reticular chemistry and topological science, has limitations in
scenarios involving geometry-mismatched or sub-stoichiometric
construction of COF networks. Classical reticular chemistry
theory predicts the COF network construction based on the
hypothesis of geometry-matched and stoichiometric covalent
linkage formation between the symmetrically distributed reactive
sites of molecular monomers (Fig. 6a).183 However, insufficient
(sub-stoichiometric) interconnections during the construction of
COF networks give rise to exposed dangling reaction sites,
thereby violating the predictions of classical reticular chemistry
theory and causing a significant surge in structural diversity and
complexity. Accordingly, the structural design and prediction of
COFs confront major obstacles in scenarios associated with sub-
stoichiometric or defective COF networks. In 2019, COF-340 was
reported as the first crystalline, porous COF with a defective tth
topology, demonstrating the need for more flexible and innova-
tive methods to design and predict new topologies and properties
of sub-stoichiometric or defective COF networks.184 Similarly, V.
Lotsch demonstrated the unexpected formation of imine-linked
[C4 + C3] sub-stoichiometric 2D COFs with a unique bex topology
through the combination of tri- and tetratopic linkers.185 The
discovery of sub-stoichiometric 2D COFs has greatly enriched the
2D COF repertoire and diversified the 2D topologies that have
been long restricted to hcb, sql, hxl, kgm and kgd.52

In addition, the ML based structural design of COFs faces
major challenges as well as opportunities in rationally designing
high-performance COF materials, including data collection and
management, design bias, and featurization of material properties.

(i) Data collection and management. Experimental metadata
include both instrumental and non-instrumental data as well
as data of successful and failed experiments, all of which can be
used to train and validate ML models, depending on the specific
problem being addressed and the type of data available. Collec-
tion of complete experimental data is challenging and extremely
time-consuming, and there is lack of a fully integrated solution to
experimental data collection and an ecosystem with standards for
data management. An electronic lab notebook provides a
solution to the non-instrumental data collection, which gathers
protocols, post-processing scripts, and measurement parameters,
either successful or failed ones, with minimal effort from

researchers.186,187 However, the major challenge of experimental
data collection is to enable real-time instrumental data collection
and to publish all data in a standard format.

(ii) Design bias. Quantifying the uncertainty of ML models in
predicting new systems is challenging and costly,188,189 as these
models do not rely on physical laws. In the field of chemistry,
methods such as measuring the distance of new samples to
training data or using ensemble models have been proposed
to quantify uncertainty.190 Nevertheless, further research is
needed to develop more reliable and cost-effective methods
and provide guidance on selecting the appropriate method.
Additionally, optimizing ML models based on a single perfor-
mance metric can limit the discovery of new materials if the
metric does not represent the actual application.

(iii) Featurization of material properties. Developing effective
featurization schemes for describing material features, such as
general purpose featurization methods including composition,
simplified molecular-input line-entry system (SMILES) strings
and Coulomb matrices,199 to predict target properties is a
crucial step for ML. Challenges remain in generating featuriza-
tion schemes for crystalline porous materials like COFs by
considering both the representation of organic molecular
monomers and periodicity/symmetry of the crystalline frame-
work. In addition, material properties that require tensorial
representations200 (e.g. stiffness, heat conduction and suscepti-
bility tensors used for predicting mechanical, heat transport and
magnetic/electronic properties) as well as subtle features asso-
ciated with structural dynamics and framework flexibilities of
COFs cannot be easily parameterized and implemented in ML.

Furthermore, the unambiguous validation of structural
design and prediction of COFs remains challenging, especially
for those with poor crystallinity or local structural features like
defects, interfaces, stacking order, and entanglement.183,201,202

Traditional guidelines for the structural identification of other
highly crystalline open-framework materials (e.g. MOFs and
zeolites) may not be suitable for COFs that are usually subject
to poor crystallinity due to the strong covalent linkages.203 The
restricted coherent lengths of crystalline domains in COF materi-
als pose a significant challenge to probe their atomistic structures
by traditional crystallographic approaches. Moreover, the crystal-
lization process of COFs gives rise to diverse types of local
structural features, such as stacking order, interface, defects,
and entanglement. These structures may emerge as a result of
critical events such as mis-attachment,204 mis-stacking,105,205

intergrowth,206 and network interpenetration.22,207 The formation
of these local structures during COF crystallization can be attributed
to the interplay between the thermodynamic and kinetic aspects of
the crystallization process,203,208 which usually have critical impact
on the physicochemical properties of COFs and thus dramatically
determine their performance in diverse applications. Thorough
validation of COF structural design necessitates explicit and com-
prehensive elucidation of both periodic and local atomistic struc-
tures as well as their dynamics (Fig. 6a–e).183,191–194 However, this
task remains arduous and demands advanced multiscale structural
characterization tools and methodologies, potentially incorporating
advanced diffraction and imaging characterization techniques. In
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the following section, advanced diffraction and imaging techniques
dedicated to the multiscale structural elucidation of COFs, including
X-ray and 3D electron diffraction, SPM as well as low-dose EM, are
introduced (Fig. 6f–i).195–198

3. Structural determination by diffraction
3.1. Basic principles

The impact and role of diffraction in the structural elucidation
of COFs can be summarized into three aspects. Firstly, diffrac-
tion can be used to determine the structure, lattice constant,

and pore size of COFs. Secondly, it can be employed to check
the synthesis of COFs, ensuring their purity and absence of
impurities. Lastly, diffraction is beneficial to optimize the
properties and performance of COFs by modifying their struc-
ture, such as gas adsorption and catalytic reaction. Overall,
diffraction is an indispensable tool for investigating the struc-
tures and properties of COFs. Different diffraction techniques,
including single crystal X-ray diffraction, powder X-ray diffrac-
tion, and electron diffraction, can be employed to determine
the structures of COFs depending on the nature of the sample
and the required level of structural information.

Fig. 6 (a)–(e) The essential challenges and requirements in the structural elucidation of COFs for identifying topology, stacking order, entanglement,
dynamics and defects. (a)–(e)183,191–194 Reproduced with permission. Copyright 2022, 2020, 2021, 2019, 2020, Springer Nature, Wiley-VCH. (f)–(i) The
opportunities that arise from the development of advanced structural elucidation techniques such as X-ray diffraction, 3D electron diffraction, scanning
probe microscopy and low-dose electron microscopy. (f)–(i)195–198 Reproduced with permission. Copyright 2013, 2021, 2017, 2023, Royal Society of
Chemistry, Elsevier, American Association for the Advancement of Science.
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When the incident beam and crystalline sample satisfy the
following Bragg’s law (eqn (I)), the constructive interference will
occur and diffracted beams containing the structural informa-
tion from the sample of interest will be recorded by detectors,
producing diffracted spots or diffracted spectrum (Fig. 7a).209–

211

2d sin y = nl (I)

where d is interplanar spacing, y is the diffraction angle, n is an
integer standing for the order of reflection, and l is the
wavelength of incident beam.212

The intensity of each Miller index hkl is proportional to the
square of its structure factor amplitude (|Fhkl|). Unfortunately,
its structure factor phase (ahkl) is lost during the diffraction;
however, it can be retrieved by using strong reflections in
reciprocal space through a series of algorithms.213,214 It is
called the ‘‘phase problem’’, which has been considered as a
challenging topic in crystallography. If ahkl of each Miller index
is known, electron density or electrostatic potential density in
real space can be calculated based on the following equation:

rxyz ¼
1

V

X
hkl

Fhklj j cos 2p hxþ kyþ lzð Þ � ahkl½ � (II)

where rxyz is the electron density for X-rays or the electrostatic
potential density for electrons at (x, y, z).215

Thus, retrieving ahkl is the crucial step to obtain the electron
densities (or electrostatic potential densities) that correspond
with atomic positions. As shown in Fig. 7b, structure determi-
nation using diffraction methods (diffracted spots and

diffracted spectrum) can generally be divided into six steps:
(1) determine the unit cell parameters, crystal system, and Laue
group; (2) index the diffracted spots or diffracted peaks; (3)
extract intensities of hkl; (4) determine the space group based
on the reflection conditions; (5) retrieve structure factor phases
by using phasing algorithms such as direct method, Patterson
methods, and charge-flipping algorithm. The initial structural
model could be obtained after solving the phase problem. (6)
Perform structure refinement to obtain all atomic coordinates,
occupancy of atoms, atomic displacement parameters, host–
guest interactions, etc.

3.2. Single crystal X-ray diffraction (SCXRD)

Among all diffraction methods for structure determination,
SCXRD is the most mature technology, which is widely used
in the structure determination of crystalline samples. In the
successful structural analysis, processing of the single crystal
selected for data collection is one of the key steps. The SCXRD
technique has the strict requirement of crystal size which
should be larger than 20 mm at least. However, a larger crystal
size doesn’t necessarily lead to superior data quality. The
optimized crystal size depends on the crystal’s diffraction
capability and degree of absorption, the intensity of the
selected radiation, and the sensitivity of the diffractometer’s
detector. The crystal’s diffraction capability and absorption
degree are determined by the type and quantity of elements it
contains. Meanwhile, the intensity of the X-ray and the detec-
tor’s sensitivity are both contingent upon the configuration of
the diffractometer. It is generally observed that crystals
composed predominantly of heavier atomic constituents neces-
sitate smaller dimensions, whereas those comprising lighter
atomic elements benefit from a larger size for optimal diffrac-
tion results.217 For COF materials, the formation of bonds
between the building blocks is irreversible. This will lead to
the presence of many defects and rapid termination of crystal
growth, resulting in the formation of nanocrystals. Therefore,
there are few studies on structural investigations of COFs by
utilizing SCXRD due to the small crystal size of COFs.93,218,219

One of the key factors to synthesize single crystals is slowing
down the crystallization rate and permitting the self-correction
of defects during the growth of COFs. In 2018, Yaghi et al.
reported a method for growing large single crystals of 3D imine-
based COFs by introducing a large excess of anilines as mod-
ulators. Large crystals of COF-300, COF-303, LZU-79, and LZU-
11 were synthesized by this synthetic approach and their
structural features such as the degree of interpenetration, the
arrangement of guest species, and reversed imine connectivity
were investigated by SCXRD. For instance, the structural trans-
formation of COF-300 in the hydrating process was explored by
SCXRD. It turned out that water clusters are identified, and
guest waters also interact with the imine functional group in
the COF-300 framework, resulting in its framework shrinkage
(Fig. 8a, b and 11d). It is also worth noting that COF-300 and
COF-303 have almost identical structures except for the con-
nectivity of imine and such fine structural features can also be
detected by SCXRD (Fig. 8c–e).93

Fig. 7 (a) Single crystal X-ray diffracted spots (upper), powder X-ray
diffraction spectrum (middle), and 3D electron diffraction data (bottom).
(a)209–211 Reproduced with permission. Copyright 2020, 2019, 2022 John
Wiley and Sons, American Chemical Society. (b) Schematic illustration of
structure determination using diffraction information.
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3.3. Powder X-ray diffraction

As mentioned before, most COFs are prone to crystallize in
nanosize. Thus, powder X-ray diffraction (PXRD) is the most
commonly used method for structural characterization of
COFs. Specimen preparation for PXRD is simpler than that
for SCXRD. However, a true PXRD pattern requires a specimen
with numerous particles showing diverse orientations. Essen-
tially, particles must have a random distribution of crystal-
lographic orientations relative to each other. Spinning the
specimen continuously during data collection is an effective
method to enhance the number of particles in the irradiated
volume and ensure their random orientations. However, the
intrinsic overlap of diffracted peaks makes it more challenging
for structure determination using PXRD data. Besides the
aforementioned ‘‘phase problem’’, addressing the overlapped
intensities is another significant issue in PXRD structure deter-
mination. Typically, two approaches are employed for this
problem: (i) discard the reflections with completely or nearly
overlapped peaks and (ii) distribute the total intensity of the
overlapped peaks equally among the individual reflections. The
former approach is most effective with the utilization of direct
methods, while the latter proves to be favorable in the imple-
mentation of Patterson methods.220

Due to large unit cell parameters and low crystallinity of
COFs, PXRD is usually used to check whether the manually
built structural models are correct or not through Le Bail fitting
or Pawley refinement.221–225 There are a few reports regarding
COF structures solved by PXRD.202 For example, COF-432
reported by Yaghi’s group was partially solved by PXRD due
to its high crystallinity. The unit cell parameters, space group,
and even electron density map of fragments of ETTA were
deduced from PXRD data (Fig. 9a).216 The complete initial
structural model was finalized by manually linking ETTA frag-
ments with TFB building blocks.216 Meanwhile, PXRD data are
utilized not only for determining the stacking sequences of
COFs (Fig. 11a),216 but also for monitoring structural transfor-
mation in their stacking sequences (Fig. 11b).226,227 For
instance, Zhao et al. revealed the solvent-induced structural
transformation of 2D COFs based on the PXRD data and
computational modeling. In the dry form, 2D COFs experience
AA-stacking structures. After adding solvent, the PXRD patterns
of 2D COFs change and different quasi-AB-stacking structures
were obtained (Fig. 11b).227 Moreover, guest-dependent
dynamics of COFs can also be revealed by Rietveld refinements
against PXRD data if pure phase COFs have high crystallinity
and uniform morphologies. For instance, COF-300 reported in
2009 shows a step and hysteresis gas adsorption behavior.81

However, this dynamic structural feature was totally uncovered
until 2019.202 Zhang and Zhou et al. found, based on PXRD,
that COF-300 adopts a contracted structure in a moist atmo-
sphere. Interestingly, COF-300 shows a large amplitude expan-
sion when exposed to organic solvents such as tetrahydrofuran
(THF) and this structure change is reversible (Fig. 9b). This
expansion is attributed to the deformation of the tetrahedral
building block, the displacement between frameworks, and the
conformation changes of the imine bonds.

3.4. 3D electron diffraction

In 1924, De Broglie proposed that electrons should possess the
wave–particle duality, which was proved by Davisson and
Thomson in 1927 through diffraction experiments between
electrons and metal.228,229 On the one hand, compared with
X-rays, electrons with the wave nature have shorter wavelength

Fig. 8 Crystal structure of (a) COF-300 and (b) hydrated COF-300. (c)
COF-300 produced by TAM and BDA. (d) COF-303 produced by TFM and
PDA. (e) Comparison of COF-300 (blue) and COF-303 (yellow). (a)–(e)93

Reproduced with permission. Copyright 2018, American Association for
the Advancement of Science.

Fig. 9 (a) Le Bail fitting (left) and electron density map (right) of COF-432. Reproduced with permission.216 Copyright 2020, American Chemical Society.
(b) Structural dynamics of COF-303 in the presence/absence of THF guest species. Reproduced with permission.202 Copyright 2019, American Chemical
Society.
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and much stronger interactions with matter. Thus, electron
diffraction (ED) can investigate single crystals down to nan-
ometers. On the other hand, electrons are negatively charged
particles and they can not only interact with outer electrons but
also with the nucleus of atoms. Thus, ED of samples is
associated with their distribution of electrostatic potentials.
Recently, a series of 3D ED techniques such as electron diffrac-
tion tomography (EDT), rotation electron diffraction (RED),
microcrystal electron diffraction (MicroED), serial electron
diffraction (SerialED) and precession-assisted electron diffrac-
tion tomography (PEDT) have emerged for determining the
crystallographic structures of novel functional materials and
biomacromolecules that crystallize in nanosize.230–239 For
example, Zou et al. proposed a method called RED for auto-
matic collection of 3D ED in 2009, which combines the goni-
ometer tilt and beam tilt. Unit cell parameters, space group,
and even atomic coordinates can be obtained based on 3D ED
data.239 Recently, the continuous RED (cRED) technique, an
updated version of RED, has been developed and the quality of
3D ED data collected by cRED has been greatly improved.
Moreover, in order to decrease the beam damage, a cryogenic
sample holder or cryo-TEM combined with 3D ED techniques
was employed.233

Since most COFs crystallize in nano-size with low crystal-
linity, 3D ED techniques are combined with other characteriza-
tion techniques to elucidate their structures. For instance, Ma
et al. deduced the unit cell parameters and possible space
groups of COF-505 from its 3D EDT data. Combined with the
information of PXRD, HRTEM, and chemical composition, a 3D
structural model of COF-505 was built.43 In another study, Liu
et al. utilized 3D EDT and PXRD data to construct 3D structures
of COF-506-Cu. They further investigated the demetallized form
of COF-506-Cu, known as COF-506, and discovered its ability to
accommodate guest molecules larger than the pores of COF-
506-Cu, demonstrating the adaptive dynamics of COF-506
(Fig. 11c).123 If the crystallinity of COFs is higher, partial or
total structural models can be obtained using 3D ED techni-
ques. Zou et al. reported that the initial building block arrange-
ment of COF-320 could be found from RED data collected at
89 K using FOX software (Fig. 10a and b) and only central
carbon atoms of building blocks could be located from RED
data collected at 298 K.240 Even more remarkably, Wang et al.
utilized the cRED technique to uncover the intricate seven-fold
interpenetrated pts structure of 3D-TPE-COF, which has
potential applications in producing white light-emitting diodes
(Fig. 11e).241 In addition to the structure of COFs composed of
rigid building blocks, the atomic structure of FCOF-5, which
contains flexible C–O single bonds, was determined by combin-
ing cRED and PXRD techniques (Fig. 11f).243 For 3D-TPB-COF
with –H, –Me, or –F substituents, the resolution of its cRED
datasets can reach 0.9–1.0 Å, enabling the location of all non-
hydrogen atoms, including the functional groups, for the first
time (Fig. 11g).244 More importantly, the host–guest interac-
tions and dynamic features can also be resolved by 3D
ED.242,245 The breathing behavior of FCOF-5 was uncovered
by Sun et al. using enhanced cryo-cRED. The resolution and

completeness of data are improved by merging the optimal
datasets selected by hierarchical cluster analysis (HCA). As shown
in Fig. 10c, the precise structure of the guest ethanol molecule and
the pore size of expanded FCOF-5 were determined. In the con-
tracted FCOF-5, 1,2,4,5-tetrakis[(4-formyphenoxy)methyl]benzene
(TFMB) is twisted and its phenyl ring block the pores, resulting
in the pore width reduced to 1.7 Å (Fig. 10d). This explains why
contracted FCOF-5 has no N2 and Ar adsorption.242 Furthermore,
the verification of topological transformations can be accom-
plished using 3D ED. For instance, the cRED technique has
demonstrated that the topology of 3D COFs can be tuned through
steric control. Wang et al. successfully altered the topology of a 3D
COF from a pts net to a ljh net by increasing the steric hindrance
of the substituents on the building blocks (Fig. 11h).246 This
discovery presents a novel approach for the design and synthesis
of COFs with new topologies.

Very recently, the combination of 3D ED and in situ PXRD has
revealed that the tautomerization between symmetry and asym-
metry, transitioning from diiminol to iminol/cis-ketoenamine, can
be stabilized and toggled within a crystalline, porous, and dynamic
3D COF (dynaCOF-301). This stabilization and alteration occur
through a coordinated structural transformation and host–guest
interactions when various guest molecules are adaptively included
or removed.247 The 3D ED technique was employed to ascertain
the atomic structure of COF atropisomers, specifically COF-320
and COF-320A. It revealed a significant steric strain that prevents
the interconversion between COF-320 and COF-320A. Notably,
COF-320A displays unconventional stepwise isotherms at varying
temperatures. Both 3D ED and in situ PXRD characterization
indicates that the stepwise adsorption can be attributed to con-
tinuous and/or discontinuous internal pore expansion.248

3.5. Challenges and opportunities for structural
determination

Diffraction techniques play a crucial role in the characteriza-
tion of materials, and they have been extensively employed to

Fig. 10 (a) Reconstructed 3D RED data of COF-320 collected at 89 K. (b)
Corresponding structural model of COF-320 viewed along the [100]
direction. The porous structure (upper) and single pts net (bottom) of (c)
expanded FCOF-5 and (d) contracted FCOF-5. (a) and (b) Reproduced with
permission.240 Copyright 2013, American Chemical Society. (c) and (d)
Reproduced with permission.242 Copyright 2022, American Chemical
Society.
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address various important aspects in the study of COFs, includ-
ing complex structures, host–guest interactions, and dynamic
structures. However, it is important to note that not all COFs can
have their atomic structures solved using diffraction methods.
This limitation primarily arises from the low crystallinity of COFs,
which leads to low-resolution diffraction data. In this case, there
are two ways to solve this problem. First, modifying the synthetic
method to improve the crystallinity of COFs. For example, Zhang
et al. synthesized COF-300 with higher crystallinity and homo-
geneity through the ventilation-vial protocol.202 Second, develop-
ing new algorithms for solving the structures of COFs using the
low-resolution diffraction data. For instance, Sun et al. found the
initial positions of two building blocks of the zeolitic organic
framework from cRED data with a resolution of 2 Å using the
molecular replacement method.211 Ma et al. reported that using
the direct-space genetic algorithm (GA) method, structure
solution of COFs could be successfully achieved from 3D ED
data with a resolution of 3.78 Å.249 Other methods such as ML
and maximum-entropy might be applied on the low-resolution
diffraction data for the structure determination of COFs.250,251

Despite the advantages offered by 3D ED tools, achieving
high-quality structural solutions through ED requires addres-
sing limitations and artefacts introduced during specimen
preparation and data collection. The former aspect will be
discussed in Section 4.4, while the latter is directly associated
with issues such as specimen damage, disorder, and dynamical
diffraction effects. Lowering the specimen temperature signifi-
cantly impacts the quality of ED data in two crucial ways,
effectively mitigating artefacts. Firstly, it helps minimize sample
damage caused by electron beam radiation, especially for beam-
sensitive materials like COFs that are prone to radiolysis
mechanisms. This reduction in damage during data collection
improves specimen stability and enhances data quality
(Fig. 16g).245 Secondly, lower temperatures decrease dynamic
disorder within the specimen. The harmonic component result-
ing from thermal vibrations decreases linearly with temperature
until reaching the Debye temperature, resulting in a more
ordered structure and more accurate measurement of atomic
positions. Simultaneously, thermal diffuse scattering is notice-
ably reduced as well.252 The structure determination through 3D
ED can be achieved by utilizing well-established algorithms
compatible with both SCXRD and PXRD with kinematical
approximations, because the ranking of relative reflection inten-
sities usually plays a more critical role in structure solutions.253

Dynamical effects on reflection intensities and conventional
structure refinement procedures based on kinematical approx-
imations often result in less well-defined difference electrostatic
potentials and compromised accuracy of atomic coordinates
(Fig. 16h).254 Recent advancements in dynamical structure
refinement procedures, considering multiple scattering effects,
have empowered 3D ED with powerful capabilities for the
accurate and reliable determination of absolute structures.255

In addition to diffraction techniques that rely on reciprocal-
space information to resolve structures, real-space imaging
methods can also be utilized to determine the structures of
COFs that have poor crystallinity.

4. Structural determination by imaging
4.1. Basic principles and strategies

Microstructural elucidation generally plays a crucial role in
understanding the structure–property relationship of materials
by extracting multi-dimensionally and spatiotemporally corre-
lated structural information at high spatial resolution.256 How-
ever, the direct observation of intrinsic and dynamic properties
of materials, such as their structure, chemical composition,
electronic state, and spin, at multiple dimensions and atomic
scales poses a major challenge in microstructure characteriza-
tion. Unlike diverse diffraction-based techniques that achieve the
high-resolution spatially averaged periodic structural information
of COFs from the Bragg scattering in the reciprocal space, direct
imaging techniques allow the real space visualization of not only
periodic but also local structures of COFs with resolution up to
atomic-level. These local structures of COFs, including surface,
interface, defect and entanglement, play a significant role affect-
ing the gas adsorption and separation, catalysis and ion exchange
properties.257 Accordingly, there is an emerging requirement for
the development of advanced techniques based on EM and SPM
as powerful and compatible tools for the direct imaging of
organic polymers such as COFs. Traditional imaging techniques
confront major obstacles for the direct visualization of intrinsic
crystal and local structures of these purely organic polymers. For
example, these microporous materials are highly vulnerable to
electron beam irradiation,258,259 which leads to inevitable struc-
tural degradation for traditional EM techniques and under a high
accumulated electron dose.260 SPM also has limitations and
challenges in characterizing COFs, including specimen prepara-
tion issues, poor electric conductivity, surface roughness, slow
scanning speed and restricted field of view. Therefore, the
ultimate target for the technological and methodological innova-
tions in EM and SPM for imaging COFs is to pursue more
correlated information at higher spatial resolution and with
structural integrity.

There are two basic imaging modes for EM: TEM and scan-
ning transmission electron microscopy (STEM) (Fig. 12a).261 In
general, under TEM mode the specimen is uniformly illuminated
by a parallel electron beam that usually carries a low electron
dose rate in the beam flux. In contrast, under STEM mode the
specimen is raster-scanned by a focused and intensive electron
probe that usually carries a high electron dose rate.262,263 Such
marked difference between these two imaging modes in terms of
beam illumination entails rather distinct beam damage beha-
viors of the specimen, arising from the complicated beam
damage mechanisms including knock-on, radiolysis, charging,
heating as well as diffusion.264 These damage mechanisms
usually have different damage behaviors in response to the dose
rate. For those specimens that experience greater structural
damage or on the contrary less structural damage at higher dose
rate, direct and inverse dose rate effects are attributed respec-
tively. Accordingly, under a quite limited critical electron dose for
beam-sensitive materials, TEM and STEM imaging modes
achieve minimized beam damage for specimens with direct
and inverse dose rate effects respectively.
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Actually, despite the fact that alternative imaging mode can
be selected to minimize the beam damage, most beam-sensitive
materials suffer from restricted critical dose and thus limited
spatial resolution for imaging, which ultimately originates from
the effects of shot noise under low electron dose. Typically,
beam-sensitive materials, such as zeolites, MOFs and COFs,
have critical dose for marked structure degradation far below
the accumulated dose for conventional EM imaging (i.e. 103–
104 e� Å�2) and even ranging from a few to a few tens of
electrons per Å2.265–267 These critical dose values are so low that
under such an accumulated dose the EM image resolution
is no longer determined by the electron optics but the
electron dose used for imaging, due to the poor SNR. The
dose-limited resolution (DLR, d) can be defined by the follow-
ing equation:264

d ¼ SNR DQE�
1
2C�1F�

1
2

DC

e

� ��1
2

where ‘‘SNR’’ stands for signal-to-noise ratio, which measures
the signals with a desired level of uncertainty; the ‘‘Rose
criterion’’ sets a minimum SNR of 5 to distinguish features
with 100% accuracy;268 ‘‘detective quantum efficiency’’ (DQE)
refers to the quantum detection efficiency of electron detectors;
‘‘C’’ denotes the contrast between resolution elements, which is
related to the peak-to-background ratio (PBR);264 ‘‘F’’ represents
the signal efficiency, which is the fraction of primary electrons
that reach the detector and are used for image formation; and
‘‘DC’’ is the critical electron dose that is applied to the
specimen.

A general goal for imaging beam-sensitive materials by EM is
to maximize the spatial resolution under limited electron dose,
which has led to recent developments in diverse low-dose
EM imaging techniques for both TEM and STEM imaging
modes.269 These technical and methodological innovations
can be guided by the definition of the DLR equation itself,
which is schematically illustrated in Fig. 12a–g. TEM and STEM-
based phase-contrast imaging techniques, such as low-dose

Fig. 11 (a) PXRD patterns and structural representations of cage-COF-1 with ABC-stacking. Reproduced with permission.216 Copyright 2020, American
Chemical Society. (b) Schematic representation of TAPB-TA COF structural transformation. Reproduced with permission.227 Copyright 2020, American
Chemical Society. (c) Crystal structure of woven COF-506-Cu and its adaptive guest inclusion. Reproduced with permission.123 Copyright 2018,
American Chemical Society. (d) Locations and interactions of water guest molecules in COF-300.93 Copyright 2018, American Association for the
Advancement of Science. (e) Structures of 3D-TPE-COF with seven-fold interpenetration. Reproduced with permission.241 Copyright 2018, Springer
Nature. (f) Structural representation of FCOF-5, which has flexible frameworks and breathing behavior. Reproduced with permission.243 Copyright 2021,
American Chemical Society. (g) Atomic structures of 3D-TPB-COF-Me and 3D-TPB-COF-F showing the locations of functional groups. Reproduced with
permission.244 Copyright 2019, John Wiley and Sons. (h) Schematic representation of topological transformation via steric hindrance. Reproduced with
permission.246 Copyright 2021, American Chemical Society.
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(bright-field) BF-HRTEM, (annular-bright-field) ABF-STEM, iDPC-
STEM, and electron ptychography,270 are more dose-efficient than
Z-contrast imaging techniques like ADF-STEM, due to much larger
signal efficiency term F�1/2 arising from the greater fraction of
scattered electrons collected by the electron detector.264 Actually,
the electron detector records only the intensity of the electron wave
and not its phase. The development of diverse advanced phase-
retrieval techniques allows the recovery of phase images of speci-
mens for phase-contrast (S)TEM imaging modes. For instance, the

EPWF (exit-plane wave function) reconstruction technique allows
the efficient phase retrieval and aberration correction of an object
through image focal series acquisition under TEM mode
(Fig. 12d).273 On the other side, either iterative or non-iterative
electron ptychography techniques enable the recovery of the phase
image of an object based on a series of probe position dependent
convergent beam electron diffraction (CBED) patterns collected
by a pixelated electron detector (Fig. 12e).274 Notwithstanding
this, these phase-retrieval techniques require improvements to

Fig. 12 (a) Schematic drawing of the imaging optics of TEM and STEM modes. (b) Structure of the CMOS based electron direct detection device, with
radiation hardened MAPS. Reproduced with permission.271 Copyright 2021, Journal of Physics: Materials. (c) Segmented and pixelated electron detectors,
typically as hybrid pixel detectors (HPDs), endow diverse phase-contrast STEM imaging techniques. Reproduced with permission.272 Copyright 2022,
Multidisciplinary Digital Publishing Institute. (d) Schematic illustration and workflow of the EPWF reconstruction technique and cryogenic transfer holder
dedicated for cryo-EM imaging. Reproduced with permission.273 Copyright 2022, John Wiley and Sons. (e) 4D-STEM imaging and ptychography
technique using pixelated detectors.274 Copyright 2018, Springer Nature. (f) Low-dose TEM images and SAED patterns of COF-2,3-Ph, COF-BPy and
COF-BPh single-crystalline domains taken along the [001] direction. Reproduced with permission.275 Copyright 2022, American Chemical Society. (g)
Characterization of multivariate MOFs with varying Fe and Ni contents using low-dose STEM. Reproduced with permission.276 Copyright 2022, John
Wiley and Sons. (h) Schematic illustration of SPM (i.e. STM and AFM) structures and principles. Reproduced with permission.277 Copyright 1982, American
Physical Society. (i) Comparison of different high-speed SPM scan geometries using sinusoidal scan, Lissajous scan and spiral scan modes. Reproduced
with permission.278 Copyright 2023, Elsevier. (j) Schematic illustration of the liquid- and gas-cell accessories equipped in SPM for monitoring structural
dynamics. (k) Workflow of the automated ML platform for in situ SPM probe tuning and conditioning. Reproduced with permission.279 Copyright 2023
American Chemical Society. (l) A general pump–probe geometry for diverse ultra-fast SPM techniques. Reproduced with permission.279 Copyright 2023,
American Chemical Society. (m) Dynamics of NP migration and its impact on crystallization mechanisms monitored by in situ AFM. Reproduced with
permission.280 Copyright 2022, American Chemical Society. (n) Monitoring reversible trans–cis isomerization and electric field-induced manipulation of
azobenzene derivatives on the Au (111) surface using in situ STM. Reproduced with permission.281 Copyright 2006, American Chemical Society.
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accommodate the critical low-dose EM imaging conditions for
beam-sensitive COF materials. Furthermore, detectors with high
DQE would also facilitate the low-dose EM imaging by minimizing
the DQE�1/2 term of the DLR equation. Accordingly, the revolu-
tionary invention of DDC has led to a significant breakthrough in
the field of low-dose imaging by significantly improving the DQE
of conventional scintillator-based CCD cameras (Fig. 12b).271 On
the other side, modern segmented and pixelated electron detectors
(e.g. EMPAD: electron microscope direct detection pixel-array
detector) endow diverse phase-contrast STEM imaging techniques
through 4D-STEM mode and with unprecedentedly high electron
detection efficiency (Fig. 12c).282,283 These direct detection detec-
tors are generally categorized as (i) monolithic active pixel sensors
(MAPS) that adopt smaller but more abundant arrays of pixels with
compromised dynamic range, which are suitable for collecting low
fluence EM images, and (ii) hybrid pixel detectors (HPDs) that
adopt small arrays of large pixels and high dynamic range, which
are ideal to collect high fluence diffraction patterns.284 Moreover,
the efficiency of contrast transfer spanning over all spatial fre-
quency for these phase-contrast (S)TEM imaging techniques also
imposes a marked impact on the DLR and can be evaluated by the
phase-contrast-transfer-function (pCTF) and contributes to the
term C�1 of the DLR equation. Generally, low-dose HRTEM
suffers from contrast inversion problems of objective lens and
the pCTF profiles usually exhibit poor contrast transfer at low
spatial frequency and are significantly affected by aberrations.285

Correcting the contrast inversion effects in the HRTEM image
usually results in more chemically interpretable images. Instead,
diverse phase-contrast STEM imaging techniques eliminate the
contrast inversion problem in pCTF profiles and exhibit better
contrast transfer at low spatial frequency. Among these STEM
imaging techniques, ptychography and its derivative techniques
usually achieve more efficient contrast transfer.286 The contrast
transfer efficiency of phase-contrast (S)TEM imaging techniques is
more critical for imaging low-Z organic matters like COFs because
they usually exhibit very weak contrast than other beam-sensitive
materials such as MOFs and zeolites.259,287–289 Additionally, just as
the d term implies, the DLR is most closely related to the
accumulated electron dose that is imparted onto the specimen,
which should in principle be controlled below the critical dose

(i.e. the
DC

e

� ��1
2

term) to maintain the structural integrity of

beam-sensitive materials like COFs. There are two categories of

strategies related with the
DC

e

� ��1
2

term to enhance the DLR for

low-dose EM imaging: (i) to increase the Dc value by enhancing the
beam durability of the specimen and (ii) to minimize the electron
dose consumption during pre-imaging procedures. It has been
widely reported that specimen coating and cooling significantly
enhance the beam durability.290 It is thus sensible to integrate
cryogenic and low-dose (S)TEM techniques for imaging COFs. On
the other hand, the zone-axis alignment is critical for achieving
structural information of crystalline matters like COFs, which is
usually quite time and dose consuming. The implementation of
the low-dose zone-axis alignment procedure allows the significant

reduction of electron dose consumed in the pre-imaging proce-
dures and improves the DLR by maximizing the ‘‘effective’’
electron dose used for image formation.23 In addition, the
low-dose imaging of COFs encounters more critical issues
arising from electron beam induced specimen motion and
associated resolution degradation, due to their low image con-
trast and difficulties in properly registering the image series
acquired during motion. To tackle these issues, the develop-
ment and application of advanced low-dose motion correction
algorithms are required.265,291 Recently, it has become more and
more prevailing to unravel the atomic or molecular structures of
beam sensitive open-framework materials including MOFs and
COFs using low-dose (S)TEM techniques, which provides valuable
insights into the structural design, crystal growth and catalytic
properties of these materials (Fig. 12f and g).275,276

SPM is a powerful tool for characterizing material structures
and properties at the nanoscale. One of the key features of SPM
is its high spatial resolution, which enables the observation and
manipulation of individual atoms and molecules. However, the
theoretical limit of SPM resolution has been a topic of debate in
the scientific community. According to the Rayleigh criterion,
the resolution of an optical imaging system is inherently
limited by the diffraction of light.292 SPM uses a physical probe
to physically raster scan the surface of the specimen, the
resolution of which is in principle determined by the scanning
probe.293 Notwithstanding this, the resolution of SPM is also
affected by several factors, including the size and shape of the
probe, the interaction force between the probe and the sample,
and the noise level in the measurement system.294 Theoretically,
the resolution of SPM can reach atomic-scale or even subatomic-
scale resolution, allowing researchers to observe individual
atoms and molecules. However, achieving such high resolution
requires careful calibration and control of the experimental
parameters. For example, the probe must be sharp enough to
provide a high spatial resolution.295 The interaction force
between the probe and the sample must be carefully controlled
to prevent sample deformation or damage. In addition, the noise
level in the measurement system must be minimized to achieve
high-quality images. This requires careful design and optimiza-
tion of the SPM measurement system, as well as the use of
advanced signal processing and image analysis techniques. In
summary, the theoretical resolution limit of SPM is determined
by the size and shape of the scanning probe and can practically
reach atomic-scale or even subatomic-scale resolution under
calibrated and optimized experimental conditions with advanced
signal processing and image analysis techniques.

SPM technology has several advantages for imaging open
framework materials, including high spatial resolution, multiple
working modes, and environmental adaptability. By measuring
material structures and properties through the interaction
between the scanning probe and the sample surface, SPM allows
the detection of fine surface features and properties such as
atomic-scale surface morphology, surface chemical reactions,
and surface charge distribution. SPM also permits imaging under
different environmental conditions, providing dynamic behaviors
and a better mechanistic understanding of chemical reactions
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involving target materials. Therefore, SPM has significant advan-
tages for studying the surface features, properties and dynamics
of COFs.296 However, there are some limitations and challenges
that must be considered, including sample preparation, low
conductivity of COF materials, complex surface geometry, and
limitations in scanning speed and modes.

There are several different types of SPM, including atomic
force microscopy (AFM) and scanning tunneling microscopy
(STM). Each of these techniques has its own unique advantages
and disadvantages, both of which can be used to investigate
different properties of the sample. STM is a direct SPM technique
used to measure the surface electron density of states of samples.
The lateral resolution of STM is influenced by factors such as
probe size, local surface morphology, and electron density of
states. Typically, the basic principle formula of STM is297

I p exp(�2kd)

where I is the current intensity measured by the probe in the
scanning tunneling microscope, d is the distance between the
probe and the sample, and k is a constant that represents
the probability of electrons tunneling from the sample surface
to the probe.

This formula expresses that the tunneling current intensity
is exponentially related to the distance between the probe and the
sample. When the distance between the probe and the sample
decreases, the tunneling current intensity increases. There are
two scanning modes, constant-current, and constant-height
mode. In the constant current mode, by using the measured
tunneling current as the controlled object and establishing the
equilibrium spacing between the tip and the sample by a feed-
back loop, the surface morphology can be obtained by scanning
the tip along the equal-current xy plane. In the constant-height
mode, the tip is held at a constant height and the tunnelling
current is measured. The tunnelling current varies with the
topographic and electronic characteristics of the sample.

AFM performs as a complementary SPM technique for STM
because it eliminates the drawback that STM cannot directly
image non-conductive samples. Instead of probing the tip–
sample tunneling current in STM, AFM allows the measure-
ment of interaction force between the tip and the sample
(Fig. 12h).277 AFM operates under three different modes, con-
tact, tapping and non-contact modes. In the traditional contact
mode, the tip contacts the surface, and the tip–sample system
falls into the repulsive force regime. Such force between the tip
and the surface causes the cantilever to deflect and can be
calculated using Hooke’s law based on the following simple
expression:298

F = k(z � z0)

where F is the repulsive force between the tip and the sample, k
is the probe’s elastic constant, z is the distance between the
probe and the sample, and z0 is the static distance between the
probe and the sample.

The expression indicates that the repulsive force between
the tip and the sample is proportional to their distance and the
elastic constant of the tip. Accordingly, the variation in cantilever

deflection is associated with the height of surface features and
can be precisely probed by a laser beam focused onto and
reflected by the backside of the cantilever that is usually coated
with a reflective metal to enhance the reflected signal of the laser
beam collected by the photodetector. When operating in constant
force contact mode, AFM precisely measures the surface topo-
graphy of the samples because the vertical displacement of the
tip reflects topographic information. On the other hand, in
constant height contact mode, the tip maintains a fixed height
above the sample without any force feedback. Scanning the tip
across the material surface while maintaining a constant tip–
sample separation provides the basis for topographic imaging
based on the deflection of the cantilever. The latter mode is faster
but requires smoothness of the surface and is usually used for
atomic resolution AFM. In the tapping mode, the tip–sample
interaction falls within the transition region between the
repulsive and the attractive force regime where the cantilever
oscillates at or slightly below its resonant frequency. Topographic
information can then be achieved by measuring the tip–sample
interaction forces through the amplitude of cantilever oscillation.
Additionally, the phase lag between drive and detected signals
contains information associated with the mechanical properties
of the sample. The tapping mode features higher lateral resolu-
tion and less sample damage but compromised scan speed.
On the other hand, for non-contact mode, the tip–sample inter-
action is dominated by the attractive force regime. The cantilever
oscillates near the surface without contact and at slightly above
its resonant frequency. Compared with the tapping mode, the
non-contact mode further minimizes the sample damage and
enables atomic resolution imaging under ultra-high vacuum
(UHV) conditions at the expense of even slower scan speed. As
a result, non-contact mode AFM is suitable for imaging fragile
biological and organic materials like COFs.299 Generally, similar
to other SPM techniques, the lateral resolution of AFM is also
influenced by various factors such as probe size, scanning speed
and noise.300

SPM is generally faced with the crucial task of imaging not
only static but also dynamic structural features in real space and
under working conditions. This is essential because observing
dynamic events on short timescales through in situ experiments
can greatly enhance our understanding of critical biological,
physical, and chemical processes, such as structural and topo-
logical transformation, molecular adsorption and desorption,
and catalytic reactions. Therefore, technical advancements in
SPM are primarily focused on achieving faster acquisition rates,
automated tuning and tracking capabilities, and improved
environmental compatibility.

To achieve a fast image acquisition rate, as typical SPM
techniques, both AFM and STM share similar designs of the
scanner unit and thus identical factors that limit the overall
image acquisition speed but with different detection feedback
loops. The general strategies to achieve high speed SPM
imaging lie in optimizing data acquisition, scan geometry
and electric feedback (Fig. 12i).278 A high data acquisition rate
can be achieved by uniting fast digitizing units and real-time
data processing and transfer. In addition, optimizing the scan
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geometry from conventional raster scan allows the faster image
acquisition as well. The most frequently used scan geometry for
high-speed SPM is sinusoidal raster scan that uses a sine wave
in the fast scan direction instead of a triangle wave for conven-
tional raster scan. Such scan geometry is easily implementable in
existing SPM systems and enables high-speed and high-
resolution SPM imaging with minimal effort in image reconstruc-
tion and distortion corrections. For SPM with a vertical feedback
loop, sinusoidal raster scan performs well in terms of sampling
frequency, probe velocity, and topography bandwidth. Without
such feedback limitation, Lissajous and spiral scan geometries
are considered to sample real space more efficiently, with higher
sampling point density at the edge and center of the image
respectively. Besides the scan geometry optimization, variable
scan speed also facilitates the fast image acquisition and can be
achieved by implementing a correlated SEM-AFM image acquisi-
tion scheme in a hybrid SEM-AFM system.301 Moreover, technical
innovations in electric feedback systems also enhance the high-
speed SPM imaging. For AFM, the acquisition rate is inherently
restricted by the slow response of the Z-scanner and cantilever as
the mechanical devices in contrast to other electronic ones. By
integrating small cantilevers, fast scanners based on independent
Z-piezo actuators and Q-control, fast amplitude detectors, as well
as dynamic proportional-integral-derivative (PID) controllers, a
high-speed AFM system can be constructed to eventually ensure a
high frame rate of 10–16 fps.302 Similar to AFM, optimizing the
limiting electric components of the electric feedback loop also
increases the achievable frame rate for high-speed STM. Although
the high bandwidth of the electronic feedback control system
and the preamplifier improves the STM frame rate under the
conventional constant current mode, the necessity to keep the
tunneling current constant through real-time tip–sample dis-
tance control considerably retards the feedback loop. Instead,
the constant height mode along with a dedicated tube piezo for
fast scan is usually used for high-speed STM imaging. Generally,
these strategies have achieved the temporal resolution of SPM
imaging limited in the range of sub-second to micro-second.
Introducing pump–probe configuration into the SPM systems
further pushes forward the temporal resolution down to picose-
conds or femtoseconds for probing ultrafast dynamics arising
from the light–matter interactions.311,312 A case study that inte-
grates a pump–probe configuration in STM and involves dispersion,
polarization, and frequency modulation techniques for laser pulses
entails ultrafast light-driven tunneling microscopy that allows the
monitoring of photon-induced tunneling currents and tracking of
electronic motion in molecules with simultaneous atomic-scale
spatial resolution and sub-femtosecond temporal resolution.313

Similarly, constructing a pump–probe enhanced AFM system
allows the precise measurement of electrostatic forces arising from
nonlinear optical polarization with high temporal and spatial
resolution.312 Ultrafast AFM also measures the local surface photo-
voltage (SPV) as the change in contact potential difference (CPD)
between the tip and the sample upon pulsed illumination.314

To image structural dynamics in real space and under work-
ing conditions, real-time and automated SPM probe tuning is
also necessary to ensure uncompromised spatial resolution

during in situ experiments. This issue arises from the fact that
standard ex situ tip preparation methods cannot accommodate
in situ SPM experiments due to the loss of apex sharpness for
SPM tips during imaging. Real-time detection of the tip condi-
tion and in situ tip treatments are critical to maintain the ideal
condition of the SPM tip for high-resolution SPM imaging.
Traditional tip reconditioning approaches include the repeated
tip shaping using short voltage pulses and controlled tip
indention into the sample, which are however extremely time-
consuming. Developing automated real-time tip detection and
reconditioning strategies, especially aided with ML algorithms,
can greatly accelerate the tip reshaping and facilitate in situ
high-resolution SPM imaging. For instance, Rashidi et al. pre-
sented automated methods based on ML algorithms for detect-
ing and reconditioning the quality of the probe in a scanning
tunneling microscope.315 Utilizing a convolutional neural net-
work (CNN) trained to assess tip quality, a series of sequential
operations are executed. These operations involve identifying a
degraded probe, performing in situ tip reconditioning at a
preselected spot on the sample surface, and repeating the tip
reshaping process until the CNN detects a sharp probe. Such an
automated ML platform for probe tuning has been effectively
employed to recognize and assess isolated surface dangling
bonds on a hydrogen-terminated Si(100) substrate with an
accuracy of 97%. Furthermore, the accuracy that the platform
achieves for tip quality classification surpasses 99%. Another
critical issue for In situ SPM imaging lies in the efficient and
accurate tracking of domains that exhibit multi-modal corre-
lated structural features and properties so as to establish
unambiguous structure–property relationships. In this sense,
leveraging an active ML framework for driving an automated
SPM allows the simultaneous achievements of structural and
functional probing and thus the discovery of the explicit corre-
lation between microstructures and target properties of materi-
als. Liu et al. designed a workflow to implement an active deep
kernel learning (DKL) on an operating SPM, which can actively
learn the correlation between structural features (e.g. grains,
grain boundaries (GBs) and defects) in the image data (e.g. STM,
AFM or other SPM images) and functions (e.g. conductivity,
hysteresis or other transport properties) in the spectroscopy
data (e.g. IV curves, band gaps or density of states) (Fig. 12k).279

They implemented this approach in conductive AFM (cAFM)
and successfully unraveled the relationship between microstruc-
tural elements (e.g. grains, different GBs and GB junctions) and
conductivity in metal halide perovskite (MHP) thin films.

To enable the structural elucidation of COFs and their
dynamics under various environmental and working condi-
tions, it is critical to develop imaging techniques and build
instruments that are compatible with these conditions. This
requires the integration of extended setups into SPM instru-
ments to allow imaging under variable pressures, temperatures
ranging from ultralow to room temperature, and even in liquids
via immersion in solutions. The development of diverse in situ
SPM technologies allows researchers to characterize individual
molecules on the substrate and in gas and liquid environments.
When operated in a liquid environment, SPM techniques have
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been widely applied in studying dynamic processes or events in
liquids, such as migration,280 aggregation316 and crystal growth.317

For instance, S. Schadler et al. utilized in situ AFM to track the
migration of silica nanoparticles (NPs) from a poly(ethylene oxide)
(PEO) melt into the interlamellar region. This study demonstrates
that high-speed AFM served as an excellent tool for investigating
NP migration and figuring out its impact on crystallization
mechanisms (Fig. 12m).280 As another example, the tip of STM
can desorb individual hydrogen atoms from a hydrogen-saturated
silicon surface and induce synthesis steps of a biphenyl molecule
in a liquid environment, indicating the capability of SPM in
repairing or manipulating COF structures and studying their
interactions with molecules in liquids.318 For measurements in a
gas environment, Suzuki et al. devised an apparatus including
STM and AFM to investigate highly oriented pyrolytic graphite
(HOPG), revealing that STM captured atomic-resolution images
across hydrogen, helium, neon, and argon atmospheres.319 More-
over, by applying an electric field between the STM tip and a
metallic surface, Alemani et al. demonstrated the reversible
trans–cis isomerization of individual azobenzene derivatives
adsorbed on an Au(111) surface (Fig. 12n).281 These molecules
have symmetrically distributed four tert-butyl groups, effectively
isolating the azobenzene core from the metallic surface, thus
promoting the formation of well-ordered islands. Such an
approach allows the precise control and manipulation of the
isomerization reactions of molecules on the surface and pro-
vides the capability for direct visualization of the dynamics at
the nanoscale. Recent advances in developing in situ electro-
chemical atomic force microscopy (ECAFM) further allow the
direct monitoring of electrochemical processes by combining
the high-resolution interfacial analysis capability of AFM with
the electrochemical instrumentation (Fig. 12l).320,321 It provides
broad applications unraveling with high spatial resolution the
critical interfacial phenomena occurring in individual electro-
chemical events. By integrating electrochemical control, ECAFM
entails simultaneous investigation of electronic and mechanical
properties of single molecules at the nanometer scale. As instru-
mentation, specially designed insulated conductive probes are
used to simultaneously scan the surface and characterize sample
properties. The hardware components of ECAFM include an
atomic force microscopy module, consisting of an elastic cantilever
with a sharp probe for scanning the sample surface and measuring
topographical features; an electrochemical cell comprising a work-
ing electrode, reference electrode, and electrolyte, enabling elec-
trochemical reactions during scanning; a potential control system
for precise manipulation of the electrochemical cell’s potential; a
scanner for controlling the probe’s position on the sample surface
during scanning; and a data acquisition and analysis system for
recording and analyzing both topographical and electrochemical
data obtained from the scans. The integration of these compo-
nents allows researchers to simultaneously study the topographical
features and electrochemical properties of sample surfaces at the
nanoscale, and thus gain deeper insights into material and process
behaviors, enabling studies in electrochemical scenarios, such as
corrosion and electrocatalysis. The advantages of ECAFM include
not only the capability of topographic imaging regardless of

sample conductivity but also the ability to image at high resolution
in gaseous environments (e.g. inert gases like argon). Chen et al.
investigated the surface structural changes during cathodic
polarization of polycrystalline Pt electrodes and single crystal-
line Pt (111) electrodes in acid electrolytes, in the presence and
absence of cations (Na+), using in situ ECAFM imaging in an
argon gas environment.323 The presence of cations, such as Na+,
was found essential for initiating cathodic etching of polycrys-
talline Pt surfaces.

4.2. Imaging COFs by SPM

SPM is an ideal tool to study the surface properties of nano-
particles, and thus is suitable for imaging low-dimensional
materials. SPM provides detailed information on the size,
shape, and surface roughness of nanoparticles. Specifically,
AFM-based force spectroscopy allows the measurement of the
mechanical properties of nanoparticles, such as stiffness, adhe-
sion, and deformation, which are crucial for understanding
their behavior in different environments.322 For example, Pra-
tama et al. used STM and non-contact AFM (nc-AFM) to study
different types of 0D molecules at the single-molecule level. By
analyzing their STM and nc-AFM images, they provided a
reliable description of amphetamine-type stimulant (ATS)
drugs, which can be used for the classification and prediction
of drug molecule activity (Fig. 13a).303 SPM techniques have
been widely used to investigate the nanoscale properties of 1D
materials, particularly nanowires. AFM can provide valuable
information on the diameter, length, and surface roughness of
nanowires, while STM can probe their electronic properties by
measuring conductance and density of states. Additionally, AFM-
based nanomanipulation techniques enable the fabrication and
manipulation of nanowires for various applications. For instance,
Lyu et al. used STM to explore the process of autonomous loading
of 1D organometallic structures, demonstrating the formation of
1D sinusoidal chains or 2D molecular porous networks (Fig. 13c)
composed of tris-pyridyl and carbonitrile monomers, creating
covalent organic structures coordinated with Eu atoms.305 High-
resolution surface topographic images obtained through STM
can reveal the surface morphology and molecular structure of
these metal complexes. Furthermore, STM can provide informa-
tion about the electronic structure of the complexes, such as the
local density of hole or electron states, thus enabling the study of
the morphology and electronic properties of metal complexes. 2D
COFs as a class of unique organic porous polymers have attracted
significant interest in materials chemistry because of their sig-
nature topological structures as well as their important applica-
tions in catalysis. For 2D materials, SPM techniques such as AFM,
STM, and Kelvin probe force microscopy (KPFM) have been
widely used for the characterization of thin films, including
graphene, transition metal dichalcogenides (TMDs), and other
2D materials. AFM can provide high-resolution imaging of the
topography and morphology of thin films, while STM can probe
their electronic properties, such as bandgap, carrier density, and
mobility. KPFM can be used to measure the surface potential and
work function of thin films, which are crucial for understanding
their electrical and catalytic properties.328 Chen et al. have
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characterized the local electronic structure of a single-layer
porphyrin-containing square-lattice COF on Au (111) by scanning
tunneling spectroscopy (STS), an extension of STM (Fig. 13e).307

They found that the electron shifts in the frontier orbitals of the
porphyrin core upon COF formation are due to the electron
withdrawing nature of the imine linkages. The experimentally
measured HOMO and LUMO wave functions of the COF show
high intensity on the porphyrin cores, with an energy gap of
1.98 � 0.04 eV. These findings provide insight into how electrons
reorganize within the COF structure, highlighting the role of
imine linkages and porphyrin cores in influencing the electronic
properties of COFs.307 Lackinger et al. successfully synthesized
regular and extended 2D COFs and investigated their self-
assembly behavior on surfaces using STM.309 The structural
versatility of the COFs was achieved by polycondensation of four
different diboronic acids, each with varying organic backbones
ranging from biphenyldiboronic acid, terphenyldiboronic acid,
quaterphenyldiboronic acid, to pyrene-2,7-diboronic acid. This
approach allows the creation of isoreticular 2D COF series with
lattice parameters ranging from 1.5 nm to 3.8 nm, and corres-
ponding pore sizes increasing from B1.0 to 3.2 nm (Fig. 13g).309

SPM techniques not only allow visualization of the micro-
structure of the samples, but also reveal the microscopic origin
of their physicochemical properties and provide mechanistic
insights into functionalities, such as heterogeneous catalysis,
topological engineering, and polymer separation. For example,

COF networks can be used as scaffolds for encapsulating enzymes
to regulate their activity by modulating surface functional groups
towards improved medical and catalytic applications.329–331 More-
over, intensive research has been devoted to materials with high
carrier mobility and tunable bandgaps in nanoelectronics. 2D p-
conjugated polymers have emerged as a promising subclass due to
their ability to manipulate band structures by modulating mole-
cular building blocks, while retaining key features such as Dirac
cones and high carrier mobility. However, the main obstacle in the
application of 2D p-conjugated polymers has been the small
domain sizes and high defect densities achieved in synthesis.
Galeotti et al. achieved the synthesis of highly ordered large-area
honeycomb network monolayers by depositing tribromotrioxaaza-
triangulene (TBTANG) onto preheated Au surfaces and determin-
ing the dimensions between adjacent pores from STM images.332

This novel 2D p-conjugated polymer exhibits good thermal and
environmental stability, suggesting its potential as a material in
nanoelectronic devices. Xu et al. developed a simple and efficient
method to prepare a COF called surface COFBTA–PDA at the inter-
face between octanoic acid and graphene. They used STM to study
the structure of surface COFBTA–PDA and observed ‘‘5+7’’ type
defects on graphene. They also observed strong interaction
between surface COFBTA–PDA and graphene by STM, which was
further confirmed by computer simulations (Fig. 14e).325

Topological transformation of COFs has always been an
important but challenging research topic, and progress in this

Fig. 13 (a) Characterization and comparison of polycyclic aromatic hydrocarbon molecular structure models using STM and nc-AFM. Reproduced with
permission.303 Copyright 2018, Easychair. (b) Observation of the 1D CNS structure using the low-dose STEM technique. Reproduced with permission.304

Copyright 2022, Springer Nature. (c) The atomistic model and STM imaging of mixture of 1D supramolecular chains. Reproduced with permission.305

Copyright 2016, Royal Society of Chemistry. (d) Low-dose HRTEM image of the 2D molecular network of an imine-linked TPA-COF with micropores and
molecular nodes clearly visible. Reproduced with permission.306 Copyright 2017, American Chemical Society. (e) COF366-OMe network structure, DMA
molecular deposition, and STM imaging of the Au(111) surface. Reproduced with permission.307 Copyright 2018, American Chemical Society. (f) HRTEM
imaging of the 2D-PI-BPDA network and image simulations. Reproduced with permission.308 Copyright 2022, Springer Nature. (g) STM images of 2D
COFs derived from polycondensation of the following monomers: biphenyldiboronic acid, terphenyldiboronic acid, quaterphenyldiboronic acid, and
pyrene-2,7-diboronic acid. Reproduced with permission.309 Copyright 2012, American Chemical Society. (h) HRTEM image of the cubic crystal lattice of
new 3D porous SPB-COF-DBA and MIM networks. Reproduced with permission.310 Copyright 2021, American Chemical Society. Reproduced with
permission.198 Copyright 2023, American Association for the Advancement of Science.
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field relies on the advances in structural characterization
techniques. In case studies, TP-COF-DAB was obtained by heating
TP-COF-BZ with 1,4-diaminobenzene and replacing the benzidine
connector in TP-COF-BZ with 1,4-diaminobenzene under the

reaction conditions, and the underlying COF to COF topological
transformation was confirmed through PXRD.333 Using linker
exchange as a medium, the exchange of building blocks with
different symmetries can be achieved for 2D COFs, enabling the

Fig. 14 (a) Schematic illustrations present the [001] structural projection image of the HFPB-TAPT COF crystal with an ABC stacking sequence.
Reproduced with permission.21 Copyright 2022, American Chemical Society. (b) Chemical structures of TBPBA and HTTP, along with high-resolution
STM images visualizing the self-assembled TBPBA phase and boronate ester-based sCOFs-2. Modified with permission.323 Copyright 2020, American
Chemical Society. (c) STM image revealing a grain boundary composed of pentagon and heptagon rings in COF-1, as well as the evolving adsorption of
TCB within the grain boundary defects. Reproduced with permission.324 Copyright 2017, Royal Society of Chemistry. (d) Low-dose imaging and direct
visualization of the 2-fold interpenetrated bcu 3D COF networks. Reproduced with permission.14 Copyright 2022, John Wiley and Sons. (e)
Microstructural images of the hexagonal 2D surface COFBTA–PDA synthesized from benzene-1,3,5-tricarbaldehyde (BTA) and p-phenylenediamine
(PDA) were obtained using SPM characterization techniques, revealing the mechanism of defect formation. Reproduced with permission.325 Copyright
2014, John Wiley and Sons. (f) The HR-TEM image and domain-mapped image, which depict the synthesis of boronate ester-linked COF films on
graphene-coated TEM grids, revealing the structural defects. Reproduced with permission.326 Copyright 2021, American Chemical Society. (g) The
structure diagram illustrates the topological regulation of 2D TPE-COFs and the transition between bimodal and unimodal porosities. Reproduced with
permission.104 Copyright 2020, American Chemical Society. (h) Schematic illustration and HRTEM images for the morphological engineering of COF
crystals between nanospheres (TPB-MeOTP-NS) and nanoparticles (TPB-MeOTP-NP). Reproduced with permission.327 Copyright 2022, American
Chemical Society.
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topological transformation between 2D COFs with different pore
architectures. Zhan et al. achieved the topological transformation
of COF structures, local reaction environment and reversible
network switching (in response to the orientation of applied
sample bias), through the application of an electric field, which
was then visualized and confirmed by STM (Fig. 14b).323

There are also possibilities to explore the host–guest inter-
actions in COFs, arising from the fact that many COFs attain
unique separation capabilities through capturing and trapping
guest molecules of variable sizes and shapes. Hu et al. introduced
a novel surface-constrained host–guest chemistry approach, uti-
lizing two-dimensional COFs as the host network, for separating
arylenevinylene macrocycles (AVMs) from linear by-products.
Owing to their stronger binding interactions, this method
demonstrates effective selective immobilization of AVMs within
the COF cavities, as directly observed through STM, while the
linear by-products are washed away.334 Similarly, in 2015, Cui
et al. showed by STM that COFs may act as a robust host for C60

fullerene guest molecules at the solution/solid interface.335 Sub-
sequently, in 2017, they observed by STM that COF-1 forms well-
defined ring boundary defects from pentagonal and heptagonal
cyclic chains (Fig. 14c).324 STM images at the liquid/solid inter-
face reveal the dynamic behaviors of trichlorobenzene (TCB)
adsorption in the hexagonal pore of COF-1, with pore shape
and size influencing the binding strength of the guest molecules.
These examples highlight the unique capabilities of COFs in
capturing molecules and show that surface-supported 2D porous
COFs can selectively bind different molecules at specific sites via
various types of interactions.

4.3. Imaging COFs by low-dose EM

SPM technology is more suitable for the characterization of low-
dimensional COFs, such as 1D and 2D COFs. These low-
dimensional materials usually feature extremely small thickness.
SPM technology allows the observation of their surface morphol-
ogy and structure at the atomic scale, providing high-resolution
images and topological information that reveal their microstruc-
ture and pore architectures. Additionally, as a typical imaging
rather than diffraction or spectroscopy technique, SPM also
allows the direct observation and even quantitative analysis of
local structural features like defects and active sites of low-
dimensional COFs. Nevertheless, accurately elucidating the
structures of a larger COF family with networks spanning from
1D to 3D spaces is still challenging, which is critical to correlate
the structures with their properties in order to stimulate new
structural designs. Traditional EM techniques provide a versa-
tile tool for imaging diverse 1D, 2D and 3D nanostructures with
atomic spatial resolution but confront major obstacles in ima-
ging beam-sensitive materials like COFs. Therefore, there is an
emerging need to develop and apply low-dose EM techniques to
image beam-sensitive materials with structural integrity.336 The
recent marked advances in both TEM and STEM based low-dose
EM techniques provide unprecedented opportunities for the direct
visualization of COFs in real space and with high resolution.337 By
integrating diverse spectroscopy techniques in the EM platform
(e.g. energy dispersive X-ray spectroscopy (EDS) and electron energy

loss spectroscopy (EELS)),338,339 multimodal and correlated struc-
tural information, including the composition, atomistic structure,
valence state, and coordination, can be readily achieved.

Due to the nanoconfinement effect, 1D COFs usually have
unique electronic properties that make them important for
various applications, including electronics, energy storage,
and catalysis. In recent years, low-dose EM has become an
indispensable and powerful tool for imaging diverse 1D mate-
rials including COFs. In a recent study, a novel approach for
synthesizing a metal-free carbon nanosolenoid (CNS) material
in a bottom-up manner was proposed. The unique helical
molecular structure of the CNS can be directly visualized with
high spatial resolution by utilizing the low-dose phase-contrast
iDPC-STEM imaging technique that provides contrast that
closely resembles the projected electrostatic potential of the
helical structure (Fig. 13b).304 The findings provide new
insights into the structural characterization of CNS and offer
a promising strategy for the controlled synthesis of nanoscale
materials with intricate structures. For example, Xu et al.
employed TEM with minimized electron dose to identify the
different way leading to the assembly of 3D woven COFs or 1D
metallo-COFs (MCOFs), where the mechanism is underpinned by
the absence or presence of monomer exchange.340 Additionally,
the authors used STEM to determine the position and distribu-
tion of metal ions in the MCOFs. Overall, low-dose TEM played a
crucial role in characterizing the structure and properties of 1D
COF materials without considerable beam damage.

2D COFs exhibit unique physical and chemical properties,
making them attractive candidates for various applications
such as electronics, optoelectronics, energy storage, and cata-
lysis. Low-dose EM is particularly advantageous for 2D COFs
because it provides the most critical in-plane structural infor-
mation of 2D COFs with minimal radiation damage. EM
imaging with high tension may further minimize the radiolytic
beam damage of COFs due to the diminished fraction of
inelastic scattering events, despite the compromised contrast
of low-Z 2D COFs.341 The direct visualization of the 2D mole-
cular network of an imine-linked TPA-COF can be achieved via low-
dose TEM imaging under 300 kV with a DLR of B4 Å. In Fig. 13d,
the structural details of 2D COFs including both 1D pore channels
and contrast corresponding to the three benzene rings of tridentate
tris(4-aminophenyl)amine (TAPA) or tris(4-formylphenyl)amine
(TFPA) molecular building units can be clearly identified.306 Besides
the 2D periodic molecular network, low-dose EM also reveals local
structural features such as defects, stacking order and partial
disorder in the material framework.336,342 For instance, Liang
et al. observed defects in 2D polymers covalently linked by TEM
imaging under 120 kV (Fig. 13f).308 Meanwhile, the enhanced
contrast achieved at low tension allows the visualization of
molecular interstitial defects and functional groups. A detailed
and statistical comparison of image contrast for the linkers
between 2D-PI-DhTPA and 2D-PI-BPDA COFs reveals that the
main distinction lies in the linker widths. After contrast analysis
averaged over 100 linker sites, the result shows that the FWHM
of the DhTPA site was approximately 70% (0.9 Å) broader than
that of BPDA, which can be attributed to the presence of
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hydroxyl groups. These observations could provide valuable
insights into the basis of host–guest interactions.308 As another
example, R. Dichtel et al. proposed a Fourier mapping method
for TEM imaging of polycrystalline 2D COF films, which
allows the explicit identification of individual crystalline
nanodomains, their domain boundaries and point defects
(Fig. 14f).326 This approach provides microscopic insights into
the nanoscopic defective structures in COF-5 films with high
accuracy and computational efficiency, with the conclusion that
the defects in COF-5 films arise from broken B–O bonds formed
during polymerization. The above observations also provide
guidelines for developing defect-free 2D polymerization strate-
gies that enable the fabrication of COF thin-film devices. In
addition, from both the structural projection of 2D COFs and
associated extinction rules based on the analysis of power
spectrum or electron diffraction, the stacking order of 2D COF
layers that originate from the displacement between each other
can be unambiguously identified. Based on the extinction rules
and image contrast from basal plane structural projections of
the HFPB-TAPT 2D COF, the ABC stacking order that differs
from those widely observed eclipsed (AA) and staggered (AB)
stacking order modes for 2D COFs can be explicitly identified
(Fig. 14a).21

3D COFs exhibit significantly greater structural diversity and
complexity, which however are subject to severe crystallization
issues. Accordingly, low-dose EM imaging plays an even more
critical role in elucidating their structures even with compro-
mised crystallinity. Wang et al. used reticular chemistry design
principles to synthesize a new 3D porous COF with nbo topology
and clearly visualize the cubic crystal lattice using HRTEM
(Fig. 13h).310 As another example, Xiao et al. introduced a self-
assembly strategy driven by boron–nitrogen bonds, successfully
integrating mechanically interlocked molecules (MIM) into pure
organic polyrotaxane crystals (Fig. 13h).198 This integration
achieves new material properties that are unattainable by tradi-
tional methods and has been directly, clearly, and accurately
confirmed through cryogenic low-dose TEM with a resolution of
up to 2 Å. In comparison to the control group of non-rotaxane
polymers, polyrotaxane crystals exhibit higher flexibility and
elasticity, attributed to the coordinated micro-motion of the
rotaxane subunits. This research highlights a novel approach to
integrate MIM into pure organic crystal materials. Not only does
real space TEM imaging provide a clue to the crystalline frame-
work of 3D COFs, but it also offers a quantitative measurement of
the lattice constants. Another important and frequently observed
local structural feature that stabilizes 3D COFs is entanglement.343

The entanglement significantly alters their pore size and shape
through network interpenetration and thus affects the gas adsorp-
tion properties of 3D COFs.98,344 For example, 3D COFs synthe-
sized by Guan et al. adopt either 5-fold, 9-fold or 11-fold
interpenetrating networks, which has high selectivity for the
adsorption of CO2.201 Interpenetrated 3D COFs condensed by
PMDA and TAPM monomers exhibit both high loadings and good
release control in the application of drug delivery.345 In addition,
entanglement in 3D COFs has also been reported to introduce site
isolation and promote charge transport.346 Dogru et al. proposed

that interpenetrated networks of semiconducting COFs with elec-
tron acceptor phases like PCBM offer a promising model for
understanding and advancing efficient photovoltaic devices.347

However, the entanglement does not create additional long-
range structural order beyond the periodic 3D COF network. EM
imaging allows the direct visualization of such local structural
features in real space. Conventional TEM imaging may contribute
to the direct identification of general structural features like
crystallinity and porosity of 3D COFs from lattice contrast, as
demonstrated in studies of 3D COFs like SC-COF and NUST-5/6-
COF.348,349 In another case, Zhang et al. designed, synthesized and
imaged a 3D COF based on an 8-connected cubic node and created
an interpenetrated network with pcb topology.349 Unfortunately,
conventional TEM imaging cannot unravel fine structures and
thus does not allow the explicit identification of network entangle-
ment as typical fine local structural features in these studies.
Instead, low-dose EM imaging achieves uncompromised spatial
resolution in real space for beam-sensitive materials, which thus
allows the direct visualization and identification of not only the
interpenetrated 3D COF networks but also the multiplicity of
entanglement. For example, low-dose EM imaging allows the
direct visualization of the two-fold interpenetrated 3D imine-
linked COFs that adopt bcu networks and comprise high-valency
quadrangular prism (D4h) stereoscopic node with a connectivity of
eight (Fig. 14d).14 Such an interpenetrated structure is formed by
two identical bcu networks arranged in a staggered manner and
displaced from each other by 15.3 Å, which can be directly
visualized from the dark contrast of twin lattice fringes character-
istic for the interpenetrated networks and validated by image
simulations.

In addition, low-dose EM allows the direct visualization and
validation of topological transformation of 2D COFs. For exam-
ple, low-dose EM witnesses the topological regulation of 2D
TPE-COFs by intramolecular hydrogen bonding, which allows
the crossover between bimodal and unimodal porosities
(Fig. 14g).104 Similarly, Chen et al. systematically controlled
the topology of TetPB-COF by manipulating the ligand symme-
try, and validated the regulation of kgm and sql topologies by
low-dose EM imaging.350 These findings provide valuable
insights into the relationship between monomer geometries,
bonding characters and framework topology, which paves new
routes to evoke the interplay of these structural factors to create
the final COF framework that adopts the target topology.

EM imaging under relatively low-dose conditions also validates
diverse multiscale structural engineering rationale of COFs towards
energy-related catalysis and molecular separation applications.351,352

Yao et al. reported a morphological level structural engineering
strategy of TPB-MeOTP COFs by controlling anisotropic versus
isotropic crystal growth modes from the aspects of both nucleation
behavior and growth kinetics of colloidal COFs.327 TEM imaging
unambiguously confirms the covalent honeycomb networks of
colloidal nanoplates that enable the preparation of smooth and
homogeneous films with a controllable thickness towards effi-
cient photoelectrochemical (PEC) solar-to-hydrogen conversion
(Fig. 14h).327 Ying et al. provided an interfacial level structural
engineering strategy to multilayer COF gas separation films for
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hydrogen separation by enabling layer-by-layer interfacial
reaction of two COFs with different pore sizes to form narrowed
apertures at the COF–COF interfaces, both of which had their
crystalline networks identified by TEM imaging.353 On the other
side, Vyas et al. proposed a molecular level structural engineer-
ing strategy of 2D azine-linked COFs from hydrazine and
triphenylarene aldehydes with varying number of nitrogen
atoms and validated the in-plane molecular network by TEM
imaging.354 Through this strategy it is possible to precisely
adjust the structural and optoelectronic properties of these
azine-linked COFs towards enhanced photocatalytic hydrogen
evolution activities under visible light.

4.4. Challenges and opportunities of imaging

SPM is a widely used technique for imaging material surfaces
with atomic resolution and is suitable for low-dimensional
COFs. However, the imaging performance of SPM is mainly
limited by several factors: (i) the specimen requirements. The
marked surface roughness of COF materials may significantly
affect the SPM imaging quality and accuracy, especially for the
STM mode.355 (ii) The specimen damage. The SPM tip may
cause surface damage or property modification of the specimen
during raster scanning, especially for soft or fragile specimens
(e.g. biological samples and soft polymers). For example, both
the contact and tapping mode AFM that operate in a repulsive
tip–sample force regime may lead to considerable specimen
damage or tip wear due to high forces exerted on the surface.
Instead, non-contact (dynamic) mode AFM facilitates non-
invasive surface imaging in a tip–sample attractive force
regime, but usually with compromised lateral resolution and
scan speed.356,357 (iii) Limited field of view and scan speed.
SPM techniques, including STM, AFM, and others, have inher-
ent limitations in scan speed, which arise from the sequential
pixel-by-pixel mechanical displacements of the scanning probe
(tip) controlled electronically and time restrictions of the
associated feedback loop.357,358 Accordingly, the typical acqui-
sition time per SPM image is usually within several seconds and
several minutes, which limits the field of view (e.g. a few
microns) and applications in tracking dynamic processes.
High-speed AFM (HS-AFM) technology has been developed to
overcome the limitations of SPM characterization of COFs,
entailing fast scanning by rapidly oscillating the probe and
producing high-speed and high-resolution images of COF
materials.359 The high-speed imaging capability of HS-AFM will
contribute to studies on conformational changes of bio-
molecules, such as protein folding and unfolding processes,
and the interactions of biomolecules in different environments.
HS-AFM allows the observations of molecular-scale dynamic
structures and morphologies, such as intermolecular interac-
tions and chemical reactions. These technological advances in
HS-AFM provide critical insights into the in-depth understand-
ing of molecular structures and biological functions (Fig. 15).

The major challenge in low-dose EM imaging of COFs is to
mitigate two critical issues, (i) beam irradiation damage and
(ii) low contrast of a purely organic network,339 both of which
pose a strong restriction onto the image resolution and

achievable structural information limit. Such limitations can
be straightforwardly interpreted by the critical dose and con-

trast terms (i.e. the
DC

e

� ��1
2

and C�1 terms) in the formulation

of DLR for low-dose EM imaging.
To address the beam damage issue, there are generally two

strategies: (i) optimal imaging mode selection and (ii) specimen
treatment. Depending on the underlying beam damage mechan-
isms of COFs, either TEM or STEM imaging mode may be
selected as the optimal imaging mode to minimize beam
damage, based on the investigation of their dose-rate effects
(i.e. direct, inverse or linear effects).369 On the other side, speci-
men freezing or coating has been reported to greatly circumvent
the radiolytic beam damage of open framework materials.370

Accordingly, cryo-EM provides unprecedented opportunities to
enhance the DLR for low-dose imaging of COFs upon elevated
critical dose.371 Alternatively, graphene coating has also been
reported to enhance the beam durability of beam-sensitive
materials and thus hold great promise for imaging COFs.

To further address the low contrast issue, there are mainly
two strategies: (i) phase contrast transfer optimization and (ii)
phase contrast information recovery. The contrast for low-dose

Fig. 15 A comparison of diverse diffraction and imaging techniques in
structural determination. The advantages and disadvantages are categor-
ized as (a) specimen preparation, (b) data acquisition and processing, (c)
data interpretation and (d) data fidelity.
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phase contrast EM imaging of COFs largely depends on the
efficiency of phase contrast transfer and associated function
(pCTF). In TEM mode, the oscillating pCTF can be optimized to
enhance the contrast of COFs based on the spatial frequency of
target structural information by introducing aberrations such
as defocus and spherical aberrations or phase shift by the
phase plate.372 The contrast inversion effects arising from
aberrations may then be corrected to obtain a chemically
interpretable image that closely resembles the projected elec-
trostatic potential of the structure.373 In STEM mode, the pCTF
has a parabola shape and the phase contrast transfer at low
spatial frequency is usually more effective than that in TEM
mode and does not suffer from the contrast inversion issues of
TEM. Diverse STEM based imaging techniques exhibit rather
different pCTF, the efficiency of which has been reported to
increase in the order ABF-STEM, iDPC-STEM and electron
ptychography.374,375 Although introducing aberrations such as
defocus and spherical aberrations further improves the low
frequency phase contrast transfer in an oscillating manner, the
deployment of the phase plate at the position of the probe-
forming aperture combined with the matched illumination and
detector interferometry (MIDI) approach (i.e. MIDI-STEM and
ptychographic MIDI-STEM) allows efficient and flat contrast
transfer spanning a full range of spatial frequencies.375,376 The
recent proposal of a STEM holography configuration that
involves a diffraction-grating beam splitter even allows more
efficient and linear contrast transfer with nearly unity efficiency
at zero spatial frequency.374 Experimental implementation and
application of these leading EM techniques for enhanced phase
contrast transfer may greatly circumvent the low-contrast issues
for imaging the purely organic COF materials.

Low-dose EM imaging may also be subject to severe issues
related with the phase contrast information recovery. Firstly,
unlike the illumination condition of STEM imaging dictated by
the pixel-by-pixel raster scanning of the electron probe with large
instantaneous intensity, the continuous illumination under TEM
condition inevitably introduces beam-induced motion of the speci-
men and significantly degrades the high-frequency structural
information. The beam-induced motion has actually been
regarded as one of the major obstacles in cryo-EM and low-dose
EM imaging.258,259,377,378 Traditional image registration and
motion correction algorithms widely adopted in biomedical ima-
ging fields, such as algorithms based on cross-correlation, mutual
information or multi-resolution pyramid approaches,379 fall short
in scenarios involving low-dose EM due to the extremely high
noise and low electron dose per image frame (ca. 10�2 e Å�2

frame�1). There are generally two approaches to accurately register
noisy EM images, i.e. pre-registration image feature enhancement
and noise model embedded registration. With the former
approach, the amplitude-filtered cross-correlation algorithm has
been proved to work in low-dose imaging of crystalline open
framework materials like MOFs and zeolites.259,342,380,381 Recently,
a geometric phase correction method was proposed and performs
well in registering low-dose noisy HRTEM images.291 It selectively
retrieves the unwrapped geometric phase shift of intensive and
non-collinear Bragg spots in the spatial frequency domain of the

HRTEM image with sub-pixel precision. This enhanced informa-
tion from the image can be directly used to measure the relative
drift of image frames. With the latter approach, specific statistical
noise models can be incorporated into the image registration
process to outperform traditional methods. S. Suhr et al. presented
a general framework for registration of noisy images based on
maximum a posteriori estimation.382 Secondly, information recov-
ery from the noisy EM images by diverse denoising approaches is
essential to uncover the chemically interpretable structural infor-
mation of COFs. Besides the involvement of traditional denoising
image filters, developing AI-enhanced high-performance denoising
frameworks has attracted increasing attention recently. C. Ta et al.
proposed a self-supervised Poisson2Sparse algorithm combined
with a dictionary-learning approach, which greatly enhances the
SNR of noisy images.383 J. Byun et al. implemented a PGE-net for
the estimation of the Poisson noise level, which was subsequently
subjected to a denoising FBI-net after generalized Anscombe
transformation (GAT).384 J. M. Ede et al. employed an atrous
convolutional encoder-decoder by ML to improve the signal-to-
noise ratio (SNR) of electron micrographs.385

Consistently, selecting the most suitable characterization
tool to unravel the molecular structure of COF materials has
posed a formidable challenge in decision-making. By conduct-
ing a comprehensive comparison of both the strengths and
limitations associated with various diffraction and imaging
techniques (such as SCXRD, PXRD, 3D ED, SPM, and EM), it
becomes possible to strategically select an appropriate struc-
tural elucidation technique for the specific objectives of the
study, particularly in relation to crystalline COFs of varying
types and sizes. This systematic approach ensures that the
chosen technique aligns with the research goals, facilitating a
more targeted and insightful investigation into the structural
characteristics of COFs.

Nevertheless, it is crucial to acknowledge the numerous
precautions, artefacts, and limitations associated with these
structural elucidation techniques for characterizing materials
including COFs. Specifically, it is important to recognize that
specimen preparation can introduce artefacts that may impact
the accuracy of structural elucidation. These artefacts can arise
from various mechanical, chemical, physical, and ionic techni-
ques utilized during specimen preparation, leading to a range of
primary events such as deformation, cracking, defect formation,
etching, segregation, amorphization, and phase transformation.
Additionally, secondary events including redeposition and
damage caused by secondary electrons, ions, and thermal effects
can further contribute to the introduction of artificial morpholo-
gical, compositional, structural, and electrical alterations. Careful
discrimination is required to distinguish these artificially
induced alterations from intrinsic features of the specimen.
Several examples illustrating these effects are schematically
depicted in Fig. 16a–f.360–363,386,387 Recent advancements in speci-
men preparation techniques have shown significant success in
mitigating these artefacts in various structural elucidation meth-
ods. For instance, cryo-FIB techniques have gained popularity for
fabricating delicate thin specimens, such as COFs, for ED and EM
applications. This approach effectively minimizes ionic damage
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that can introduce artefacts. Similarly, cryo-ultramicrotomy has
been reported as a method to prepare fragile organic specimens,
avoiding surface effects and mechanical disturbances that may
occur with conventional plunge freezing techniques.363

It is important to exercise caution when working with SPM
due to the presence of diverse types of artifacts including probe
artefacts, scanner artefacts and image processing artefacts
(Fig. 16i–k). Blunt, broken, contaminated, or double probes

are common factors that can introduce artificial image features
or distortions, potentially leading to incorrect feature sizes and
shapes, spurious repeating patterns, and misrepresented side
topology in SPM applications. Sharp asperities require equally
sharp or sharper tips for accurate imaging. Blunt tips can yield
incorrect estimates of thin film coverage, as shown in
Fig. 16i,364 where a blunt tip creates the illusion of higher
coverage due to multiple duplicated surface features.

Fig. 16 (a)–(f) Artefacts or precautions introduced by diverse specimen preparation techniques. (a) Artefacts in ultra-thin sections prepared by using an
ultramicrotome. The ribbon consists of several sections separated by folded zones (red arrows). Cutting artefacts and deformations occurred when the
ribbon was mounted on the grid, including folds (white asterisks), wrinkles (red asterisks), and tearing (white arrow). Reproduced with permission.360

Copyright 2005, Elsevier. (b) FIB curtaining artefacts induced by spatial variation of the sputter rate of the specimen. Modified with permission.360

Copyright 2009, SPIE. (c) Artificial intergranular crack (marked by a white arrow) of a polycrystalline ceramic introduced by ion milling. Reproduced with
permission.361 Copyright 2022, Springer Nature. (d) Pseudo-clusters resulting from chemical fixation-induced artifacts. Modified with permission.
Copyright 2015, Springer Nature. (e) The artifacts arising from particle aggregation due to liquid drying. Reproduced with permission.362 Copyright 2010,
Springer. (f) The background’s contrast variation corresponds to imperfections induced by cryo-ultramicrotomy. Modified with permission.363 Copyright
2018, Microscopy Society of America. (g) Comparison of ED data collection under different temperatures (room temperature vs liquid nitrogen
temperature). Higher collection temperature results in degraded high frequency diffraction spots. Reproduced with permission.245 Copyright 2019,
American Chemical Society. (h) Comparison of difference electrostatic potentials derived by structure refinement procedures based on kinematical and
dynamical approximations. The former DESP is less well defined. Reproduced with permission.254 Copyright 2021, Springer Nature. (i) Image artifacts
caused by a blunt tip (right) rather than a sharp one (left) in SPM. Reproduced with permission.364 Copyright 2019, Springer. (j) Edge overshoot (left)
caused by scanner artefacts in contrast to a normal image (right). Reproduced with permission.365 Copyright 2021, Multidisciplinary Digital Publishing
Institute. (k) Artificial object shape modification with (right) or without (left) a low-pass filter. Modified with permission.366 Copyright 2010, Oxford
University Press. (l) Crystal phase misidentification due to image artifacts caused by the presence of threefold astigmatism aberration and proved by
specimen rotation. Reproduced with permission.367 Copyright 2020, Science Advances. (m) Artificial in-channel contrast of an HRTEM image taken on a
zeolite crystal referred from the structural projection. Modified with permission.368 Copyright 1990, Elsevier. (n) Anisotropic structural information
degradation in a HRTEM image arising from specimen vibration (lower) compared with the original structure (upper). The polycrystalline nature of the
crystal can hardly be identified. Modified with permission.306 Copyright 2014, American Chemical Society.
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Additionally, issues related to scanner calibration, nonlinearity,
scanner bow, creep problems, and hysteresis-induced edge
overshoot can critically impact the acquired images. For
instance, as the scanning speed increases in AFM near the
edges, artefacts become more pronounced. This is attributed to
the feedback controller’s response to sudden changes in topo-
graphy, leading to overshoot phenomena. These artefacts have
the potential to impact the accurate characterization of the
sample surface and can be mitigated through improvements in
the feedback controller and similar approaches.365 It is impor-
tant not to overlook the influence of image processing techni-
ques, such as levelling and filtering processes. Levelling based
on polynomial fitting, low-pass filters, and Fourier filters is
commonly employed, but these approaches can easily intro-
duce artificial or distorted features in SPM images (Fig. 16k).366

Similar to SPM imaging, caution must also be exercised
when interpreting artefacts in TEM imaging. These artefacts
can arise not only from image processing techniques but also
from inherent issues in TEM imaging algorithms, methods,
and techniques (Fig. 16l and m).306,367,368 For instance, image
distortions resulting from aberrations, particularly those exhi-
biting rotational anisotropy, can introduce misleading or mis-
interpreted structural information. A specific example is the
presence of threefold astigmatism (i.e., A2) with pronounced
rotational anisotropy, which has been reported to cause critical
challenges in correctly identifying crystal phases.367 Insuffi-
cient understanding of the underlying mechanisms of contrast
transfer in a specific TEM imaging technique may overlook
artefacts introduced by inadequate contrast transfer of struc-
tural information at different spatial frequencies. This lack of
understanding can lead to misinterpretation of artificial con-
trast in empty channels, pores, and voids within various
materials, significantly hindering the accurate determination
of structural information for guest species inside. Moreover, it
is important to acknowledge the potential challenges arising
from anisotropic degradation of structural information, caused
by factors such as vibration or drifting. These factors can
introduce ambiguities and create confusion when distinguish-
ing between the polycrystalline and single crystalline nature of
nanowires (NWs) (Fig. 16n).388 The degradation selectively
affects structural information along the direction of vibration
or drifting, resulting in the presence of only one set of lattice
fringes, even in polycrystalline NWs.

5. Outlook and perspective

In summary, the evolution of the structural design of COFs has
been traced from its nascent beginnings in scientific intuition
and empirical trial-and-error to its current state of sophistication,
characterized by the deployment of diverse AI tools and high-
throughput methods in an application-oriented approach. By har-
nessing the power of ML, researchers can transcend the limitations
imposed by the underlying principles of reticular chemistry and
topological science (e.g. stoichiometric network construction), and
achieve feats that were once thought impossible. By developing

AI-based algorithms for material design and discovery, the success-
ful prediction of COFs can be significantly accelerated through
search, reasoning, planning, and knowledge representation. These
algorithms enable the prediction of new topologies, optimization of
COF structures, and accurate evaluation of their properties. By
overcoming the challenges in ML concerning the material data
relevance, completeness, and standardization, this approach has
the potential to greatly expedite the discovery and design of high-
performance COF materials. To this end, the emerging demand for
innovations in structural characterization tools stems from such
rapid advances in the field of COFs, which require high-throughput,
comprehensive, and nondestructive structural elucidations. Recent
research outbursts in high-throughput serial rotation electron dif-
fraction (SerialRED) and diverse low-dose 4D-STEM imaging tech-
niques are instrumental in pioneering this cutting-edge field.389–391

List of acronyms and abbreviations

ABF Annular-bright-field
AEMs Arylene-ethynylene macrocycles
AFM Atomic force microscopy
AHPs Adsorption-driven heat pumps
AI Artificial intelligence
ANN Artificial neural networks
ASA Accessible surface area
ATS Amphetamine-type stimulants
Auto ML Automated machine learning
AVMs Arylenevinylene macrocycles
BERT Bidirectional encoder representations from

transformers
BF Bright-field
BTA Benzene-1,3,5-tricarbaldehyde
cAFM Conductive atomic force microscopy
CBED Convergent beam electron diffraction
CCS Carbon capture and storage
CNN Convolutional neural network
CNS Carbon nanosolenoid
CPD Contact potential difference
cRED Continuous rotation electron diffraction
DBAs Dehydrobenzoannulenes
DCs Deliverable capacities
DDC Direct detection cameras
DFT Density functional theory
DKL Deep kernel learning
DLR Dose-limited resolution
DQE Detective quantum efficiency
DT Decision tree
ECAFM Electrochemical atomic force microscopy
ED Electron diffraction
EDS Energy dispersive X-ray spectroscopy
EELS Electron energy loss spectroscopy
ELN Electronic lab notebook
EMPAD Electron microscope pixel-array detector
EPWF Exit-plane wave function
ETTA 1,1,2,2-Tetrakis(4-aminophenyl) ethene
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FIA Feature importance analysis
FBTA-8CHO ((3,6-Difluorobenzene-1,2,4,5-

tetrayl)tetrakis(azanetriyl))octakis([1,1 0-
biphenyl]-4-carbaldehyde)

GA Genetic algorithm
GAN Generative adversarial network
GAT Generalized Anscombe transformation
GBR Gradient boosting regression
GBs Grain boundaries
GCMC Grand-canonical Monte Carlo
GCOFs Genomic covalent organic frameworks
GNN Graphical neural network
GPT Generative pre-trained transformer
GSUs Genetic structural units
HCA Hierarchical cluster analysis
HFPTP 2,3,6,7,14,15-Hexakis(4 0-

formylphenyl)triptycene
HHTP Hexahydroxytriphenylene
HOPG Highly oriented pyrolytic graphite
HPDs Hybrid pixel detectors
HRTEM High resolution transmission electron microscopy
HypoCOF Hypothetical covalent organic framework
HS-AFM High-speed atomic force microscopy
iDPC Integrated-differential-phase-contrast
KH Henry’s law constant
KPFM Kelvin probe force microscopy
LCD Largest cavity diameter
LIM Local interpretability methods
MAPS Monolithic active pixel sensor
MCOFs Metallo-COFs
MGI Materials genome initiative
MHPs Metal halide perovskites
MIDI Matched illumination and detector interferometry
MIM Mechanical interlocked molecules
ML Machine learning
MM Molecular mechanics
nc-AFM Non-contact atomic force microscopy
NPs Nanoparticles
OMe-TPBP 2,20-Dimethoxyl-3,30,5,50-tetrakis(4-

aminophenyl)biphenyl
PA p-Phenylenediamine
PBR Peak-to-background ratio
PCA Principal component analysis
PCR Principal components regression
pCTF Phase-contrast-transfer-function
PDA p-Phenylenediamine
PEC Photoelectrochemical
PEO Poly(ethylene oxide)
PID Proportional-integral-derivative
PLS Partial least squares
post-SM Post-synthetic modification
pre-SM Pre-synthetic modification
PXRD Powder X-ray diffraction
QM Quantum mechanics
QReaxAA Quasi-reactive assembly algorithms
RCSR Reticular chemistry structure resource

RDF Random decision forests
RED Rotation electron diffraction
RF Random forest
SBUs Secondary building units
SCXRD Single crystal X-ray diffraction
SHAP Shapley additive explanations
SMILES Simplified molecular-input line-entry system
SNR Signal-to-noise ratio
SPM Scanning probe microscopy
SPV Surface photovoltage
STEM Scanning transmission electron microscopy
STM Scanning tunneling microscopy
STS Scanning tunneling spectroscopy
SVM Support vector machine
TABPM Tetrakis(4-amino biphenyl)methane
TAM Tetra-(4-anilyl)methane
TAPA Tris(4-aminophenyl)amine
TAPB 1,3,5-Tris(40-aminophenyl)benzene
TAPPy 1,3,6,8-Tetrakis(4-aminophenyl)pyrene
TAPT 1,3,5-Tris(4-aminophenyl)triazine
TBPS Tetra(4-dihydroxyborylphenyl)silane
TBTANG Tribromotrioxaazatriangulene
TCB Trichlorobenzene
TDA Topological data analysis
TFB 1,3,5-Triformylbenzene
TFMB 1,2,4,5-Tetrakis[(4-

formyphenoxy)methyl]benzene
TFP 1,3,5-Triformylphloroglucinol
TFPA Tris(4-formylphenyl) amine
TFS Tetra(4-formylphenyl) silane
THF Tetrahydrofuran
TMDs Transition metal dichalcogenides
TPDH Terephthalic dihydrazide
TRIF Tri-(4-formacylphenoxy)-1,3,5-triazine
UHV Ultra-high vacuum
Va Available pore volume
VAE Variational auto-encoder
VF Helium void fraction
r Adsorbent density
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A. Kühnle, M. Reichling, W. A. Hofer, J. V. Lauritsen and
F. Besenbacher, Phys. Rev. B: Condens. Matter Mater. Phys.,
2008, 78, 045416.

294 M. V. Salapaka and S. M. Salapaka, IEEE Control Systems
Magazine, 2008, 28, 65–83.

295 I. Notingher and A. Elfick, J. Phys. Chem. B, 2005, 109,
15699–15706.

296 D. P. Allison, N. P. Mortensen, C. J. Sullivan and M. J. Doktycz,
Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnology., 2010, 2,
618–634.

297 B. Voigtländer, Scanning probe microscopy: Atomic force micro-
scopy and scanning tunneling microscopy, Springer, 2015.

298 H.-J. Güntherodt and R. Wiesendanger, Scanning tunneling
microscopy I: general principles and applications to clean and
adsorbate-covered surfaces, Springer, 1992.

299 T. Sulchek, R. Hsieh, J. Adams, G. Yaralioglu, S. Minne,
C. Quate, J. Cleveland, A. Atalar and D. Adderton, Appl.
Phys. Lett., 2000, 76, 1473–1475.

300 D. Tranchida, S. Piccarolo and R. A. C. Deblieck, Meas. Sci.
Technol., 2006, 17, 2630.

301 J. Chen, J. Ge, B. K. Chen, Z. Gong, C. Zhou, C. Shi, C. Ru,
H. Pu, Y. Peng and S. Xie, 2018.

302 T. Ando, Biophys. Rev., 2017, 9, 421–429.

Chem Soc Rev Review Article

Pu
bl

is
he

d 
on

 1
5 

D
ec

em
be

r 
20

23
. D

ow
nl

oa
de

d 
by

 D
al

ia
n 

In
st

itu
te

 o
f 

C
he

m
ic

al
 P

hy
si

cs
, C

A
S 

on
 1

2/
18

/2
02

3 
2:

16
:5

7 
A

M
. 

View Article Online

https://doi.org/10.26434/chemrxiv-2021-4jh14
https://doi.org/10.26434/chemrxiv-2021-4jh14
https://doi.org/10.1016/B978-008044163-4/50014-0
https://doi.org/10.1016/B978-0-323-85669-0.00069-6
https://doi.org/10.1016/B978-0-323-85669-0.00069-6
https://doi.org/10.1142/9781848164666_0001
https://doi.org/10.1142/9781848164666_0001
https://doi.org/10.1039/d3cs00287j


Chem. Soc. Rev. This journal is © The Royal Society of Chemistry 2023

303 S. F. Pratama, A. K. Muda, C. Yun-Huoy, R. Carbo-Dorca
and A. Abraham, Int. J. Comput. Inf. Syst. Ind. Manag. Appl.,
2018, 10, 57–67.

304 J. Wang, Y. Zhu, G. Zhuang, Y. Wu, S. Wang, P. Huang,
G. Sheng, M. Chen, S. Yang, T. Greber and P. Du, Nat.
Commun., 2022, 13, 1239.

305 G. Q. Lyu, Q. S. Zhang, J. I. Urgel, G. W. Kuang, W. Auwarter,
D. Ecija, J. V. Barth and N. Lin, Chem. Commun., 2016, 52,
1618–1621.

306 Y. Peng, Y. Huang, Y. Zhu, B. Chen, L. Wang, Z. Lai,
Z. Zhang, M. Zhao, C. Tan, N. Yang, F. Shao, Y. Han and
H. Zhang, J. Am. Chem. Soc., 2017, 139, 8698–8704.

307 C. Chen, T. Joshi, H. Li, A. D. Chavez, Z. Pedramrazi, P.-
N. Liu, H. Li, W. R. Dichtel, J.-L. Bredas and M. F.
Crommie, ACS Nano, 2018, 12, 385–391.

308 B. Liang, Y. Zhang, C. Leist, Z. Ou, M. Položij, Z. Wang,
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