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Abstract Methanol-to-olefins, as a promising non-oil
pathway for the synthesis of light olefins, has been
successfully industrialized. The accurate prediction of
process variables can yield significant benefits for
advanced process control and optimization. The challenge
of this task is underscored by the failure of traditional
methods in capturing the complex characteristics of
industrial processes, such as high nonlinearities, dynamics,
and data distribution shift caused by diverse operating
conditions. In this paper, we propose a novel hybrid
spatial-temporal deep learning prediction model to address
these issues. Firstly, a unique data normalization technique
called reversible instance normalization is employed to
solve the problem of different data distributions.
Subsequently, convolutional neural network integrated
with the self-attention mechanism are utilized to extract the
temporal patterns. Meanwhile, a multi-graph convolutional
network is leveraged to model the spatial interactions.
Afterward, the extracted temporal and spatial features are
fused as input into a fully connected neural network to
complete the prediction. Finally, the outputs are
denormalized to obtain the wultimate results. The
monitoring results of the dynamic trends of process
variables in an actual industrial methanol-to-olefins
process demonstrate that our model not only achieves
superior prediction performance but also can reveal
complex spatial-temporal relationships using the learned
attention matrices and adjacency matrices, making the
model more interpretable. Lastly, this model is deployed
onto an end-to-end Industrial Internet Platform, which
achieves effective practical results.
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1 Introduction

Since 2010, the methanol-to-olefins (MTO) process has
been commercialized in China as a novel technique for
producing light olefins (e.g., ethylene and propylene)
from non-petroleum feedstock [1,2]. Currently, 16
industrial MTO units with a total production capacity of
~9300 kt-a~! have come into operation, making MTO one
of the leading industrial routines for light olefins produc-
tion [2]. However, the MTO process still encounters
challenges such as intuitive decision-making, high energy
consumption, and low levels of automation. In light of
Industry 4.0 and the area of Big Data [3], the intelligent
development of MTO processes is imperative to put on
the agenda. Indeed, artificial intelligence (AI) technolo-
gies, such as machine learning and deep learning, have
been successfully applied in chemical engineering
research [4—6]. For example, Wang et al. [7] proposed a
data-driven framework for optimizing the operation of the
industrial MTO process using real-world industrial data
sets. Zhang et al. [8] developed a method to predict and
optimize the performance of industrial MTO reactors by
integrating numerical simulations with machine learning
techniques. Beyond that establishing a robust prediction
model is of paramount importance for modern chemical
plants, as it can provide valuable insights into future
trends of process variables and play a crucial role in fault
diagnosis, process monitoring, operation control, and
optimization [9,10]. In this case, soft sensor technology,
which estimates the key quality variables that are difficult
to measure based on the easily measured process
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variables, has been extensively studied [11—13]. In addi-
tion, predicting the future states of both key process varia-
bles and measurable process parameters simultaneously
can effectively facilitate decision-making for operators.
For example, when abrupt changes in key variables are
predicted, operators can promptly trace the source and
take appropriate actions based on predicted values of the
related process parameters. From this perspective, this
work intends to forecast the dynamic trends of the multi-
process variables by constructing a multivariate time
series prediction model for industrial MTO processes.
However, the accurate prediction remains a formidable
challenge due to the dynamic spatial-temporal correla-
tions of the process variables [14,15]. Besides, in
practice, timely adjustment to operating conditions is
necessary to cope with market fluctuations or external
disturbances. This makes the process data no longer
follow the same distribution, which further exacerbates
the difficulty of modeling and consequently deteriorates
the prediction performance [16].

Several methods, including the mechanism models and
the data-driven models, have attracted tremendous con-
cerns from researchers for decades. Due to the intricate
nature of modern industrial chemical processes and the
high dimensionality of process variables, mechanism
models that rely on the detailed reaction mechanism or
extensive prior knowledge are always tricky and even
inadequate [10,17]. Classical statistical methods, such as
vector auto-regression (VAR) and auto-regressive integra-
ted moving average, have been also proven unsuitable for
multivariate time series prediction due to their inability to
account for sophisticated dynamic nonlinear relationships
[18]. With the rapid development of advanced monitoring
sensors and distributed control system, massive amounts
of process data can be stored, making data-driven models
represented by machine learning and deep learning
become the mainstream of current research [19]. Up to
now, data-driven models have been extensively employed
and achieved satisfactory prediction performances for
multiple industrial processes [13,14,20—22]. Among
them, recurrent neural networks (RNN) [23], long short-
term memory (LSTM) [24], gated recurrent unit (GRU)
[25], and convolutional neural network (CNN) [26] are
commonly used methods. For example, LSTM and GRU
have demonstrated successful applications in the field of
electric load prediction [20]. Two CNN models are
utilized for operational trend prediction in an industrial
methanol production unit [21,27]. Although satisfactory
prediction performances have been achieved, the extrac-
tion of long-term dependencies remains a challenge [28].
Thanks to the flexible approach in selecting and
representing the information of time series, the attention
mechanism [29] has been widely adopted for multivariate
time series prediction, demonstrating a solid capability
for long-term feature extraction [30,31]. Besides, self-
attention (SA) [32], as a variant of the attention

mechanism, can dynamically adjust the importance of
each time series and facilitate capturing the interdepen-
dencies among multivariate time series [33—35]. For
example, Huang et al. [34] proposed a dual SA network
(DSANet) for multivariate time series prediction, in
which the SA module was used to capture the dependen-
cies among variables. The experimental results demons-
trated that DSANet achieved state-of-the-art performance.
Additionally, owing to the exceptional spatial modeling
capabilities, graph convolutional networks (GCN) [36]
have shown remarkable competitiveness in multivariate
time series prediction [37-39]. Specifically, the process
variables can be viewed as nodes in the graph, and the
edges described by the adjacency matrix can be interpre-
ted as the correlations among process variables. The cons-
truction of the adjacency matrix can be achieved through
diverse approaches, including Granger causality [40],
transfer entropy [41], dynamic time warping (DTW) [42],
and Pearson correlation (PC) [41]. Furthermore, consi-
dering the dynamic spatial correlations between nodes,
capturing the spatial dependency with a fixed adjacency
matrix is particularly arduous. Therefore, GCNs with
adaptive adjacency matrices have been proposed and
achieved outstanding prediction performances [38,43].

Intuitively, ensemble models can potentially exhibit
complementary advantages by organically integrating
these deep learning models. Inspired by this idea, a novel
ensemble model named CSA-MGCN is proposed in this
study, which incorporates a data normalization technique,
CNN, SA mechanism, and GCN. Data distribution shift
poses a significant challenge to the multivariate time
series prediction and inevitably compromises the
robustness of the model. Therefore, a data normalization
method called reversible instance normalization (RevIN)
[44] is first adopted to mitigate the influence of nons-
tationary information. Then a deep learning component
that combines CNN, SA mechanism, and GCN is utilized
to model the spatial-temporal dependencies of process
variables. Experimental results of an industrial MTO
process testified our model outperformed the baseline
models. Furthermore, this model is applied to an
Industrial Internet Platform to verify its effectiveness and
practicability. The primary contributions of this work are
delineated as follows:

(1) We proposed a novel ensemble deep learning
framework to simultaneously address the issues of
temporal shift, nonlinearity, and dynamics inherent in
industrial processes. Experimental results demonstrated
that each block within the ensemble model contributed
effectively to the overall outcome.

(2) We constructed a module with integrated CNN and
SA mechanism to effectively extract temporal features.
Experimental results confirmed the capability of this
approach in capturing both long-term and short-term
temporal patterns.

(3) We employed both static and adaptive strategies to
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model spatial dependencies from different perspectives.
Experimental results validated that the adaptive strategy
could reveal undiscovered relations, which were not
discernible through the static strategy, thereby enhancing
the efficacy of correlation extraction.

(4) We evaluated our proposed model on an actual
industrial MTO process and achieved state-of-the-art
results, and then deployed it onto an end-to-end Industrial
Internet Platform.

2 Experimental methods

2.1 Model architecture

In this section, the architecture of the proposed model is
elaborated. As depicted in Fig. 1, the data in a sliding
window is first processed by RevIN [44] to mitigate the
influence of data distribution shift. Then the information
in temporal and spatial dimensions is treated with
different methods. Specifically, temporal dependencies
are captured by integrating CNN and the SA mechanism,
while spatial dependencies are extracted through the
utilization of the multi-graph convolution network
(MGCN). Subsequently, the extracted features from both
temporal and spatial dimensions are fused as input to a
fully connected (FC) network for final prediction. Lastly,
the output is denormalized by RevIN again to obtain the
final results.

2.1.1 RevIN for addressing the data distribution shift

Deep learning-based prediction models always require
data to satisfy the assumption of the same distribution
[44], yet in practical industrial plants, operation always
needs to adapt to the dynamic market demands or

unknown external disturbances, resulting in nonstationary
characteristics. Thus the premise of identical data distri-
bution is no longer tenable, inevitably compromising the
accuracy of the model. Recently, RevIN, a data normaliza-
tion method proposed by Kim et al. [44], has emerged as
an effective solution to address the distribution shift
problem and is easily applicable to other prediction
models at a minimal cost. Hence, in this work, RevIN is
leveraged to suppress nonstationary information at the
input layer and then restore it at the output layer.

First, the mean and standard deviation of x” € R” of the
input data are calculated according to Egs. (1) and (2):
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where y,8 € R¥ are learnable parameters. The normalized
data are then fed as input into the following deep learning
models.

2.1.2  Combined CNN and SA mechanism for extracting
temporal features

The strengths of CNN and SA mechanism are synergis-
tically employed to fully extract the temporal patterns in
the data, as depicted in Fig. 1. It mainly comprises three
gated linear units (GLU) [45] with different convolutional
kernels (1 x S1, 1 x 82, and 1 % §3) and a SA mechanism.
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Fig. 1 The framework of the CSA-MGCN model.
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Since the size of the convolutional kernel has a significant
influence on the model performance, an excessively large
size may result in the loss of local information while an
overly small size may fail to fully extract correlations.
Therefore, in this study, S1, S2, and S3 are designed as 1,
L, and T respectively to capture features at different time
scales; here L is a hyperparameter and 7 is the time
window size. Specifically, kernel (1 x 7) is utilized to
extract time-invariant patterns from all time steps of the
univariate time series, and kernel (1 x 1) is used to extract
the trends and the interactions of data within each
individual time step, providing a dynamic weight for each
time step to enhance the nonlinear representations [46],
and the local temporal patterns are modeled using the
kernel (1 x L) [34]. Then, the learned multi-scale
temporal patterns of different levels are concatenated to
yield the ultimate representation:

C*™ = Concat(C', C?, C), 4)
where the “Concat” denotes the tensor concatenation
operation. C°" is the final representation of multi-scale
GLU, {Cl, 2, C3} are scale-specific representations. In
addition, to tackle the issue of gradient vanishing, a
residual connection is established between the original
input and the C°™. Then input S™P" of the SA mechanism
is obtained by:

S = Concat(X, C™). 5)
Compared to RNNs, the SA mechanism is more adept
at capturing long-term dependencies in a univariate time
series by assigning different weights to each timestamp
regardless of the distance [32]. Therefore, following
CNN, a multi-head SA mechanism is designed to further
capture the temporal patterns. In general, the SA
mechanism consists of multiple attention layers running
in parallel, and for each single head SA layer, the
attention weight can be obtained by conducting the scaled
dot-product and softmax normalization with query vector
(0), key vector (K), and value vector (V) [32].

Q — Sinputh’ K — SinputwK, V — Sinputh’ (6)
Attention (Q, K, V) = Soft (QKT)V (7)
cention SN, = DolItmax B
vd,

where W2, WK, and W" are trainable matrices and 1/ Vd,,
is the scaling factor.
Multi-head attention projects O, K, and V through 4

different linear transformations, followed by the

concatenation of different attention results:
Head, = Attention(QW?, KW/, VW), (8)
Multihead (Q, K, V) = Concat (Head,, Head,, ---, Head,) W°,
)

where W2, WX WY € R%4 and W € R4 are parameters
to learn, and d), = d, /h. A residual connection followed by
a layer normalization is then inserted [32].

2.1.3 MGCN for extracting spatial features

To construct a graph, process variables can be treated as
nodes and pairwise inter-variable correlations as edges.
The primary challenge of applying GCN to multivariate
time series prediction lies in constructing a suitable
adjacency matrix that can effectively capture the spatial
correlation. Most GCNSs reported in the literature only use
predefined adjacency matrices, but such static adjacency
matrices fail to describe all possible correlations between
process variables. Therefore, this work proposes the
MGCN that integrates static and adaptive strategies to
adequately model spatial correlations from diverse
perspectives.

The interactions among process variables are typically
fixed during the stable operation of an industrial process.
In this case, the graph structure can be represented by a
static adjacency matrix. Here, instead of simply using a
single adjacency matrix, three adjacency matrices are
constructed from different perspectives using DTW,
maximal information coefficient (MIC), and PC. For any
two variables, DTW is used to measure their similarity,
MIC models their nonlinear association, and PC detects
their linear relationships. Subsequently, a fused graph is
obtained by element-wise weighted summation of the
adjacency matrices from these three graphs. To ensure the
normalization of the fusion result, Softmax is added to the
weight matrix [47]. As described in Egs. (10)—(12), the
final adjacency matrix is obtained through a weighted
sum of all three static adjacencies:

I -
F=Y" wA, (10)

Wi, Wy, ...,w; = Softmax(w, w,, ...,w)), (11)
A=I1-D"?AD™", (12)

where A € R™¥is the Laplacian matrix, A € R¥V is the
fused adjacency matrix, D e R™V is the degree matrix,
I € R is the identity matrix, N is the number of nodes, /
is the number of the static adjacency matrix, and F is the
result of graph fusion.

The interactions among process variables will change
for nonstationary stages of industrial production.
Therefore, a graph learning module is applied to generate
an adaptive matrix to automatically model the
interactions. It has been reported that the adaptive
adjacency matrix can be obtained by randomly initializing
two mnode embedding dictionaries with learnable
parameters E|, E, € R"P [38].

A, = Softmax (ReLu(E, E})), (13)

where £, is the source node embedding and £, is the
target node embedding. The spatial dependency weights
can be obtained by multiplying £, and E,. Then the ReLU
and Softmax functions are applied to eliminate the weak
connections and normalize the adaptive adjacency matrix.
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During training, £, and E, will be updated automatically.

After determining the adaptive adjacency matrix, GCN
performs feature aggregation of neighboring nodes:

7 =AXW, (14)
where W denotes the trainable parameters. X € RVM is
the attribute information matrix, and Z refers to the
output of GCN layers, N stands for the number of nodes,
and M represents the feature dimension.

The spatial features extracted from MGCN are then
fused with temporal features extracted from the SA
mechanism, serving as input to a FC network to complete
the prediction:

y = FC (Otemporal + OSpatial) ’ (1 5)

where Oy, denotes the extracted temporal features
and O, represents the extracted spatial features.
Lastly, the model output y is denormalized [44]:

50 —

- Y =B i
= Var[xﬁ{’,)]+8-(l“—)+E, [xf{',) , (16)

Vi
where $? is the ultimate prediction of the model.

2.2 MTO process

MTO process can convert methanol to light olefins using
catalysts under a suitable operating temperature and
pressure. The remarkable catalytic performance of SAPO-
34 zeolite with CHA structure has rendered it a widely
used catalyst in industrial MTO processes [1,2].
However, the formation of coke is unavoidable during the
reaction, eventually leading to the deactivation of
catalysts [1,2]. To maintain continuous production, timely

AI1603G AI16031

regeneration of the coked catalysts is imperative for
restoring their activity. Therefore, in industrial MTO
processes, as sketched in Fig.2, the adoption of a
fluidized bed reactor-regenerator is embraced [1,2].
Figure 2 presents a simplified flow diagram of the
reaction and regeneration unit in a practical MTO plant in
China with the layout of key sensors. It mainly contains
five operating parts: methanol feed system, catalyst
circulation system, reactor unit, regenerator unit, and
product analyzer system. The gasified methanol enters the
reactor and reacts with the regenerated catalyst, and then
the product gases are sent to the product analyzer for
further analysis. Meanwhile, the coked SAPO-34
catalysts are recycled back to the regenerator via the riser
and subjected to a combustion process with air to restore
the catalyst activity before being recycled into the reactor.
Yields of ethylene and propylene and 24 factors
influencing variables, including operation temperatures,
pressures, feed flows, and catalyst properties, are
collected as inputs to the model, and their dynamic trends
are then estimated. A total of 4463 samples, with a
sampling interval of 2 h, are collected. The data set is
split in chronological order with the training set (80%),
validation set (10%), and test set (10%). The k-nearest
neighbor imputation method is employed to address a
limited number of missing values [48].

Table 1 provides a concise description of the selected
process variables, and these process variables can be
classified into five main categories: variables related to
the product, variables related to the temperature, variables
related to the pressure, variables related to the catalyst,
and variables related to feedstock (e.g., methanol feed,
steam feed, and C4 feed).
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Fig. 2 Flow diagram of the reaction-regeneration unit of the MTO process.
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Table 1 Description of the selected process variables
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Variables Description Unit |[Variables Description Unit
F11401B  Methanol feed th™! |[TIC1101  Reactor temperature °C
TI1111 Dilute phase temperature of the reactor °C PI1101D  Reactor pressure MPa
WI1102 Catalyst inventory in the reactor t WIC1101  Catalyst density in the reactor t
DI1105A Catalyst density of the dense phase in the reactor kg'm™ |[TI1134A  Regenerator temperature °C
PIC1110 Regenerator pressure MPa |[|WI1105 Catalyst inventory in the regenerator t
WZ1101 Catalyst inventory in the reactor and regenerator t FIC1104B  Upper stripping steam feed Nm3-h™!
FIC1105B Lower stripping steam feed Nm?-h™!|[FIC1113B  Steam delivery feed Nm3-h™!
ZI11102  Value of slide valve of regenerated catalysts % DI1106 Regenerated catalyst density kg'm3
TII119  Regenerated catalyst temperature °C TI1135B  Lower stripping temperature °C
FICI121A Air feed Nm*-h7!|[FIC1001  C4 feed kg-h!
FIC1103 Nitrogen feed Nm?-h™!||Q_PDI1113 Catalyst circulation rate th
PDI1113 Pressure drop of the slide valve of regenerated catalysts ~ kPa |[PDI1106  Pressure drop of the standby valve of coked catalysts ~ kPa
AI1603G Ethylene yield % IAI16031  Propylene yield %

2.3 Training details

All the experiments conducted in this work are carried out
on a Linux-base system with Inter® Xeon Gold 5222
CPU (3.80 GHz), 8 GB RAM, and GeForce RTX 2080Ti,
and the codes are implemented by Python 3.7 with
PyTorch-GPU 1.3.1. Adam optimizer is adopted to train
the model. The learning rate is set to 0.001, which
reduces by 0.1 every 20 epochs. The number of training
iterations is 500 epochs. Moreover, early stopping, the
patience of 60, is implemented to avoid overfitting. The
random seed is set to 2022 for the reproducibility of the
experimental results. The prediction horizon 4 spans from
1 to 5, indicating the prediction time ranging from 2
to 10 h.

2.4 Evaluation metrics

Two commonly used evaluation metrics, mean absolute
error (MAE) and mean absolute percentage error
(MAPE), are employed to evaluate the performances.
MAE measures the overall error of prediction results,
while MAPE reflects the degree of deviation. Generally, a
lower value indicates better model performance.

1 N .
MAE= = > =9, (17)
_ 1 Ny =9
MAPE = NZ,»=1‘_" (18)

Vi
where J; is the predicted value, y; is the ground truth
value, and N is the number of the test data set.

2.5 Baseline models

Several baseline models have been selected to highlight
the performance of our model, which can be roughly
categorized into three groups:

(1) Conventional methods: typical statistics method
VAR and RNN variants (LSTM and GRU).

(2) Attention-based methods: LSTNet [49], which
integrates CNN, RNN, and attention mechanism to
effectively extract the short-term and long-term patterns
for time series; and DSANet [34], which utilizes two
parallel convolutional modules to capture the complex
temporal dependencies and employs a SA module to
model spatial dependencies.

(3) Graph-based methods: STGCN [37], Graph
WaveNet [38], and MTGNN ([43]. Thereinto, STGCN
utilizes the Graph CNNs and gated CNNs to extract the
spatial-temporal dependencies [37], Graph WaveNet
models the spatial-temporal correlations by combining
the self-adaptive GCN with the dilated causal convolution
[38], and MTGNN uses a graph learning module to
extract the relationships between variables and GCN and
temporal convolution module to capture the spatial and
temporal dependencies [43].

3 Results and discussion

3.1 Hyperparameter determination

In this section, the hyperparameters (time window size T
and the adjustable kernel size L) that affect the prediction
performance were first determined. The length of 7 was
set to {4, 8, 12, 16, 20, 24, 28}, and the T corresponding
to the lowest MAE and MAPE values was selected as the
optimal hyperparameter. The performances of one-step
prediction as a function of T are depicted in Fig. 3(a). It
can be observed that the MAE value peaked at 7" = 28,
indicating that the prediction performance would degrade
once T was too long. In addition, from 7" of 4, MAE and
MAPE values reached the minimum values at 16 and then
gradually increased. This could be attributed to the
inadequate capture of temporal characteristics when T
was too small. Although a larger T could increase
historical information, it would also pose challenges in
training the model to capture the long-term dependencies
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[50]. From Fig. 3(b), the performance of the model was
also highly sensitive to the kernel size L. Deviations from
an optimal value of L = 8 resulted in a deterioration of
performance. Therefore, the optimal hyperparameters
were determined to be 7= 16 and L = 8.

3.2 Performance evaluation

Table 2 lists the evaluation results of all models for
prediction horizons of 1 step (2 h), 3 steps (6 h), and 5
steps (10 h). The best results for each horizon are
highlighted in bold, while the sub-optimal results are
underlined. As evidenced by Table 2, VAR exhibited
inferior performance due to its inability to deal well with
the nonlinear dependencies between process variables.
Although LSTM and GRU achieved better performances
by a large margin compared to VAR, their performances
were still unsatisfactory due to the neglect of spatial
dependencies among process variables. Furthermore,
models with both spatial and temporal correlations
considered, such as attention-based and graph-based
modes, gave better results than LSTM and GRU which
only took temporal dependencies into account. The
prediction performance was significantly improved for
graph-based models, in which the spatial dependencies
and temporal dependencies were explicitly captured by
the use of graphs and CNNs. It was worth noting that the

attention-based models outperformed the graph-based
models on the whole. Specifically, DSANet exhibited the
most superior performance among all baseline modes,
which was justifiable considering that the SA module in
DSANet could learn the dynamic spatial dependencies.
Clearly, the proposed CSA-MGCN model achieved the
best performances in all evaluation metrics for all
prediction horizons thanks to its ability to learn both the
static and adaptive structures while adequately modeling
the temporal patterns. Detailedly, in comparison with
DSANet, CSA-MGCN exhibited a greater improvement
as the prediction increased, indicating its superiority in
long-term prediction. For instance, the improvement of
MAPE increased from 8.13% at prediction horizon 1 to
11.23% at prediction horizon 5.

Figure 4 illustrates the performances of different
models across prediction horizons from 1 to 5. More
broadly, CSA-MGCN achieved the best performance for
almost all horizons, with a more pronounced improve-
ment as the prediction horizon increased. In addition,
prediction difficulty intensified with longer horizons,
leading to an increase in prediction error. However, the
performances of CSA-MGCN deteriorated much slower
than other models. Overall, these results demonstrated
that the satisfactory prediction performance achieved by
CSA-MGCN can be attributed to its ability to accurately
capture spatial and temporal correlations.
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Fig.3 Performances of the CSA-MGCN model with different (a) time window sizes 7 and (b) kernel size L on the test data set.

Table 2 Evaluation metrics of models for different prediction horizons on the test data set

Horizon =1 (2 h)

Horizon =3 (6 h)

Horizon =5 (10 h)

Models
MAE MAPE MAE MAPE MAE MAPE
Classical VAR 15.25 1.21% 88.37 0.29% 96.63 4.09%
LSTM 24.39 1.40% 27.57 0.23% 37.70 2.98%
GRU 12.94 0.94% 23.35 0.15% 22.96 2.08%
Attention DSANet 6.65 0.54% 9.32 0.62% 10.73 0.75%
LSTNet 7.67 0.62% 10.08 0.70% 11.85 0.85%
Graph Graph WaveNet 8.31 0.70% 13.36 0.85% 16.53 1.19%
STGCN 7.91 0.81% 11.27 0.86% 12.97 1.10%
MTGNN 7.25 0.71% 10.93 0.79% 11.85 0.87%
This work CSA-MGCN 6.33 0.49% 9.10 0.58% 10.28 0.66%
+4.83% +8.13% +2.41% +7.05% +4.20% +11.23%

Improvements
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The comparison of the prediction values of the CSA-
MGCN model and the ground truth values for six typical
process variables (AI16031, AI1603G, TIC1101,
TI1134A, TI1119, and DI1106) at prediction horizon of 1
are plotted in Fig. 5, providing a more comprehensive
visual assessment of the model’s performance. From
Figs. 5(a), 5(b), 5(e), and 5(f), it could be observed that
the prediction results were reliable, and CSA-MGCN
consistently provided the closest predictions to the ground
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Fig.4 Prediction performance comparison at each horizon (one
prediction horizon denotes 2 h): (a) MAE and (b) MAPE.
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truth for both steady and mutation stations. Despite some
deviation observed from Figs.5(c) and 5(d), the
prediction curves could still track the trend of the real
values. In summary, the exceptional performances of the
CSA-MGCN model enabled operators to anticipate the
dynamic trends of process variables in advance, thereby
significantly contributing to subsequent decision-making
and early warning.

3.3 Ablation study

In this section, an ablation study with five variants was
conducted to explore the effectiveness and contribution of
each component in CSA-MGCN: (1) w/oCNN: the multi-
scale CNN module was removed from CSA-MGCN;
(2) w/oSelf: the SA mechanism was discarded from CSA-
MGCN; (3) w/oStatic: the static graph module was
abandoned from CSA-MGCN; (4) w/oAdaptive: the
adaptive graph module was removed from CSA-MGCN;
(5) w/oRevIN: the RevIN module was removed from
CSA-MGCN, and the “max-min” normalization method
was adopted.

The MAE and MAPE of CSA-MGCN and its five
variants for different prediction horizons are shown in
Fig. 6. Notably, as depicted in Fig. 6(a), the model
without RevIN (w/oRevIN) resulted in a significant
decline in model performance as the prediction horizon
increased. For example, when the prediction horizon was

48
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Fig.5 Predicted and ground truth values of variables (a) AI16031, (b) AI1603G, (c) TIC1101, (d) TI1134A, (e) TI1119, and

(f) DI1106 at prediction horizon = 1.
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1, MAE values of CSA-MGCN and w/oRevIN models
were 6.33 and 7.17, respectively. As the prediction
horizon increased to 5, MAE values increased to 10.28
and 11.86. This result highlights the effectiveness of the
RevIN module in mitigating temporal distribution shifts
between training and test data sets. In other words, when
modeling, it should prioritize addressing data distribution
shifts to avoid suboptimal prediction performances.
Furthermore, as illustrated in Fig. 6(b), the substantial
degradation in performance testified that the model
without the adaptive graph module (w/oAdaptive) failed
to accurately capture the spatial dependencies among
process variables. This conclusion could also be drawn
from the model without the static graph module
(w/oStatic). Besides, the long-term prediction performa-
nce of the model without the CNN module (w/0oCNN)

I CSA-MGCN [l w/oCNN Il w/oSelf
[ w/oStatic [l w/oAdaptive Il w/oRevIN

| |
2 3 4 5

Prediction horizon

0.84(b)
m 0.6
o

g 0.4
0.21
Il CSA-MGCN Il w/oCNN [l w/oSelf
[ w/oStatic I w/oAdaptive [l w/oRevIN
0- ¥ — —
1 2 3 4 5

Prediction horizon

Fig. 6 Ablation test results.

remained relatively stable, which was comparable to that
of CSA-MGCN. However, in terms of short-term predic-
tion, its performance was inferior to that of CSA-MGCN,
indicating the superiority of CNN in capturing short-term
dynamic features. Likewise, the model without the SA
mechanism module (w/oSelf) demonstrated a decline in
performance as prediction horizons increased. Undoub-
tedly, CSA-MGCN achieved the best results for almost
all prediction horizons. Based on the aforementioned
analysis, it can be confirmed that all components contri-
buted to the effectiveness and robustness of the model.

3.4 Model interpretability

In this section, the weight heatmap of the adjacency
matrices and the attention scores were analyzed to offer
insights into the model interpretability. As shown in
Fig. 7, the dimensions of the weight heatmap of
adjacency matrices indicate the process variables indexes.
Each cell in the heatmap reflects the degree of correlation
between two variables, with lighter colors indicating a
high level of correlation. Figures 7(a)-7(e) display the
visualization of three static adjacency matrices, the fused
adjacency matrix, and the adaptive graph at prediction
horizon of 1. As can be seen from Figs. 7(a)-7(c), diverse
relationships among process variables could be captured
from various perspectives using different static adjacency
matrices. The fused adjacency matrix was adjusted to
incorporate information from the three static adjacency
matrices based on the comparison between Fig. 7(d) and
Figs. 7(a)-7(c). Additionally, Fig. 7(e) revealed that an
adaptive learning strategy could reveal neglected relation-
ships in static structures. Therefore, utilizing multiple
graphs could significantly enhance the ability to model
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0.50
30000 10 0.6 025
20000 15 04 0
-0.25
10000 20 0.2 ~050
0 25 = 0 5 il -0.75
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
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0
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(e)

Fig.7 Weight heatmaps of the adjacency matrices and attention matrix: (a) DTW, (b) MIC, (c) PC, (d) the fused static adjacency

matrix, and (e) the adaptive matrix.
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spatial dependencies.

The temporal attention weights of the last layer of
different time steps on the test data set are visualized in
Fig. 8, where the horizontal and vertical coordinates stand
for the corresponding time steps. Lighter colors within
each cell indicate greater influence, while the darker
colors suggest smaller or no response. As shown in
Figs. 8(a)-8(h), diverse attention patterns across different
heads were observed, which was conducive to mining
potential information.

3.5 Industrial application with an industrial internet
platform

To demonstrate the practical application of the CSA-
MGCN model in industrial plants, we deployed it on the
Xuelang Suanpan Platform. Xuelang Suanpan Platform is
a one-stop hybrid modeling and real-time computing
system, supporting joint computing of industry mecha-
nism models, data models, AI models, and business
models. By leveraging the components and toolboxes to
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realize the reuse and expansion of templates. In different
scenarios, only specific components need to be replaced
or adjusted to achieve rapid expansion and adaptation.

In Suanpan Platform, users can construct the applica-
tion for training and prediction processes by dragging
components onto the back panel and setting the connec-
tion between components. The actual modeling process
can then be visualized by building its business logic on
the back panel. Figure 9 shows the back panel correspon-
ding to the practical application of the model, including
an OPC data acquisition and data storage components, a
preprocessing component, a component containing the
proposed CSA-MGCN model, a component for evalua-
tion metrics, and a component for visualization with the
front panel. Meanwhile, if the performance of the model
based on the evaluation metrics is unsatisfactory, the
application can retrain the model to improve its accuracy.

After building the back panel, the results can be
visualized on the front panel by setting some specific
configurations. Figure 10 gives the visualization results of
the CSA-MGCN model at prediction horizon of 1.
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Fig. 8 (a—h) The attention weights of the 8 heads in the last layer on the test data set.
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Fig. 9 The back panel corresponding to the practical application of the model.
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Evaluation matrix
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Fig. 10 The front panel corresponding to visualization results.

Concretely, it displayed the real-time monitoring results
for these six indicators, as well as the detailed evaluation
matrices of these indicators, which could help operators
judge whether these indicators are normal and assist in
operational decision-making. The real-time dynamic
trends of these indicators were provided in the attached
video. This work lays the technical foundation for us to
implement the model in an actual MTO plant.

4 Conclusions

The prediction of process variables is critical for the
construction of modern intelligent industry; however, it
remains a challenging task due to the dynamic spatial-
temporal dependencies among process variables and
temporal distribution shift. In this work, we proposed a
hybrid deep learning model for multivariate time series
prediction in the industrial MTO process. By integrating
data normalization, CNN, SA mechanism, and MGCN,
the model is capable of effectively addressing the data
distribution shift issues and capturing complex spatial-
temporal dependencies. Compared to baseline models,
our model achieves state-of-the-art performance in multi-
process variables prediction. Furthermore, the obtained
attention matrices and adjacency matrices can reveal the
spatial-temporal dependencies, enhancing the interpreta-
bility of the model. Importantly, the successful
implementation of the model on an industrial internet
platform establishes a solid foundation for its application
to MTO plants in the subsequent step.
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