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para-Xylene productivity
from syngas over Co2C nanoprisms
combined with versatile zeolites

Jingfeng Han,1 Zhong-Pan Hu,1 and Yingxu Wei1,*
In this issue of Chem Catalysis, Wang et al. report high-performance
CoMnAl/HZSM-5 bifunctional catalysts for application in the trans-
formation of syngas to aromatics. The versatile HZSM-5@silicalite-1
zeolites, with a hollow nanostructure and a scaly shell, were
fabricated to regulate the selective synthesis of aromatic products,
especially para-xylene.
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Aromatics have long been considered

important building blocks for highly

valuable commodity chemicals.1 As a

result of the rapid depletion of petro-

leum reserves and the increasing mar-

ket demand for these types of aro-

matics, it is highly desirable to

develop an alternative process for the

production of light aromatics (benzene,

toluene, and xylenes [BTX]), especially

para-xylene (PX), by using non-petro-

leum carbon resources. Non-petroleum

carbon resources can be easily con-

verted into syngas, which can then

be converted into methanol or olefins

and subsequently aromatics via meth-

anol-to-aromatic (syngas-methanol-ar-

omatic [SMA]) or olefin-to-aromatic

(syngas-olefin-aromatic [SOA]) reac-

tions performed over ZSM-5 zeolites.2

The SMA process can produce

high selectivity toward aromatics

(60%–80%) and low CH4 selectivity

(<5%). However, the overall conversion

of CO is below 55%, even under harsh

reaction conditions (400�C, 5 MPa).3

For the SOA route, prior studies have

mostly focused on the Fe carbide

Fischer-Tropsch catalysts combined

with HZSM-5 zeolite to produce

aromatics.4 Although a selectivity of

>45% toward aromatics can be ob-

tained at a CO conversion higher than

50%, the selectivity toward undesirable
CH4 is rather high. Additionally, the

high working temperature (>300�C)
often results in coke deposition and

rapid deactivation of both the Fe

carbide and zeolite components.5

Furthermore, the selectivity toward

BTX is generally low (<35%) in both

routes. Therefore, developing efficient

STA catalysts with high catalytic activ-

ity, selectivity, and stability remains a

great challenge.

In this issue of Chem Catalysis, Wang

et al. fabricated a range of zeolites

and combined them with a high-perfor-

mance Fischer-Tropsch to olefin (FTO)

catalyst consisting of CoMnAl (CMA)

composite oxides.6 The authors evalu-

ated the catalytic activity and product

distribution of bifunctional catalysts to

transform syngas under mild reaction

conditions (280�C, 2 MPa) (Figure 1A).

The CMA catalyst was synthesized by

a co-precipitation method, and using

only the CMA catalyst achieved low

CH4 selectivity (2.7%) and high olefin

selectivity (81.1%) at a CO conversion

of 38.0%. Combining the CMA catalyst

with a range of HZSM-5 zeolites—

including Z5-M, Z5-N, and Hol-Z5-N—

produced the aromatics differently.

For Hol-Z5-N zeolite, because the hol-

low structure enhances the mass trans-

port of the intermediate and product,7

a much higher CO conversion could
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be achieved over CMA/Hol-Z5-N than

over CMA/Z5-N and CMA/Z5-M. Inter-

estingly, when the combination of

CMA and a versatile Hol-Z5-N@S1

zeolite with a hollow nanostructure

and a scaly shell was used, the selec-

tivity toward the aromatics and CO con-

version could be further increased and

the CH4 selectivity remained low

(2.8%). Under mild reaction conditions,

the CMA/Hol-Z5-N@S1 bifunctional

catalyst resulted in >63% selectivity

toward aromatics and >70% CO

conversion.

For the structural characterization

part, the authors revealed that the

CoxMn1-xO species in the reduced

CMA are transformed into Co2C nano-

prisms with (020) and (101) facets dur-

ing the reaction, leading to high-perfor-

mance syngas conversion to olefins

with very low CH4 selectivity.8 Mean-

while, the authors also characterized

the structure of different ZSM-5 zeolite

catalysts. Scanning electron micro-

scopy (SEM) showed that the hollow

nanosized Hol-Z5-N zeolite provides

uniform rectangular morphology and a

larger average particle than nanosized

Z5-N zeolite (Figure 1B). Transmission

electron microscopy (TEM) indicated

that large voids (about 180 3 270 nm)

exist in the interior of Hol-Z5-N with a

uniform crystalline shell of 20–30 nm

(Figure 1C). Temperature-programmed

desorption of ammonia (NH3-TPD) ex-

periments combined with the infrared

spectroscopy of pyridine adsorption

(Py-IR) results suggested that the strong

acid sites show a trend similar to that of

the Brønsted acid sites. The formation

of aromatic products from syngas is
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Figure 1. Catalytic performance, structural characterization, and reaction mechanism for syngas to aromatics over CMA/HZSM-5 bifunctional

catalysts

(A) CO conversion, CO2 selectivity, and hydrocarbon distribution over CMA/HZSM-5 bifunctional catalysts. Standard reaction conditions: 280�C, 2.0
MPa, 2,000 mL h�1 g�1, H2/CO = 1, mass ratio of CMA/HZSM-5 = 1:2. The C5+ hydrocarbon selectivity is exclusive of the aromatics. aOptimum reaction

conditions: 280�C, 2.0 MPa, 1,000 mL h�1 g�1, H2/CO = 1.

(B) SEM image and particle distribution of Hol-Z5-N. Scale bars: 1 mm.

(C) TEM image and electron diffraction patterns of Hol-Z5-N. Scale bars: 20 nm and 2 1/nm (inset).

(D) Catalytic performance of the CMA/HZSM-5 catalysts and BTX and PX distributions for the conversion of syngas to aromatics under standard reaction

conditions. aReaction conditions: 280�C, 2.0 MPa, 1,000 mL h�1 g�1, H2/CO = 0.5.

(E) In situ DRIFTS over CMA/Hol-Z5-N at a reaction temperature of 280�C.
(F) Proposed reaction mechanism for the improved production of aromatics from syngas over the CoMnAl/HZSM-5 bifunctional catalysts.

Adapted from Wang et al.6
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facilitated by an intermediate strong

acid site and the Brønsted acid sites.

The infrared spectroscopy of 2,6-ditert-

butylpyridine adsorption (DTBPy-IR) re-

sults further suggested a remarkable

decrease in the concentration of the

externally accessible acid sites after

the silicalite-1 (S1) coating process,

which can tune the distribution of the

aromatic products.

To efficiently regulate the aromatic dis-

tribution, the authors fabricated SiO2-

and S1-modified Z5-N zeolites by using

different coating strategies. Compared

with the Z5-N@S1-h zeolite with a hex-

agonal shape and thick S1 shell and a

silica-coated Z5-N@SiO2 zeolite, the

CMA/Z5-N@S1 zeolite with a scaly S1

shell resulted in much higher selectivity

toward aromatic products because the

scale-like S1 layer facilitates the trans-

port of the intermediates to a larger

extent than the thick and densely wrap-

ped SiO2 and S1-h shell on the surface

of the Z5 core.

Furthermore, when the amount of scaly

S1 on the surface of Z5-N increased,

both CO conversion and aromatic

selectivity decreased gradually. In

contrast, the BTX and PX selectivity

increased gradually, and the authors

obtained a maximum space-time yield

(STY) of PX over CMA/Z5-N@2S1 cata-

lysts by applying two coats of silicalite-

1 (Figure 1D). On the basis of the above

results, using the CMA/Hol-Z5-N@2S1

catalyst, Wang et al. achieved a

maximum STY of PX of 286.7 mg gcat
�1

h�1, which is higher than that achieved

with other reported catalysts under

mild reaction conditions, including Fe-

based catalysts or oxides and ZSM-5 ze-

olites. Furthermore, after the hydro-

phobic CMA modification using the

method reported in the literature,9 the

PX fractions of the aromatics produced

reached approximately 35%, and the

selectivity toward undesired C1 by-

products (CO2 and CH4) was sup-

pressed to less than 29%, resulting in

an unprecedentedly high STY of PX
331.8 mg gcat
�1 h�1 over CMA@Si/

Hol-Z5-N@2S1. The aromatic selectivity

wasmuch higher than that produced via

the Fe-based SOA process with signifi-

cantly lower CH4 selectivity. The aro-

matic yield was remarkably higher

than that achieved with SMA catalysts

under the much milder reaction

conditions.

Furthermore, the authors conducted a

mechanistic investigation to determine

the reaction pathway and the possible

intermediates to form aromatic prod-

ucts from syngas. They used different

alkenes as the probe molecules to

study the aromatization behavior over

the different zeolites for the reaction

mechanism part of the study. The re-

sults suggested that the aromatization

process does not proceed smoothly

via conversions of C2H4 and C3H6,

which tend to be converted into long-

chain olefins via oligomerization. The

conversion of n-C6H12 was much higher

than that of the lower olefins (C2H4 and

C3H6). However, the aromatics ob-

tained were lower than those derived

from syngas over the CMA/Hol-Z5-N

bifunctional catalysts. Interestingly,

the authors also found that CO is

involved in coupling olefins, especially

long-chain olefins, to produce aro-

matics over the HZSM-5 zeolite.

To further identify the possible reaction

intermediates, Wang et al. performed

in situ diffuse reflectance infrared Four-

ier transform spectra (DRIFT) experi-

ments (Figure 1E), which showed that

the CHxO* and CH3CHO* species pro-

duced on the Co2C surface could be

converted into unsaturated aldehydes

and ketones via an aldol condensation

reaction on HZSM-5, which could be

further converted into oxygen-contain-

ing aromatic compounds via an intra-

molecular aldol cyclization reaction.10

The authors also dissolved the spent

zeolite in a hydrofluoric acid solution

and used gas chromatography-mass

spectrometry to detect the carbona-

ceous compounds. The results indi-
cated that the oxygen-containing aro-

matic species (mainly 2,4-dimethyl-

benzaldehyde and p-tolualdehyde)

were produced by the coupling of CO

with olefins or higher-oxygenated spe-

cies and participated in the aromatic cy-

cle after the hydrogenation and dehy-

dration reactions.

The authors’ proposed pathways for

forming the aromatics from the conver-

sion of syngas over the CMA/Hol-Z5-N

catalyst are based on the above results

(Figure 1F). The C2–C4 olefins formed

on the CMA surface can diffuse into

the zeolite channels and undergo oligo-

merization to form long-chain (C5+)

olefins. Furthermore, the higher oxy-

genates formed over the CMA

components can be converted into

p-tolualdehyde via an aldol-cyclization

reaction on HZSM-5 and then into PX

at low temperatures. In addition to

providing an effective strategy for

designing bifunctional catalysts with

high catalytic activity, selectivity, and

stability, this work proposes a third

route of syngas to aromatics through

olefin and C2+ oxygenate intermediates

to achieve a more efficient aromatic

synthesis under milder conditions than

the previously reported SMA and SOA

routes over bifunctional catalysts con-

taining metal oxides or iron carbides

and zeolites.
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Defect-modulated O-coordination:
A new strategy for electronic
structure two-tier tuning

Fangxu Lin1 and Shaojun Guo1,*
The creation and precise analysis of novel Fe-N-C atomic architec-
ture with an optimal electronic structure are important for oxygen
reduction reaction (ORR) electrocatalysis. In this issue of Chem
Catalysis, Li’s group reports a class of square-pyramidal Fe-N4 active
sites with superior ORR performance derived from two-tier fine-tun-
ing of the electronic structure via well-characterized defect-modu-
lated O-coordination structures.
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Endowed with high intrinsic activity

and outstanding selectivity toward the

four-electron pathway of the oxygen

reduction reaction (ORR), iron- and nitro-

gen-doped carbon (Fe-N-C) materials

are universally agreed to be one of the

most promising alternatives to the

currently used noble platinum group

metal (PGM)-based cathode electrocata-

lysts in fuel cells. Because Fe-N-C mate-

rials are an Earth-abundant resource

and have a rather low economic cost,

delicately designed architecture, and

excellent ORR performance, they are

ripe for exploration on both scientific

and engineering levels. However,
despite their leading position among

non-noble-metal ORR electrocatalysts,

many obstacles (such as a lack of catalytic

activity, instability of the carbon support

under high applied potential, the leach-

ing of Fe atoms, and in particular the

lack of a comprehensive understanding

and precise characterization of the real

active-site structures and reaction mech-

anism) severely hinder their develop-

ment and prohibit them from replacing

state-of-the-art Pt/Pd-based systems.

The ORR activity and durability of Fe-N-

Cmaterials hinge on complicated factors

including the nature of the carbon sup-
ports (graphene, graphene oxide,

reduced graphene oxide, carbon nano-

tubes, etc.), defect varieties within the

carbon supports, the different coordina-

tion environments of the N atoms

(graphitic-N, pyridinic-N, and pyrrolic-

N), and the d-band center of active Fe

atoms.1 According to the well-known Sa-

batier principle, a moderate adsorption

strength between the active site and

oxygenated intermediates is expected

for favorable attachment and detach-

ment. Fe-N-C materials (C refers in

particular to graphene) situate on the

left of the volcano plot.2 Hence, a proper

downshifting of the d-band center serves

as a key solution to promote its ORR ac-

tivity. To downshift the d-band center of

active Fe atoms, thus weakening its

adsorption with oxygenated reactants,

two main tactics are widely conducted:

electronic structure tuning and geomet-

ric architecture design.

Inducing heteroatoms such as Co,3 S,4,5

and Mn6 to construct dual-atom active

sites enables an effective electron-
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