
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 1

A Novel Image Reconstruction Strategy
for ECT: Combining Two Algorithms

With a Graph Cut Method
Qiang Guo , Xue Li, Baolin Hou, Gregoire Mariethoz, Mao Ye,

Wuqiang Yang, Fellow, IEEE, and Zhongmin Liu

Abstract— Image reconstruction plays a key role in the applica-
tion of electrical capacitance tomography (ECT). Although many
different algorithms have been developed in the past, it is often
difficult to obtain satisfactory images in all imaging regions by the
use of a single algorithm due to the soft-field nature of ECT. This
motivated us to develop a novel ECT image reconstruction strat-
egy, in which a high-quality image can be obtained by combining
the images reconstructed by two different algorithms via a graph
cut method. By doing so, it is possible to retain the advantage
of each algorithm for specified imaging regions and improve
the quality of the whole image. This strategy was verified both
numerically and experimentally for two widely used ECT recon-
struction algorithms, i.e., linear backprojection and Tikhonov
regularization. The results for stationary objects as well as gas–
solid fluidized beds demonstrated that this graph-cut-based com-
bination strategy presents a promising approach for ECT image
reconstruction.
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graph cut, image reconstruction algorithm, linear backprojection
(LBP), Tikhonov regularization (TR).

Manuscript received November 6, 2018; revised February 25, 2019;
accepted February 27, 2019. This work was supported in part by the Newton
Advanced Fellowship of the Royal Society, U.K., under Grant NA140308 and
in part by the National Key Research and Development Program of
China under Grant 2018YFB0604904. The Associate Editor coordinating the
review process was Amitava Chatterjee. (Corresponding authors: Xue Li;
Mao Ye.)

Q. Guo is with the Dalian National Laboratory for Clean Energy, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023,
China, also with the National Engineering Laboratory for MTO, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023,
China, and also with the University of Chinese Academy of Sciences, Beijing
100049, China (e-mail: guoqiang@dicp.ac.cn).

X. Li and B. Hou are with the State Key Laboratory of Catalysis, Dalian
Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023,
China (e-mail: lixue@dicp.ac.cn; blhou@dicp.ac.cn).

G. Mariethoz is with the Institute of Earth Surface Dynamics, University of
Lausanne, 1015 Lausanne, Switzerland (e-mail: gregoire.mariethoz@unil.ch).

M. Ye and Z. Liu are with the Dalian National Laboratory for Clean Energy,
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian
116023, China, and also with the National Engineering Laboratory for MTO,
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian
116023, China (e-mail: maoye@dicp.ac.cn; liuzm@dicp.ac.cn).

W. Yang is with the School of Electrical and Electronic Engineer-
ing, The University of Manchester, Manchester M13 9PL, U.K. (e-mail:
wuqiang.yang@manchester.ac.uk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIM.2019.2905282

I. INTRODUCTION

PROCESS tomography, since its inception in 1980s, has
attracted considerable interest due to its ability to visu-

alize and interpret complex two-phase flows in industrial
processes [1], [2]. There are many different process tomog-
raphy techniques due to different sensing schemes, such as
X-ray tomography [3], Gamma-ray tomography [4], ultra-
sound tomography [5], electrical capacitance tomography
(ECT), and microwave tomography [6]. Among them, ECT
is the most mature one and has advantages of high tem-
poral resolution, robustness, withstanding high temperature
and high pressure, nonintrusiveness and noninvasiveness, and
no radiation, which make it an ideal tool for measurement
of highly dynamic two-phase flows encountered in many
industries [7], [8]. So far, ECT has been successfully applied
to the measurement of gas–solid fluidized beds [9]–[11], oil
pipelines [12], combustion flame [13], and other industrial
processes.

The principle of ECT is to reconstruct the permittivity
distribution (and thus the material distribution) in the region
of interest from the measured interelectrode capacitance via
a specific image reconstruction algorithm. With the recon-
structed image, some key parameters that are of industrial
interests, for example, the bubble size in a gas–solid fluidized
bed and oil fraction in an oil pipeline, can be obtained.
Therefore, the image reconstruction algorithm plays a key
role in the application of ECT [14]. However, two main
difficulties are associated with the ECT image reconstruction.
First, it is severely underdetermined due to that the number
of capacitance measurements is far less than the number of
pixels that need to be derived. Second, the ill-posed and ill-
conditioned property of the sensitivity matrix makes the recon-
structed images sensitive to measurement noise. To address
these problems, many algorithms have been developed in the
last two decades [9], [15]–[23], which include the simple linear
backprojection (LBP) [22], Tikhonov regularization (TR) [21],
Landweber iteration [20], and the deep learning method [16],
just to name a few.

However, due to the soft-field nature of ECT, it is hard to
obtain satisfactory images in all imaging regions by a single
image reconstruction algorithm, and common knowledge is
that some algorithms are good at reconstructing permittivity
distribution in a specific region while some other algorithms
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perform well in other regions. Considering this fact, an intu-
itive idea is to combine the images reconstructed by two
different algorithms. Although the idea is straightforward,
a simple image stacking method or weighted superposition
cannot work satisfactorily in quantifying the gray values for
each image pixel. Another avenue that directly combining two
images to generate a new one by the use of the methods in
computer graphics may offer an alternative way to overcome
these difficulties. In this regard, the method of graph cut is
considered in this paper. Graph cut has been widely used
to construct digital images in the field of remote sensing
[24], [25], medical science [26], and geophysics and geostatis-
tical modeling [27], [28]. These works confirm the power of
the graph cut method in image segmentation and synthesis.
However, such a method has never been applied to tomo-
graphic image reconstruction. To this end, a novel ECT image
reconstruction strategy is proposed in this paper, in which the
ECT image quality can be improved via combining images
reconstructed by two existing algorithms via the graph cut
method.

To show the effectiveness of the proposed strategy, this
paper focuses on two widely used algorithms for ECT,
i.e., LBP and TR. These two algorithms are widely reported
for on-line measurement due to their simplicity and fast speed.
However, both algorithms show limitations in reconstructing
ECT images. It has been found that images reconstructed by
the LBP algorithm have no artifacts in the near-wall region
but are blurred in the central region [9], [14], [29]. For the TR
algorithm, conversely, although good results can be obtained
in the central region, there are always artifacts in the near-
wall region [9], [14], [23]. Therefore, these two algorithms
are complementary and can be combined with the proposed
strategy to improve the image quality. However, to the best of
our knowledge, although substantial efforts have been devoted
to improving the image quality reconstructed by these two
algorithms, little work attempted to make the use of their
complementarity and researchers usually tended to modify
a certain algorithm. For example, Process Tomography Ltd.
developed an iterative LBP algorithm [13]. Jing et al. [18]
transformed the original image reconstruction problem to
an optimization problem by adding an extended objective
function to the TR algorithm. Xue et al. [23] reduced the
artifacts by the TR algorithm by using a sensitivity matrix
updated by the actual distribution. Inspired by the finding
that the distribution of the artifacts is akin to the sensitivity
distribution in the generic sensitivity matrix, Guo et al. [9]
introduced a scaling method in the form of a division operation
to the TR algorithm. Different from these studies, this paper
demonstrates the possibility of improving the ECT image
quality by combining two images reconstructed by these two
algorithms.

The organization of this paper is as follows. First, the ECT
imaging model and three widely used image reconstruction
algorithms are briefly revisited. Then, the proposed graph-cut-
based strategy is introduced. Next, the proposed strategy is
verified both numerically and experimentally with the images
reconstructed by the LBP and TR algorithms. This paper ends
with some conclusions.

Fig. 1. Schematic of the simulated 12-electrode ECT sensor.

II. FUNDAMENTALS OF ECT

A. ECT Imaging Model

Peng et al. [29] investigated the effect of the number of
measurement electrodes on the image quality and suggested
that 12-electrode sensors are suitable for most applications.
Therefore, a circular 12-electrode sensor with the electrode
covering ratio of 0.9 was modeled. Ye et al. [30] recently
confirmed that such an electrode covering ratio can achieve
good image quality. Fig. 1 shows the detailed dimensions of
the modeled sensor. In a complete measurement procedure,
one of the electrodes is selected, in turn, as the excitation
electrode and others as detection electrodes to obtain the
interelectrode capacitance between all possible electrode pairs.
With this measurement strategy, the number of independent
capacitance measurements is 66.

There are two computational problems encountered in ECT
measurements, i.e., the forward problem and the inverse prob-
lem [9], [14].

The forward problem is to determine the interelectrode
capacitance from a predefined sensor and permittivity distrib-
ution. The relationship between them is governed by

CM = −ε0
1

V

∫∫
�

εr (x, y)∇ϕ(x, y)d� (1)

where ε0 is the permittivity of vacuum, V is the potential
difference between two electrodes forming the capacitance,
� is the electrode surface, and εr (x, y) and ϕ(x, y) are the
relative permittivity and potential distributions in the sensing
domain, respectively.

To simplify the calculation, a linear equation in a normalized
form is usually used to replace (1)

λ = Sg (2)
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where g is the normalized permittivity and λ is the normalized
capacitance. g and λ are defined, respectively, by

g = εr (x, y) − εL

εH − εL
(3)

λ = CM − CL

CH − CL
(4)

where εH and εL are, respectively, the relative permittivity of
high- and low-permittivity materials to be imaged, CM is the
interelectrode capacitance for an arbitrary permittivity distrib-
ution, and CH and CL are the capacitances when the sensor
is full of high- and low-permittivity materials, respectively.

In real measurement, the capacitance data are not noise-free.
Therefore, (2) is changed to

λ = Sg + e (5)

where e is the measurement noise. This equation can also be
used to add white Gaussian noise to simulation data.

The parameter S in (2) and (5) is the normalized sensitivity
matrix, representing the change in the normalized capaci-
tance of each electrode pair in response to a perturbation in
the normalized permittivity distribution. For implementation,
the sensitivity matrix requires discretization. In this paper,
a grid with 64 × 64 square elements is used, which results
in 3228 effective pixels in the circular imaging area (see
Fig. 1). Considering that there are 66 capacitance measure-
ments for the 12-electrode ECT sensor, the dimensions of λ,
S, and g in (1) are 66×1, 66×3228, and 3228×1, respectively.

The sensitivity matrix is usually calculated by numerical
simulation of potential distribution in a vacuum based on the
quasi-static field assumption and then by dot multiplying two
potential distributions

S∗
i j (x, y) = −

∫∫
p(x,y)

∇ϕi (x, y)

Vi
· ∇ϕ j (x, y)

Vj
dxdy (6)

where S∗
i j is the sensitivity between the i th and j th electrodes

at the pixel p(x, y), and ϕi (x, y) and ϕ j (x, y) are the potential
distributions when the i th and j th electrodes are excited by
applying voltages of Vi and Vj , respectively.

Then, S∗ is normalized as

Smn = S∗
mn∑N

n=1 S∗
mn

(7)

where Smn and S∗
mn are the elements in the mth row and nth

column of S and S∗, respectively, and N is the number of
pixels in the imaging area, which is 3228.

B. Image Reconstruction Algorithms

The inverse problem of ECT is to reconstruct the permittiv-
ity distribution from the measured interelectrode capacitance
via a specific image reconstruction algorithm. In this section,
three widely used algorithms, including LBP, TR, and Landwe-
ber iteration, are introduced, in which the former two are
single-step, while the latter is iterative.

1) Linear Backprojection: LBP was the first developed
algorithm for ECT [31]. Its principle is to replace the inverse of
S, which does not exist, with the transpose of S, as formulated
by

ĝ = ST λ

ST uλ
(8)

where ĝ is the reconstructed normalized permittivity in the
image reconstructed by a certain algorithm and uλ is a vector
of ones with the same dimension as λ. Note that the division
operation in (7) and (8) is manipulated in an elementwise
mode, which means each numerator component is divided by
the corresponding denominator component.

2) Tikhonov Regularization: TR, a well-established tech-
nique to solve ill-posed problems, has been extensively used
in ECT image reconstruction [9], [18], [23]. Its formula is

ĝ = (ST S + μI )−1ST λ (9)

where μ is a regularization parameter and I is an N × N
identity matrix. In general, a small value of μ is required
to obtain a reliable approximation to the solution, which,
however, may also lead to a singularity. For simplicity, in this
paper, μ takes a constant value of 0.0001, as suggested by
Guo et al. [9] via a trial and error study. In fact, there
might be some alternative yet better methods, for example, the
L-curve method [32] and generalized discrepancy princi-
ple [33] that can be used to obtain the optimal value of μ
for a specified permittivity distribution.

3) Landweber Iteration: Landweber iteration is an iterative
algorithm whose formula is written as

ĝk = P(ĝk−1 + αST (λ − Sĝk−1)) (10)

P[ f (x)] =

⎧⎪⎨
⎪⎩

0, if f (x) < 0

f (x), if 0 ≤ f (x) ≤ 1

1, if f (x) > 1

(11)

where α is the step length with the value of 2, k is the index of
iteration steps, and P is a projection operator used to constrain
the estimated image to ensure ĝ ∈ [0, 1] [20]. The initial
estimation ĝ0 is calculated by the LBP algorithm as formulated
in (8). A drawback of the Landweber algorithm rests with its
semiconvergence, which means that the image quality is not
always improved with the increase in the number of iterations.
Usually, a predefined maximum iteration number is used and
was set as 200 in this paper. Because the Landweber iteration
algorithm has been confirmed to be capable of producing the
best images in most cases [9], [14], it is used as a reference
to assess the new proposed image reconstruction strategy.

III. GRAPH-CUT-BASED COMBINATION STRATEGY

In animation movies and video games, a large number of
new images showing similar features as the sampled or training
images are needed to display continuing movements or back-
ground landscapes. Image synthesis techniques are usually
used to generate these new images by assembling irregular
pieces of the sampled images and adjust them with seam-
less transitions [34]. From this point of view, the computer
graphics technology has the potential to combine ECT images
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Fig. 2. Mapping an ECT-style image to a graph. (a) ECT-style image with
20 × 20 pixels. (b) Enlarged view of a graph that has the same configuration
of (a) with n indicating the node and e indicating the edge connecting the
neighbor nodes.

reconstructed by two algorithms. The synthesized image can
keep good pieces of both images with the local artifacts in one
image replaced by another image from the other algorithm.

To apply the computer graphics technology to ECT image
reconstruction, the ECT-style image with pixel elements needs
to be considered as a graph network. As an illustration,
Fig. 2(a) shows an ECT-style image with 20 × 20 pixels,
from where a subregion containing nine pixels is enlarged
to represent the structure of a graph network, as shown
in Fig. 2(b). Based on graph theory, each ECT pixel is mapped
to a graph node n with the same geometrical configuration,
and each node is connected to its nearest nodes by the relative
edges e denoted as connecting lines in Fig. 2(b) [35]. A graph
can be partitioned into two disjoint subsets that do not share
any nodes and edges by a cut denoted as the green dashed line.
As long as two images have an overlap, the overlap region
can be considered as a graph and graph cut techniques can be
used to analyze the similarity of the overlap and identify the
optimal cut to seam these two images along the most similar
passageway. In this sense, the graph cut problem is also known
as a min-cut problem.

If two ECT images are reconstructed from the same mea-
surement by two different algorithms A and B, the two images
can be totally overlapped since they have the same geometry.
To combine these two images, the absolute difference of the
gray values (i.e., the reconstructed normalized permittivity)
between them in each pixel is first calculated and assembled
to an ECT-style image, which is then considered by graph cut
methods as a graph, as shown in Fig. 2(b), with the graph
nodes divided into two terminals (denoted as T1 and T2,
respectively) and a set of nonterminal nodes (NT, denoted as
hollow circles). The terminals T1 and T2 indicate, respec-
tively, the nodes connected to the image reconstructed by
Algorithms A and B. The values at each node are the absolute
difference of the two ECT images. For example, the value of
node n1 denoted as δ(n1) is calculated by

δ(n1) = |ĝA(n1) − ĝB(n1)| (12)

where ĝA(n1) and ĝB(n1) are the gray values from
images reconstructed by Algorithms A and B, respectively.
The capacity of the edges connecting n1 and n2, denoted

Fig. 3. Implementation of the graph cut method on images reconstructed by
the LBP and TR algorithms. (a) True distribution. (b) Image reconstructed by
the LBP algorithm. (c) Image reconstructed by the TR algorithm. (d) Absolute
difference between (b) and (c). (e) Identification of the maximum different
pieces and determination of the terminal and nonterminal nodes. (f) Labeling
nodes with the graph cut method. (g) Final combined ECT image.

as e(n1, n2), is calculated by

e(n1,n2) = δ(n1) + δ(n2). (13)

Once an edge is cut, the cut cost is assigned as the capacity
of the edge. Therefore, the cut cost can be considered as
the measurement of the similarity of the two images. Graph
cut techniques, which are based on the min-cut theorem,
find the cut that has the minimum total cost among all
possible cuts throughout the graph, in order to separate NT
into two sets: one set attached to T1 and the other attached
to T2. According to this segmentation, the new image is
constructed by assembling the pieces from the two images.
Many algorithms have been developed for graph cut problems
and the fast augmenting path algorithm proposed by Boykov
and Kolmogorov [36] was used in this paper.

IV. IMPLEMENTATION ON IMAGES RECONSTRUCTED BY

THE LBP AND TR ALGORITHMS

In the following, the proposed graph-cut-based strategy is
implemented to combine two images reconstructed separately
by the LBP and TR algorithms to show its capability to take
advantages of both algorithms. Fig. 3 shows the process of the
implementation of the graph-cut-based strategy for ECT image
reconstruction. The true distribution is shown in Fig. 3(a).
Fig. 3(b) and (c) shows the corresponding images recon-
structed by the LBP and TR algorithms, respectively. It can
be seen that the image reconstructed by the LBP algorithm
has good quality in the near-wall region but poor accuracy in
the central region, meanwhile the TR algorithm can perfectly
present the central region but produce artifacts around the near-
wall region. Note that the artifacts in the images reconstructed
by the TR algorithm can be clearly identified, because the
distribution of these artifacts shows certain common features.
As can be seen in Fig. 3 and later in Figs. 5, 7, 9, 11,
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and 12, for both stationary object distributions and two-phase
flow patterns, the artifacts are formed with a high gray value
displayed in pixels between two adjacent electrodes and low
gray value in pixels near the electrode surface. As a result,
the absolute difference of the two images reconstructed by the
LBP and TR algorithms, as shown in Fig. 3(d), has several
pieces with a relatively large value. A user-defined threshold,
for example 0.85, i.e., the value above 85% nodes, is utilized
to identify the large difference part. These identified pieces are
divided into three kinds according to their locations, as shown
in Fig. 3(e): 1) the pieces around the boundary (in red) are
defined as terminal T1 and attached to the image reconstructed
by the LBP algorithm; 2) the pieces in the center (in cyan) are
defined as terminal T2 and attached to the image reconstructed
by the TR algorithm; and 3) the pieces containing both the
boundary and center nodes (in orange) are defined as the NT
nodes. The background nodes (in blue) that have the difference
value lower than the threshold are also defined as NT nodes.
The graph-cut-based method labels the NT nodes as shown
in Fig. 3(f) and seams the corresponding images together to
form a new image, as shown in Fig. 3(g). As can be seen,
the combined image visibly improves the image quality by
taking advantages of the two algorithms.

Note that the user-defined threshold and the definition of
terminals are the keys for the final results. The principle in
determining the threshold is the identification of the most
obvious difference in the absolute difference image. The
optimal value of the threshold depends on the true distribution
and the difference between the images used for combination.
For the LBP and TR algorithms, the most obvious difference
normally appears at the regions where the artifacts locate in
the image reconstructed by the TR algorithm. Usually, a small
value of the threshold will make the combined image like
more that reconstructed by the TR algorithm, say the artifacts
cannot be well removed, while a large value of the threshold
will make the final image like more that by the LBP algorithm.
Only the threshold within the range of 0.72–0.88 can remove
all the artifacts in the near-wall region meanwhile retain
the central region reconstructed by the TR algorithm, and
when the threshold is in such range, the combined image
quality does not change significantly with the change in the
threshold. For convenience, a constant value of 0.85 was used
in this paper. As will be seen in the following, such a value
can give satisfactory results for all tested cases. In addition,
using a constant value is necessary for on-line measurement,
as determining the threshold needs additional computing time.

V. EVALUATION RESULTS AND DISCUSSION

Both numerical simulations with and without noise, as well
as some experiments, were performed to evaluate the graph-
cut-based strategy (GC_comb for short in the following text)
based on the images reconstructed by the LBP and TR algo-
rithms. Note that all numerical simulations were performed
in 2-D.

The structure of the ECT sensor used in numerical sim-
ulations is detailed in Fig. 1. The simulation procedure is
as follows. First, a specific permittivity distribution was

Fig. 4. Schematic of the ECT sensor used in experiments. (a) Axial view.
(b) Cross-sectional view. (c) Installed on a fluidized bed.

defined in the imaging area. The low and high relative per-
mittivity of the materials used was 1 and 3, respectively.
Then, the forward problem was solved to obtain the inter-
electrode capacitance. Finally, the obtained capacitance was
converted to the reconstructed permittivity distribution using a
specific image reconstruction algorithm. Such an arrangement
allows to conveniently calculate the correlation coefficient
(CC), which reflects the spatial similarity between the true
and reconstructed distributions, to evaluate the performance
of different image reconstruction methods quantitatively. The
definition of CC is

CC =
∑N

i=1 (ĝi − ¯̂g)(gi − ḡ)√∑N
i=1 (ĝi − ¯̂g)2

∑N
i=1(gi − ḡ)2

(14)

where ḡ and ¯̂g are the mean values of g and ĝ, respectively.
A larger CC usually indicates a better image quality [9], [14].
However, as the CC is a global quantity, sometimes, it may fail
to reflect the local similarity between two images in certain
cases. Therefore, it is better to consider both the reconstructed
images and the associated CC in the comparison of different
image reconstruction algorithms.

Fig. 4(a) and (b) shows, respectively, the axial and cross-
sectional view of the ECT sensor used in experiments; 12 mea-
surement electrodes made of self-adhesive copper conducting
sheet were stuck onto the outside wall of a quartz glass tube
with the inner and outer diameter of 8 and 8.9 cm, respectively.
The vertical height of the electrodes was 4 cm and the width
was specified so that the electrode covering ratio keeps the
same as that in simulations. Two axial end screens located at
both axial ends of the measurement electrodes and an outer
screen wrapped around the tube were connected to ground
to eliminate external interference. The diameter of the outer
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Fig. 5. Images reconstructed by different methods using simulation data with
stationary object distributions.

screen was 9.8 cm. An ac-based ECT system [37] was used for
capacitance measurement. Besides some simple distributions
with stationary objects, the sensor can also be installed on a
fluidized bed, as shown in Fig. 4(c), to measure more complex
distributions in a highly dynamic system. The gas and particles
used in experiments were air and Al2O3 powder, which have
the relative permittivity of 1 and 4, respectively. During
calibration, the interelectrode capacitance was first measured
as CL when the bed was empty. Next, a known quantity
of Al2O3 powder was poured into the bed and the bed was
tapped to make the particles closely packed. The interelectrode
capacitance at this state was measured as CH . Such calibration
endures that the interelectrode capacitance for all flow patterns
lie within the range between CL and CH . Considering that the
particle packing concentration at the closely packed state was
about 0.63, the high relative permittivity used for calibration
was 2.89 (4 × 0.63 + 1 × 0.37 = 2.89).

A. Evaluation by Numerical Simulations

Case 1: In Case 1, six simple permittivity distributions
with the normalized permittivity of 0 and 1, as shown
in Fig. 5, were used as the true distributions to evaluate the
image quality reconstructed by different methods, in which
cases 1a–1c represent bubble flows, cases 1d and 1e represent
stratified flows, and case 1f represents bubble-stratified flow.
The quantitative comparison of CC for different methods is
plotted in Fig. 6. As can be seen, for the three bubble flows,
the images reconstructed by the LBP algorithm are blurred
in the central region and CC is also the lowest among all
methods, which make it hard to identify the number of bubbles
in the imaging area. While for the TR algorithm, although
artifacts are shown in the near-wall region, the bubbles in the
central region can be well captured. For the two stratified flows
in cases 1d and 1e, the LBP algorithm has the highest CC,
which is in agreement with the conclusion by Peng et al. [29]
that the LBP algorithm can provide good images for stratified
distributions. Even so, it is noted that the boundary between
the high- and low-permittivity materials by the LBP algorithm
is indistinct. In addition, when a bubble also appears in

Fig. 6. CC of different methods using simulation data with stationary object
distributions.

the stratified flow (case 1f), the CC decreases significantly.
In contrast, when the TR algorithm is used, a clear boundary
can be identified and the bubble in the stratified flow as shown
in case 1f can also be identified. But still, the artifacts in the
near-wall region worsen the overall image quality, as indicated
by the lowest CC for cases 1d–1f in Fig. 6. The GC_comb
method proposed in this paper can combine the advantages
of both the LBP and TR algorithms and meanwhile abandon
their disadvantages. Therefore, images reconstructed by the
GC_comb method are all satisfied, as shown in Fig. 5, that the
artifacts in the near-wall region are all well removed and good
image quality in the central region reconstructed by the TR
algorithm is retained. Fig. 6 also shows the average CC for all
tested distributions with different methods. Clearly, the average
CC obtained by the GC_comb method is higher than that
obtained by both the LBP and TR algorithms, indicating
that the GC_comb method can be applied in a more general
and robust sense. A direct comparison of the reconstructed
image quality between the GC_comb and Landweber itera-
tion methods, as shown in Fig. 5, indicates that the images
reconstructed by the GC_comb are similar to those by the
Landweber iteration method with respect to the number and
shape of the objects in the imaging area. In cases with
stratified distributions shown in cases 1d–1f, the results by
the GC_comb are even better, because some artifacts are also
shown in the images reconstructed by the Landweber iteration
method.

Case 2: To evaluate the performance of different image
reconstruction algorithms, it is a common practice to perform
numerical simulations and/or experiments with stationary
objects [38]. In this way, only some simple distributions with
binary models like those shown in Fig. 5 can be tested.
However, real distributions in two-phase flows are much
more complex due to the so-called chaotic behavior [39].
Therefore, it is necessary to introduce the two-phase flow
characteristics to the evaluation of an image reconstruction
algorithm. Recently, Guo et al. [9] reported such a framework
based on computational fluid dynamic (CFD) and electrostatic
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Fig. 7. Images reconstructed by different methods using CFD simulation
results as the input permittivity distributions.

Fig. 8. CC of different methods using CFD simulation results as the input
permittivity distributions.

simulations. First, 3-D CFD simulation of the investigated two-
phase flow system, for example, a gas–solid fluidized bed,
is performed. Then, some 2-D phantoms are extracted from
the specified slices, i.e., the cross-sectional planes, of 3-D
CFD simulation results. Next, these collected phantoms are
used as the input permittivity distributions for ECT numerical
simulations. Upon solving the forward problem, the interelec-
trode capacitance for a specified phantom can be obtained,
which can be further used to reconstruct an image by a specific
image reconstruction algorithm. By this way, the reconstructed
images can be directly compared to the material distributions
extracted from CFD simulation results that are akin to the true
distributions in a two-phase flow system.

Fig. 7 shows six permittivity distributions obtained fol-
lowing the framework of Guo et al. [9] for a gas–solid
fluidized bed, alongside the reconstructed images by different
image reconstruction methods. The corresponding quantitative
comparison regarding CC is shown in Fig. 8. Within the six
distributions, case 2a represents the appearance of single bub-
ble, cases 2b–2d represent multiple bubbles, case 2e represents

Fig. 9. Images reconstructed by different methods using simulation data with
noise.

stratified distribution, and case 2f represents bubble-stratified
distribution. As can be seen, similar to the analysis in Case 1,
the GC_comb method can retain the good image quality
reconstructed by the TR algorithm in the central region and,
at the same time, avoid the appearance of artifacts in the near-
wall region by the combination with the LBP algorithm. There-
fore, satisfactory results can be obtained by the GC_comb
method. More specifically, in cases 2a–2d for the single- and
multiple-bubble distributions, the images reconstructed by the
GC_comb method are very similar to those by the Landweber
iteration algorithm. In cases with stratified distributions shown
in cases 2e and 2f, the results by the GC_comb method are
even better.

Case 3: Image reconstruction with ECT is a typical ill-posed
problem, whose results are sensitive to measurement noise.
The typical signal-to-noise ratio (SNR) of an ECT system
is usually higher than 50 dB [40], [41]. Therefore, to eval-
uate the noise immunity of the proposed method, 50- and
60-dB white Gaussian noise was added to the interelectrode
capacitance for the distributions shown in Cases 1 and 2.
Fig. 9 shows some examples reconstructed by different image
reconstruction methods using the data with noise. The average
CC for all the 12 distributions in Cases 1 and 2 is shown
in Fig. 10.

As can be seen, the added noise has no significant effect
on the image quality obtained by the LBP algorithm for all
distributions, which is consistent with the previous study [38].
While for other methods, with the increase in the noise level,
the image quality gets worse. Nevertheless, the GC_comb
method is always superior to the LBP and TR algorithms,
indicating that the GC_comb method can be effectively used
in noisy environments. Especially, the GC_comb method
even performs better than the Landweber iteration method
when 50-dB noise is added. This is because the noise may
be propagated during the process of iteration when a rel-
atively large noise is added for the Landweber iteration
method [38].

B. Evaluation by Experiments

Case 4: To validate the simulation results and further verify
the feasibility as well as the noise immunity of the proposed
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Fig. 10. CC of different methods using simulation data with noise.

Fig. 11. Images reconstructed by different methods using experimental data
with stationary object distributions.

GC_comb method, experiments with both stationary objects
and a real gas–solid fluidized bed were performed. In this case,
the reconstructed images with stationary object distributions
by different methods are shown, as seen in Fig. 11, in which
cases 4a and 4b were made by inserting an empty glass tube
in the packed bed; cases 4c and 4d were made by inserting
one and two glass tubes full of Al2O3 powder, respectively,
to the empty bed; cases 4e and 4f represent a half-packed bed
separated by a pasteboard and a fully packed bed, respectively.
The outer diameter of the glass tube used was 2 cm for
cases 4a–4c, while 1.5 cm for case 4d. The height of the
targets used to produce these distributions was higher than
that of the ECT sensor. The positions of the targets were not
precisely oriented, while their approximate positions can be
clearly seen in Fig. 11. The SNR of the used ECT system was
about 58 dB, which is between the two SNR levels used in
numerical simulations. It can be seen in Fig. 11 that the images
reconstructed using the LBP and TR algorithms show similar
features to those in numerical simulations, say the images
by the LBP algorithm are blurred in the central region and
the images by the TR algorithm show many artifacts in the

Fig. 12. Images reconstructed by different methods using experimental data
from a gas–solid fluidized bed.

Fig. 13. Computational cost of different methods in a reconstruction step.

near-wall region. After combining these two images by the use
of the GC_comb method, the drawbacks of both the LBP and
TR algorithms are removed. Finally, satisfactory image quality,
which is similar to that by the Landweber iteration algorithm,
can be obtained by the GC_comb method with respect to the
number and shape of the objects in the imaging area.

Case 5: In this case, the reconstructed images from a real
gas–solid fluidized bed by different methods are shown, as
seen in Fig. 12. Although true distributions are unknown,
it is still clear in Fig. 12 that the GC_comb method can
extract the distribution reconstructed by the TR algorithm
in the central region and the distribution reconstructed by
the LBP algorithm in the near-wall region to form a new
image, which finally results in images as good as those by the
Landweber iteration algorithm. Such results further confirm
the feasibility of the graph-cut-based strategy in reconstructing
material distributions in gas–solid two-phase flows.

C. Computational Cost Comparison

One of the most attractive advantages of ECT is its high
temporal resolution. The typical measuring speed of com-
mercial ECT systems is about 100 frames/s [8]. Therefore,
an image reconstruction algorithm that can reconstruct images
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at a speed faster than 100 frames/s is necessary to make full
use of the commercial ECT systems and achieve the goal
of on-line measurement. Fig. 13 compares the elapsed time
in a reconstruction step required for different methods on
a PC with an Intel Core i5 3.30 GHz. Note that the data
in Fig. 13 were averaged over all the tested distributions shown
before and each distribution was reconstructed 10 000 times.
As can be seen, as only one step is involved, the LBP and
TR algorithms are very fast with a reconstruction time shorter
than 0.1 ms. For the GC_comb method, it needs to first
reconstruct the permittivity distributions using both the LBP
and TR algorithms and then combine these two distributions
using the graph cut theory. Therefore, the reconstruction time
needed for the GC_comb increases sharply to about 8 ms,
which is about 80 times that cost by the single-step algorithms,
say LBP and TR. Obviously, most of this time is spent on
the combination step but not on the reconstruction steps by
the LBP and TR algorithms. Even so, such a reconstruction
time can still meet the requirement to reconstruct images at a
speed faster than 100 frames/s and is enough to characterize
the hydrodynamic behavior in two-phase flow systems, such
as gas–solid fluidized beds [11]. For the Landweber iteration
technique, although good images can be obtained, its slow
reconstruction speed renders it suitable only as an off-line
method.

VI. CONCLUSION

In this paper, beyond the idea to develop a new image
reconstruction algorithm, a novel graph-cut-based strategy was
proposed to combine the images reconstructed by two existing
image reconstruction algorithms for ECT. As an example,
the proposed strategy was implemented to combine two images
reconstructed by two widely used ECT reconstruction algo-
rithms, i.e., LBP and TR. Both numerical simulations and
experiments associated with stationary objects and a gas–
solid fluidized bed confirmed the effectiveness of the proposed
strategy. The results demonstrate that the graph-cut-based
strategy can retain the good image quality in the central region
reconstructed by the TR algorithm and meanwhile eliminate
the artifacts by taking advantages of the LBP algorithm in
the near-wall region. In this way, the quality of ECT images
obtained via a single reconstruction algorithm can be greatly
improved. In addition, the typical reconstruction time cost by
the proposed strategy is about 8 ms, which suggests that it can
be potentially used for on-line ECT measurement.

In fact, it is hard to obtain satisfactory ECT images in all
imaging regions by the use of a single reconstruction algo-
rithm. The proposed strategy in this paper opens a promising
way to combine ECT images obtained by different recon-
struction algorithms that is unique in retaining the advan-
tages of these algorithms while abandoning the drawbacks.
Although only the examples of the combination of the LBP
and TR algorithms were presented, the strategy can certainly
be extended to the combination of other image reconstruction
algorithms following a similar framework. Moreover, with the
ability to remove artifacts and integrate training patterns with
any dimensionality, the proposed strategy shows tremendous
potential for 3-D ECT image reconstruction.
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